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Abstract

Necessary and sufficient conditions are provided for the existence of a simple
graph, or a simple connected graph with given numbers mij of edges with end-
degrees i, j for i ≤ j ∈ {1, 2, . . . ,∆}, where ∆ is the maximum degree. Moreover
this allows to determine the kth-minimum or maximum value of all Adriatic indices
together with the corresponding graphs.

1 Introduction

Realizability problems in graph theory consist in finding necessary and/or sufficient con-

ditions for graphs with prescribed values of some invariants to exist, and to provide

algorithms to obtain such graphs. Since, the pioneering work of S. L. Hakimi [8, 9] they

are mostly focused on conditions related to the degrees of the graph under study. More

recently conditions involving the pairs of degrees of the end-vertices of the edges have been
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studied in mathematical chemistry. Such conditions have been used by Caporossi et al. [2]

to determine trees with minimum Randić index [14] using mixed integer programming.

This approach was extended by several authors [3, 5, 13]. Similar conditions have also

been investigated by Vukičević and Graovac [18–20] and Vukičević and Trinajstić [21,22]

to analyze discriminative properties of molecular descriptors such as the Zagreb index [7],

the modified Zagreb index [12], and the Randić index. Several classes of graphs have

been considered: chemical trees, i.e. trees with maximum degree at most 4 [16], unicyclic

chemical graphs [20], and general chemical graphs [22].

Given a class Γ of graphs G, the edge realizability problem can be defined as follows:

find necessary and sufficient conditions on the numbers mij of edges with end-degrees i

and j for a graph G in that class Γ to exist. Deng, Huang, and Jiang [4] present a unified

linear-programming model of some topological indices : Randić, Zagreb, sum-connectivity,

GA, ABC, and harmonic indices. This model does not imply that the graphs obtained

are connected.

Simple graphs are graphs without loops or multiple edges. In this paper, we consider

the edge realizability problem for the classes of simple graphs and of simple connected

graphs for which the maximum degree ∆ is given. Results obtained generalize those

of [16, 20, 22] for chemical graphs. Hence, the main contibution of the present paper is

to provide concise necessary and sufficient conditions on the numbers mij of edges with

end-degrees i and j for the existence of a simple graph or a simple connected with fixed

maximum degree.

The paper is organised as follows. Edge realizability of simple graphs is studied in

the next section, while the edge realizability of simple connected graphs is studied in

section 3. An integer programming model implementing the conditions of the previous

sections is given in Section 4. Algorithms to construct simple graphs or simple connected

graphs with given numbers mij of edges with end-degrees i and j are given in Section 5.

The use of the integer programming model and of the proposed constructive algorithms

is illustrated in Section 6 by a study of extremal graphs for the Randić index and the

second Zagreb index.
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2 Edge realizability of simple graphs

Let G = (V,E) be a graph with vertex set V and edge set E. We denote by G[W ] the

subgraph of G induced by a subset W ⊆ V of vertices, by dG(v) the degree of v in G, and

by ∆(G) the maximum degree in G. Let euv be the number of edges linking u with v in

G. The number µ(G) of multiple edges in G is defined as µ(G) =
∑

u6=v max{euv − 1, 0}.

Hence, µ(G) = 0 if and only if G does not contain any multiple edge.

Given a symmetric r× r matrix M = [mij], an M -graph is a graph G with ∆(G) = r

and such that the number of edges with end-vertex degrees i and j is equal tomij. Multiple

edges contribute by their multiplicity to both of their end-degrees and loops contribute

by 2 to the degree of their unique end-vertex.

Let ΓM be the set of simple M -graphs (i.e., the set of M -graph without loops or

multiple edges). We now characterize the symmetric matrices M for which ΓM is non-

empty.

Theorem 2.1. Let M = [mij] be a symmetric r × r matrix of non-negative integers.

ΓM 6= ∅ if and only if the following conditions hold:

(C1) ni = 1
i
(

r∑
j=i

mij +
i∑

j=1

mji) is an integer for all i = 1, . . . , r;

(C2) mii ≤ 1
2
(ni(ni − 1)) for all i = 2, . . . , r such that 1 ≤ ni ≤ i.

(C3) mij ≤ ninj for all 2 ≤ i < j ≤ r such that 1 ≤ ni < j and 1 ≤ nj < i.

Proof. Necessity. Let G be a simple M -graph. The number ni of vertices of degree i in

G is of course an integer, and is equal to 1
i
(
∑r

j=imij +
∑i

j=1mji). Also, since G is a

simple graph, the number mii of edges that connect vertices of degree i is at most equal

to 1
2
(ni(ni − 1)).

