Minimal Energies of Trees with Three Branched Vertices*

Jianming Zhu ${ }^{1, \dagger}$, Ju Yang ${ }^{2}$
${ }^{1}$ Department of Applied Mathematics, Shanghai University of International Business and Economics, Shanghai 201620, China zhujianming2005@suibe.edu.cn
${ }^{2}$ College of Finance, Shanghai University of International Business and Economics, Shanghai 201620, China yangju@suibe.edu.cn

(Received May 16, 2017)

Abstract

The energy of a graph is defined as the sum of the absolute values of the eigenvalues of its adjacency matrix. Let $\Omega(n, 3)$ be the set of trees with n vertices and exactly three branched vertices. In this paper, we characterize the trees with the first to the fourth smallest energies in $\Omega(n, 3)$ for $n \geq 27$.

1 Introduction

Let G be a simple and undirected graph with n vertices and $A(G)$ be its adjacency matrix. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of $A(G)$. Then the energy of G, denoted by $E(G)$, is defined as $E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$ (see $[1,2]$). The theory of graph energy is well developed nowadays. Its details can be found in the recent book [3] and reviews [4], and references therein.

A fundamental problem encountered within the study of graph energy is the characterization of the graphs that belong to a given class of graphs having maximal or minimal

[^0]energy. One of the graph classes that has been quite thoroughly studied is the class of all trees, i.e., connected graphs with no cycle. A remarkably large number of papers were published on such extremal problems: Trees with minimal energies [5-15]; Trees with maximal energies [16-22]; Unicyclic graphs [23-29]; Bicyclic graphs [30-32]; Tricyclic graphs [33-35].

The characteristic polynomial $\operatorname{det}(x I-A(G))$ of the adjacency matrix $A(G)$ of a graph G is also called the characteristic polynomial of G, written as $\phi(G, x)=\sum_{i=0}^{n} a_{i}(G) x^{n-i}$.

If G is a bipartite graph, then it is well known that $\phi(G, x)$ has the form

$$
\phi(G, x)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{2 i}(G) x^{n-2 i}=\sum_{i=0}^{\lfloor n / 2\rfloor}(-1)^{i} b_{2 i}(G) x^{n-2 i},
$$

where $b_{2 i}(G)=\left|a_{2 i}(G)\right|=(-1)^{i} a_{2 i}(G)$. In case G is a forest, then $b_{2 i}(G)=m(G, i)$, the number of i-matchings of G.

In this paper, we assume that

$$
\widetilde{\phi}(G, x)=\sum_{i=0}^{\lfloor n / 2\rfloor} b_{2 i}(G) x^{n-2 i}
$$

Using these coefficients of $\phi(G, x)$, the energy $E(G)$ of a bipartite graph G of order n can be expressed by the following Coulson integral formula [2]:

$$
\begin{equation*}
E(G)=\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \ln \left(\sum_{i=0}^{\lfloor n / 2\rfloor} b_{2 i}(G) x^{2 i}\right) d x \tag{1}
\end{equation*}
$$

It follows that $E(G)$ is a strictly monotonically increasing function of those numbers $b_{2 i}(G)(i=0,1, \ldots,\lfloor n / 2\rfloor)$ for bipartite graphs. This in turn provides a way of comparing the energies of a pair of bipartite graphs as follows.

Definition 1.1. Let G_{1} and G_{2} be two bipartite graphs of order n. If $b_{2 i}\left(G_{1}\right) \leq b_{2 i}\left(G_{2}\right)$ for all i with $1 \leq i \leq\lfloor n / 2\rfloor$, then we write $G_{1} \preceq G_{2}$.

Furthermore, if $G_{1} \preceq G_{2}$ and there exists at least one index j such that $b_{2 j}\left(G_{1}\right)<$ $b_{2 j}\left(G_{2}\right)$, then we write that $G_{1} \prec G_{2}$. If $b_{2 i}\left(G_{1}\right)=b_{2 i}\left(G_{2}\right)$ for all i, we write $G_{1} \sim G_{2}$. According to the Coulson integral formula (1), we have for two biaprtite G_{1} and G_{2} of order n that

$$
\begin{aligned}
& G_{1} \preceq G_{2} \Longrightarrow E\left(G_{1}\right) \leq E\left(G_{2}\right) \\
& G_{1} \prec G_{2} \Longrightarrow E\left(G_{1}\right)<E\left(G_{2}\right) .
\end{aligned}
$$

Trees with extremal energies are extensively studied in literature (see [3], Chapter 7). Gutman [5] determined the first four smallest energy trees of order n. Li and $\mathrm{Li}[7]$ determined the fifth and sixth smallest energy trees of order n. Wang and Kang [8] characterized the seventh to the ninth smallest energy trees of order n. Recently, Shan and Shao [9] further determined the tenth to the twelfth smallest energy tree of order n.