• If i = 1, condition (C1) imposes m11 ≤ 1
2
n1 ≤ 1

2
n1(n1−1) when n1 ≥ 2, and m11 = 0

when n1 ≤ 1.

• If i > 1, condition (C1) imposes mii ≤ ini

2
≤ 1

2
(ni(ni−1)) when ni ≥ i+1 or ni = 0.

Hence, it is sufficent to impose mii ≤ 1
2
(ni(ni − 1)) for i = 2, . . . , r and ni = 1, . . . , i.

The number mij of edges with end-degrees i and j is at most equal to ninj, and it is

sufficient to impose this constraint when ni ≤ j − 1 and nj ≤ i − 1, since (C1) imposes

mij ≤ ini ≤ ninj when nj ≥ i or ni = 0, and mij ≤ jnj ≤ ninj when ni ≥ j or nj = 0.
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Sufficiency We first prove that the three conditions are sufficient for the existence of a

non-necessarily simple M -graphs (i.e., an M -graph in which loops and multiple edges are

permitted). Let V1, . . . , Vr be r sets (possibly empty) of distinct vertices, with |Vi| = ni,

and let GM be the set of graphs with vertex set V = ∪ri=1Vi, such that every vertex in

Vi (i = 1, . . . , r) has degree at most i, and there are at most mij edges with end-vertex

degrees i and j, 1 ≤ i ≤ j ≤ r. Note that GM is not empty since it contains the empty

graph (i.e., the graph G = (V,E) with E = ∅). Consider now a graph G in GM with

maximum number of edges. Let m′ij be the number of edges of G with end-vertex degrees i

and j. It is sufficient to prove that m′ij = mij for 1 ≤ i ≤ j ≤ r. Assume, by contradiction,

that there are two integers i and j such that m′ij < mij.

• If i = j, then∑
v∈Vi

dG(v) = 2m′ii +
∑
j 6=i

m′ij ≤ 2(mii − 1) +
∑
j 6=i

mij = i|Vi| − 2.

Hence, either there are two vertices u, v in Vi with dG(u) < i and dG(v) < i, in

which case we can add an edge between u and v. Otherwise, a vertex v ∈ Vi has

degree at most i− 2, while all other vertices in Vi have degree i, and we can add a

loop at vertex v. Both cases contradict the maximality of G in GM.

• If i < j, then∑
v∈Vi

dG(v) = 2m′ii +
∑
k 6=i

m′ik ≤ 2mii + (
∑
k 6=i

mik − 1) = i|Vi| − 1.

Similarly, we have
∑

v∈Vj
dG(v) ≤ j|Vj| − 1. Hence, there are at least one vertex

u ∈ Vi and one vertex v ∈ Vj such that dG(u) < i and dG(v) < j. We can therefore

add an edge between u and v, which contradicts the maximality of G in GM.

We now show how to remove loops and multiple edges in G. We start with loops. Assume

there is a loop at a vertex u ∈ Vi. If there is a loop at a vertex v 6= u in Vi, then we

replace the loops at u and v by two parallel edges between u and v. Otherwise, condition

(C2) implies ni ≥ 2, and there is therefore another vertex v 6= u in Vi. Since u and v both

have degree i, there is a vertex w with evw > euw; we remove a loop at u as well as an

edge between v and w, and we add an edge between u and w and another one between

u and v. By repeating this process, we get an M -graph without loops, and we now show

how to remove multiple edges.
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Assume G contains two vertices u ∈ Vi and v ∈ Vj with euv > 1 (where i is possibly

equal to j). We show how to construct an M -graph G′ with µ(G′) < µ(G). We distinguish

three cases.

(a) If there is a vertex w 6= v in Vj that is not linked to u, then there is a vertex q such

that evq < ewq (since both v and w have degree j). We remove one edge linking u

with v as well as one edge linking w with q, and we add an edge between u and w,

and another one between v and q. Clearly, the resulting graph G′ is still an M -graph

and µ(G′) < µ(G).

(b) If u is linked to all vertices in Vj and there is a vertex w 6= u in Vi that is not linked

to v, we proceed as in the previous case (by permuting the roles of u and v) to get

a graph G′ with µ(G′) < µ(G).