Because the first to the twelfth smallest energy trees of order n have one or two branched vertices, it is natural to consider determining the minimal energy trees over the set of trees of order n with few branched vertices. In [10], Marín et al. showed that the minimal energy tree of order n with exactly three branched vertices was $T(2,1, n-6)$ (see Figure 1). In this paper, we generalize the result and further characterize the trees with the second to the fourth smallest energies with exactly three branched vertices for $n \geq 27$.

Let $\Omega(n, 3)$ be the set of trees with n vertices and exactly three branched vertices. The following theorem is the main result of this paper.

Theorem 1.1. Let $T \in \Omega(n, 3)$ and $n \geq 27$. If $T \neq T(2,1, n-6), T(2, n-7,2), T(3,1, n-$ 7), $T(2,2, n-7)$, then $E(T(2,1, n-6))<E(T(2, n-7,2))<E(T(3,1, n-7))<$ $E(T(2,2, n-7))<E(T)$.

Figure 1. The trees $T(2,1, n-6), T(2, n-7,2), T(3,1, n-7)$ and $T(2,2, n-7)$.

2 The basic strategy of the proof of Theorem 1.1

In this section, we outline the basic strategy of the proof of Theorem 1.1. Let T be a tree with n vertices and exactly three branched vertices. Then T has the form of $T\left(a_{1}, \cdots, a_{r}|x| b_{1}, \cdots, b_{s}\right.$
$\left.|y| c_{1}, \cdots, c_{t}\right)$ as shown in Figure 2, where $a_{1}, \cdots, a_{r}, b_{1}, \cdots, b_{s}, c_{1}, \cdots, c_{t}, x, y$ are positive integers. When $a_{1}=\cdots=a_{r}=b_{1}=\cdots=b_{s}=c_{1}=\cdots=c_{t}=1$ and $x=y=1$, we usually abbreviate $T\left(a_{1}, \cdots, a_{r}|x| b_{1}, \cdots, b_{s}|y| c_{1}, \cdots, c_{t}\right)$ by $T(r, s, t)$ which is depicted in Figure 2. Let $\Omega(n, 3)$ be the set of trees with n vertices and exactly three branched vertices. Let $A(n, 3)=\{T(r, s, t) \mid t \geq r \geq 2, s \geq 1, r+s+t=n-3\}$. Let $B(n, 3)=\Omega(n, 3) \backslash A(n, 3)$. Then we have $A(n, 3) \bigcup B(n, 3)=\Omega(n, 3)$.

Figure 2. The trees $T\left(a_{1}, \cdots, a_{r}|x| b_{1}, \cdots, b_{s}|y| c_{1}, \cdots, c_{t}\right)$ and $T(r, s, t)$.

To conclude, for $n \geq 27$, our basic strategy of the proof of Theorem 1.1 is to prove the following results $\left(R_{1}\right)-\left(R_{3}\right)$:

$$
\left(R_{1}\right) . E(T(2,1, n-6))<E(T(2, n-7,2))<E(T(3,1, n-7))<E(T(2,2, n-7)) .
$$

$\left(R_{2}\right)$. Let $T \in A(n, 3)$. If $T \neq T(2,1, n-6), T(2, n-7,2), T(3,1, n-7), T(2,2, n-7)$, then $E(T)>E(T(2,2, n-7))$;
$\left(R_{3}\right)$. Let $T \in B(n, 3)$. Then $E(T)>E(T(2,2, n-7))$;

It is easy to see that we can prove Theorem 1.1 by combining the above results $\left(R_{1}\right)-$ $\left(R_{3}\right)$. Then we will prove the results $\left(R_{1}\right)-\left(R_{3}\right)$ in Sections 3 and 4, respectively.

3 The proof of (\boldsymbol{R}_{1})

Recently, Shan et al. [9] presented a new method of comparing the energies of two trees which are quasi-ordering incomparable. In this section, we will use the method to prove the result $\left(R_{1}\right)$. First, we introduce some notations and lemmas.

Let u be a vertex of a graph G. A k-claw attaching graph of G at u, denoted by $G_{u}(k)$, is the graph obtained from G by attaching k new pendant edges to G at the vertex u.

For the sake of simplicity, the polynomials $\phi(G, x)$ and $\widetilde{\phi}(G, x)$ will be denoted by $\phi(G)$ and $\widetilde{\phi}(G)$. Let v be a vertex of a graph H. Let

$$
\begin{aligned}
D_{1} & =\{x>0 \mid \widetilde{\phi}(H) \widetilde{\phi}(G-u)-\widetilde{\phi}(G) \widetilde{\phi}(H-v)>0\} \\
D_{2} & =\{x>0 \mid \widetilde{\phi}(H) \widetilde{\phi}(G-u)-\widetilde{\phi}(G) \widetilde{\phi}(H-v)<0\}
\end{aligned}
$$

Furthermore, we let

$$
\begin{aligned}
E D(k) & =E\left(H_{v}(k)\right)-E\left(G_{u}(k)\right) \\
E D & =E(H-v)-E(G-u) .
\end{aligned}
$$

Lemma 3.1. ([9]) Let u be a vertex of a bipartite graph G and v be a vertex of a bipartite graph H. Let $D_{1}, D_{2}, E D(k), E D$ be defined as above. Then for $0 \leq l<k$, we have
(1) If $D_{1}=\emptyset$ but $D_{2} \neq \emptyset$, then $E D(l)<E D(k)<E D$;
(2) If $D_{2}=\emptyset$ but $D_{1} \neq \emptyset$, then $E D<E D(k)<E D(l)$;
(3) If $D_{1}=D_{2}=\emptyset$, then $E D=E D(k)=E D(l)$.

From Lemma 3.1, we can prove the following two lemmas.
Lemma 3.2. If $n \geq 27$, then $E(T(2, n-7,2))<E(T(3,1, n-7))$.

Proof. Let $G=T(2,20,2)$ and $H=T(3,1,20)$. Let u be the vertex of G with degree 22 and v be the vertex of H with degree 21, respectively. Then $G_{u}(n-27)=T(2, n-7,2)$ and $H_{v}(n-27)=T(3,1, n-7)$, respectively. By some calculations, we can show that

$$
\begin{aligned}
\widetilde{\phi}(H) & =60 x^{21}+106 x^{23}+26 x^{25}+x^{27} \\
\widetilde{\phi}(G) & =80 x^{21}+88 x^{23}+26 x^{25}+x^{27} \\
\widetilde{\phi}(H-v) & =x^{20}\left(3 x^{2}+5 x^{4}+x^{6}\right) \\
\widetilde{\phi}(G-u) & =x^{20}\left(4 x^{2}+4 x^{4}+x^{6}\right),
\end{aligned}
$$

This implies that

$$
\widetilde{\phi}(H) \widetilde{\phi}(G-u)-\widetilde{\phi}(G) \widetilde{\phi}(H-v)=-x^{27}\left(x^{2}+2\right)\left(x^{2}+5\right) .
$$

Then $D_{1}=\emptyset$. Using Lemma 3.1, we have

$$
E D(n-27) \geq E D(0)=E(H)-E(G) \doteq 9.8567 \times 10^{-4}>0
$$

Thus $E(T(2, n-7,2))<E(T(3,1, n-7))$.
Lemma 3.3. If $n \geq 16$, then $E(T(2,2, n-7))<E(T(4,1, n-8))$.
Proof. Let $G=T(2,2,9)$ and $H=T(4,1,8)$. Let u be the vertex of G with degree 10 and v be the vertex of H with degree 9 , respectively. Then $G_{u}(n-16)=T(2,2, n-7)$ and $H_{v}(n-16)=T(4,1, n-8)$, respectively. By some direct calculations, we can get

$$
\begin{aligned}
\widetilde{\phi}(H) & =32 x^{10}+56 x^{12}+15 x^{14}+x^{16} \\
\widetilde{\phi}(G) & =36 x^{10}+51 x^{12}+15 x^{14}+x^{16} \\
\widetilde{\phi}(H-v) & =x^{8}\left(4 x^{3}+6 x^{5}+x^{7}\right) \\
\widetilde{\phi}(G-u) & =x^{8}\left(4 x^{3}+5 x^{5}+x^{7}\right)
\end{aligned}
$$

It follows that

$$
\widetilde{\phi}(H) \widetilde{\phi}(G-u)-\widetilde{\phi}(G) \widetilde{\phi}(H-v)=-x^{13}\left(x^{2}+2\right)\left(x^{6}+8 x^{4}+14 x^{2}+8\right)
$$

Thus $D_{1}=\emptyset$. According to Lemma 3.1, we have

$$
E D(n-16) \geq E D(0)=E(H)-E(G) \doteq 0.0129>0
$$

Then $E(T(2,2, n-7))<E(T(4,1, n-8))$.
According to Lemmas 3.2 and 3.3, we can prove the following result.
Lemma 3.4. If $n \geq 27$, then $E(T(2,1, n-6))<E(T(2, n-7,2))<E(T(3,1, n-7))<$ $E(T(2,2, n-7))$.
Proof. By some direct, calculations, we can show that

$$
\begin{aligned}
& \widetilde{\phi}(T(2,1, n-6))=2(n-6) x^{n-6}+4(n-5) x^{n-4}+(n-1) x^{n-2}+x^{n} \\
& \widetilde{\phi}(T(2, n-7,2))=4(n-7) x^{n-6}+4(n-5) x^{n-4}+(n-1) x^{n-2}+x^{n} \\
& \widetilde{\phi}(T(3,1, n-7))=3(n-7) x^{n-6}+(5 n-29) x^{n-4}+(n-1) x^{n-2}+x^{n} \\
& \widetilde{\phi}(T(2,2, n-7))=4(n-7) x^{n-6}+(5 n-29) x^{n-4}+(n-1) x^{n-2}+x^{n}
\end{aligned}
$$

It follows that $T(2,1, n-6) \prec T(2, n-7,2)$ and $T(3,1, n-7) \prec T(2,2, n-7)$. By
Lemma 3.2, we can have $E(T(2,1, n-6))<E(T(2, n-7,2))<E(T(3,1, n-7))<$ $E(T(2,2, n-7))$.

The proof of (\boldsymbol{R}_{1}):
Proof. The result can follow from Lemma 3.4 immediately.

4 The proofs of $\left(\boldsymbol{R}_{2}\right)$ and $\left(\boldsymbol{R}_{3}\right)$

In this section, we will prove the results $\left(R_{2}\right)$ and $\left(R_{3}\right)$. The following two lemmas were obtained by MArín et al. in [10].

Lemma 4.1. ([10]) Let $T(r, s, t)$ be the tree depicted in Figure 2. If $t \geq r \geq 2$, then $T(r-1, s, t+1) \prec T(r, s, t)$.

Lemma 4.2. ([10]) Let $T(2, s, t)$ be the tree depicted in Figure 2. We have the followings.
(1) If $2 \leq s \leq t$, then $T(2, s-1, t+1) \prec T(2, s, t)$;
(2) If $2 \leq t<s$, then $T(2, s+1, t-1) \prec T(2, s, t)$;

The following lemma will be used in Lemma 4.4.
Lemma 4.3. If $n \geq 11$, then $T(2,2, n-7) \prec T(2, n-8,3)$.

Proof. By some direct calculations, we can have

$$
\begin{gathered}
\widetilde{\phi}(T(2,2, n-7))=4(n-7) x^{n-6}+(5 n-29) x^{n-4}+(n-1) x^{n-2}+x^{n} \\
\widetilde{\phi}(T(2, n-8,3))=6(n-8) x^{n-6}+(5 n-29) x^{n-4}+(n-1) x^{n-2}+x^{n}
\end{gathered}
$$

It follows that $T(2,2, n-7) \prec T(2, n-8,3)$. We have completed the proof.
Now we prove the result $\left(R_{2}\right)$ in the following lemma.

Lemma 4.4. Let $T \in A(n, 3)$ and $n \geq 16$. If $T \neq T(2,1, n-6), T(2, n-7,2), T(3,1, n-$ 7), $T(2,2, n-7)$, then $E(T)>E(T(2,2, n-7))$.

Proof. Since $T \in A(n, 3)$, we have that T has the form of $T(r, s, t)$ shown in Figure 2. Because $T \neq T(2, n-7,2)$, we have $1 \leq s \leq n-8$. We consider the following three cases.

Case 1: $s=1$
Then $T=T(r, 1, t)$ with $r+t=n-4$. Since $T \neq T(2,1, n-6), T(3,1, n-7)$, we have $r \geq 4$. By Lemma 4.1, we can show that $T \succeq T(4,1, n-8)$. Furthermore, using Lemma 3.3 we have $E(T)>E(T(2,2, n-7))$.

Case 2: $s=2$
So $T=T(r, 2, t)$ with $r+t=n-4$. Since $T \neq T(2,2, n-7)$, we have $r \geq 3$. According to Lemma 4.1, we can get $T \succeq T(3,2, n-8) \succ T(2,2, n-7)$.

Case 3: $3 \leq s \leq n-8$
By Lemma 4.1, we have $T \succeq T(2, s, n-s-5)$.

If $s \leq n-s-5$, then by Lemma 4.2 we have $T \succeq T(2,3, n-8) \succ T(2,2, n-7)$.
If $s>n-s-5$, then using Lemma 4.2 we have $T \succeq T(2, n-8,3)$. Moreover, according to Lemma 4.3, we can show that $T \succ T(2,2, n-7)$. Then we complete the proof.

The proof of $\left(\boldsymbol{R}_{2}\right)$:
Proof. The result can follow from Lemma 4.4 immediately.
Let T be a tree of order $n \geq 4$ and $u v$ be a nonpendent edge. Assume that $T-u v=$ $T_{1} \cup T_{2}$ with $u \in V\left(T_{1}\right)$ and $v \in V\left(T_{2}\right)$. Now we construct a new tree T_{0} obtained by identifying vertex u with vertex v and attaching a pendent vertex to vertex $u(=v)$ (see Figure 3). Then we say that T_{0} is obtained by running edge-growing transformation of T on edge $u v$, or e.g.t. of T on edge $u v$ for short.

Figure 3. Two trees for e.g.t. in Lemma 4.5

Lemma 4.5. ([10]) Let T be a tree of order $n \geq 4$ and uv be nonpendent edge of T. If T_{0} is a tree obtained from T by running one step of e.g.t. on edge $u v$, then $T_{0} \prec T$.

Figure 4. Three trees used in Lemma 4.7

Let G be a graph. Denote by $m(G, k)$ the k-matching numbers of G. The following lemma will be used in the proof of Lemma 4.7.

Lemma 4.6. Let P_{1}, P_{2}, P_{3} be the trees as shown in Figure 4. If $n \geq 27$, then $P_{i} \succ$ $T(2,2, n-7)$ for $i=1,2,3$.

Proof. By some calculations we have

$$
\begin{aligned}
& m\left(P_{1}, 3\right) \geq 4(n-8)+2(n-6)=6 n-44 \\
& m\left(P_{1}, 2\right) \geq n-2+4(n-7)+4=5 n-26 \\
& m\left(P_{2}, 3\right) \geq 5(n-9)+3(n-8)=8 n-69 \\
& m\left(P_{2}, 2\right) \geq n-2+5(n-8)+4=6 n-42 \\
& m\left(P_{3}, 3\right) \geq 4(n-7)+4(n-9)=8 n-64 \\
& m\left(P_{3}, 2\right) \geq \quad 4(n-4)+n-9=5 n-25 .
\end{aligned}
$$

Moreover, $\widetilde{\phi}(T(2,2, n-7))=4(n-7) x^{n-6}+(5 n-29) x^{n-4}+(n-1) x^{n-2}+x^{n}$. Then we have $P_{i} \succ T(2,2, n-7)$ for $i=1,2,3$.

The result $\left(R_{3}\right)$ will be proved in the following lemma.
Lemma 4.7. Let $T \in B(n, 3)$. If $n \geq 27$, then $E(T)>E(T(2,2, n-7))$.
Proof. Let $T \in B(n, 3)$. Then T have the form of $T\left(a_{1}, \cdots, a_{r}|x| b_{1}, \cdots, b_{s}|y| c_{1}, \cdots, c_{t}\right)$ where $a_{i}, b_{i}, c_{i}, x, y$ are positive integers. For simplicity, when $a_{1}=\cdots=a_{r}=b_{1}=$ $\cdots=b_{s}=c_{1}=\cdots=c_{t}=1$, we abbreviate $T\left(a_{1}, \cdots, a_{r}|x| b_{1}, \cdots, b_{s}|y| c_{1}, \cdots, c_{t}\right)$ by $T(r|x| s|y| t)$. We consider the following five cases.

Case 1: $x \geq 2$
According to Lemma 4.5, we have $T \succeq T(r|2| s|1| t)$ where $r+s+t=n-4$. If $s=1$, then by Lemmas 4.1 and 4.5 we have $T \succ T(2,2, n-7)$. If $s=n-8$, then $T \succ T(2, n-8,3)$ by Lemmas 4.1 and 4.5. If $2 \leq s \leq n-9$, using Lemma 4.5 we have $T \succ T(r, s+1, t)$. By Lemma 4.4, we can show that $T \succ T(2,2, n-7)$.

Case 2: $y \geq 2$
The proof is similar to Case 1 .
Case 3: there at least exists one index i satisfying that $a_{i} \geq 2$.
If $x \geq 2$ or $y \geq 2$, then we can prove the result by Case 1 or Case 2 . Then we can assume $x=y=1$ in the followings. By Lemma 4.5, we have $T \succeq T(1, \cdots, 1,2|1| s|1| t)$. If $s \geq 2$, then by Lemma 4.1 we have $T \succ T(2,2, n-7)$. Then we assume that $s=1$ in what follows. If $t=2$, then we can show that $T \succeq P_{1}$. Using Lemma 4.6, we can obtain that $T \succ T(2,2, n-7)$. If $t=3$, then we have $T \succeq P_{2}$. According to Lemma 4.6, we can show that $T \succ T(2,2, n-7)$. If $t \geq 4$, then by Lemmas 4.4 and 4.5 , we can have $T \succ T(2,2, n-7)$.

Case 4: there at least exists one index i satisfying that $c_{i} \geq 2$.
The proof is similar to Case 3 .
Case 5: there at least exists one index i satisfying that $b_{i} \geq 2$.

According to the above results, we can assume that $x=y=a_{1}=\cdots=a_{r}=c_{1}=$ $\cdots=c_{t}=1$. By Lemma 4.5, we have $T \succeq T(r|1| 1, \cdots, 1,2|1| t)$. If $r=t=2$, then $T \succeq P_{3}$. Using Lemma 4.6, we can show that $T \succ T(2,2, n-7)$. If $r \geq 3$, then by Lemma 4.5 we have $T \succ T(r, s, t)$ where $r \geq 3$ and $s \geq 2$. According to Lemma 4.4, we have $T \succ T(2,2, n-7)$. If $t \geq 3$, then we prove the result similarly.

To conclude, we have completed the proof.

The proof of $\left(R_{3}\right)$:

Proof. The result can follow from Lemma 4.7 immediately.
Acknowledgments: This work was completed while the first author was visiting the School of Business of East China University of Science and Technology.

References

[1] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forsch. Graz 103 (1978) 1-22.
[2] I. Gutman, O. E. Polansky, Mathematicas Concepts in Organic Chemistry, Springer, Berlin, 1986.
[3] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
[4] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer, Berlin, 2001, pp. 196-211.
[5] I. Gutman, Acyclic systems with extremal Hükel π-electron energy, Theor. Chim. Acta 45 (1977) 79-87.
[6] I. Gutman, F. Zhang, On the orderging of graphs with respect to their matching numbers, Discr. Appl. Math. 15 (1986) 22-33.
[7] N. Li, S. Li, On the extremal energy of trees, MATCH Commun. Math. Comput. Chem. 59 (2008) 291-314.
[8] W. Wang, L. Kang, Ordering of the trees by minimal energy, J. Math. Chem. 47 (2010) 937-958.
[9] H. Shan, J. Shao, The proof of a conjecture on the comparison of the energies of trees, J. Math. Chem. 50 (2012) 2637-2647.
[10] C. MArín, J. Monsalve, J. Rada, Maximum and minimum energy trees with two and three branched vertices, MATCH Commun. Math. Comput. Chem. 74 (2015) 285-306.
[11] A. Yu, X. Lv, Minimal energy of trees with k pendent vertices, Lin. Algebra Appl. 418 (2006) 625-633.
[12] W. Yan, L. Ye, On the minimal energy of trees with a given diameter, Appl. Math. Lett. 18 (2005) 1046-1052.
[13] C. He, B. Wu, Z. Yu, On the energy of trees with given domination number, MATCH Commun. Math. Comput. Chem. 61 (2011) 169-180.
[14] J. Zhu, Minimal energies of trees with given parameters, Lin. Algebra Appl. 436 (2012) 3120-3131.
[15] C. He, L. Lei, H. Shan, A. Peng, Two subgraph grafting theorems on the energy of bipartite graphs, Lin. Algebra Appl. 515 (2017) 96-110.
[16] I. Gutman, S. Radenković, N. Li, S. Li, Extremal energy of trees, MATCH Commun. Math. Comput. Chem. 59 (2008) 315-320.
[17] H. Shan, J. Shao, Graph energy change due to edge grafting operations and its applications, MATCH Commun. Math. Comput. Chem. 64 (2010) 25-40.
[18] B. Huo, S. Ji, X. Li, Y. Shi, Complete solution to a conjecture on the fourth maximal energy tree, MATCH Commun. Math. Comput. Chem. 66 (2011) 903-912.
[19] E. O. D. Andriantiana, More trees with large energy, MATCH Commun. Math. Comput. Chem. 68 (2012) 675-695.
[20] H. Shan, J. Shao, L. Zhang, C. He, A new method of comparing the energies of subdivision bipartite graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 721-740.
[21] H. Shan, J. Shao, L. Zhang, C. He, Proof of a conjecture on trees with lrage energy, MATCH Commun. Math. Comput. Chem. 68 (2012) 703-720.
[22] I. Gutman, B. Furtula, E. O. D. Andriantiana, M. Cvetić, More trees with large energy and small size, MATCH Commun. Math. Comput. Chem. 68 (2012) 697-702.
[23] Y. Hou, Unicyclic graphs with minimal energy, J. Math. Chem. 29 (2001) 163-168.
[24] J. Shao, H. Shan, F. Gong, Y. Liu, An edge grafting theorem on the energy of unicyclic and bipartite graphs, Lin. Algebra Appl. 433 (2010) 547-556.
[25] J. Zhu, Two new edge grafting operations on the energy of unicyclic graphs and their applications, Discr. Math. 312 (2012) 3117-3127.
[26] J. Zhu, On minimal energies of unicyclic graphs with perfect matching, MATCH Commun. Math. Comput. Chem. 70 (2013) 97-118.
[27] Y. Hou, I. Gutman, C. Woo, Unicyclic graphs with maximal energy, Lin. Algebra Appl. 356 (2002) 27-36.
[28] J. Zhu, J. Yang, Bipartite unicyclic graphs with large energies, J. Appl. Math. Comput. 48 (2015) 533-552.
[29] B. Huo, X. Li, Y. Shi, Complete solution to a conjecture on the maximal energy of unicyclic graphs, Eur. J. Comb. 32 (2011) 662-673.
[30] J. Zhang, B. Zhou, On bicyclic graphs with minimal energies, J. Math. Chem. 37 (2005) 423-431.
[31] X. Li, J. Zhang, On bicyclic graphs with maximal energy, Lin. Algebra Appl. 427 (2007) 87-98.
[32] B. Huo, S. Ji, X. Li, Y. Shi, Solution to a conjecture on the maximal energy of bipartite bicyclic graphs, Lin. Algebra Appl. 435 (2011) 804-810.
[33] S. Li, X. Li, Z. Zhu, On tricyclic graphs with minimal energy, MATCH Commun. Math. Comput. Chem. 59 (2008) 397-419.
[34] X. Li, Y. Shi, M. Wei, On a conjecture about tricyclic graphs with maximal energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 183-214.
[35] X. Li, Y. Mao, M. Liu, More on a conjecture about tricyclic graphs with maximal energy, MATCH Commun. Math. Comput. Chem. 73 (2015) 11-26.

[^0]: ${ }^{1 \star}$ Research supported by the National Natural Science Foundation of China (No. 11501356), (No. 11426149) and (No. 71173145).
 ${ }^{2 \dagger}$ Corresponding author.