(c) If u is linked to all vertices in Vj and v is linked to all vertices in Vi, we have

i 6= j. Indeed, with i = j, we would have mii >
1
2
(ni(ni − 1), which is forbidden

by condition (C1) (if ni ≥ i + 1) or (C2) (if ni ≤ i). Moreover, there exist two

non-adjacent vertices u′ ∈ Vi and v′ ∈ Vj, else we would have mij > ninj, which

is forbidden by condition (C1) (if ni ≥ j or nj ≥ i) or (C3) (if ni ≤ j − 1 and

nj ≤ i − 1). We can assume that u is linked to v′ and v to u′ by single edges, else

we would be in case (a) or (b). Since u and u′ both have degree i, there is a vertex

x /∈ {u, u′, v, v′} such that eux < eu′x. Similarly, there is a vertex y /∈ {u, u′, v, v′}

(possibly equal to x) such that evy < ev′y. We remove one edge linking u with v,

one edge linking u′ with x and one edge linking v′ with y, and we add one edge

between u′ and v′, one edge between u and x and one edge between v and y. Again,

the resulting graph G′ is an M -graph with µ(G′) < µ(G).

In all cases, we can construct an M -graph with a strictly smaller number of multiple edges.

By repeating this process, we can therefore construct an M -graph with no multiple edges.

3 Edge realizability of connected simple graphs

Let Γ′M ⊆ ΓM be the set of simple M -graphs with minimum number of connected com-

ponents. We now characterize the symmetric matrices M for which there exists a simple

connected M -graph G. In other words, we give necessary and sufficient conditions on M
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so that all graphs in Γ′M are connected. In comparison with Theorem 2.1, we will show

that a fourth condition has to be added. We first need to introduce some notations.

For a graph G, let D(G) be the set of integers i such that there is at least one vertex

v with dG(v) = i that lies on a cycle in G. Also, let D′(G) be the set of integers i /∈ D(G)

such that there is at least one vertex w with dG(w) = i that lies on a path P in G whose

endpoints u and v have the same degree dG(u) = dG(v) ∈ D(G). Finally, let H(G) be the

subgraph of G induced by the vertices with degree i ∈ D(G) ∪D′(G) in G. For example,

considering the graphs in Figure 1, we have D(G) = {3, 4} in (a), (b), (c), D(G) = ∅ in

(d), D′(G) = {2} in (a), D′(G) = {2, 6} in (b), and D′(G) = ∅ in (c) and (d). The black

vertices are those with a degree i ∈ D(G), while the grey ones are those with a degree

i ∈ D′(G). The vertices of H(G) are the black and grey ones, and the edges of H(G) are

those represented with bold lines.

We now prove a useful lemma, and we will then illustrate it with the graphs on Figure

1.

Lemma 3.1. Let G be a graph in Γ′M with maximum value |D(G) ∪ D′(G)|. If two

vertices u and v in G have the same degree i ∈ D(G) ∪ D′(G), then they belong to the

same connected component of H(G).

Proof. Consider two vertices u and v with the same degree i ∈ D(G)∪D′(G), and assume,

by contradiction, that u and v belong to two different connected components of H(G).

Case 1: i ∈ D(G). Vertices u and v belong to two different connected components of

G, else H(G) would contain all vertices of every path linking u to v, and u and v

would therefore belong to the same connected component of H(G). So let C be a

cycle that contains a vertex w (possibly equal to u or v) with dG(w) = i. At least

one of u and v, say u, does not belong to the same connected component of G as w.

Let p be a neighbor of w on C, and let q be any neighbor of u in G. By replacing

the edges uq and wp by wq and up we get a new simple M -graph with a smaller

number of connected components. We therefore have G /∈ Γ′M , a contradiction.

Case 2: i ∈ D′(G). There is a vertex x (possibly equal to u or v) in G with dG(x) = i

on a path P whose endpoints w1 and w2 have the same degree dG(w1) = dG(w2) ∈

D(G). At least one of u and v, say u does not belong to the same connected

component of H(G) as P . We distinguish two cases.
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Case 2.1: u and x belong to two different connected components of G. Let p be

a neighbor of x on P , and let q be a neighbor of u. By replacing the edges

uq and xp by xq and up we get a new simple M -graph G′ with at most as

many connected components as G, which implies G′ ∈ Γ′M . Since x does not

belong to a cycle in G (else i ∈ D(G)), we know that w1 and w2 belong to two

different connected components of G′, and it follows from case 1 that G′ /∈ Γ′M ,

a contradiction.

Case 2.2: u and x belong to the same connected component of G. Let P ′ be a

shortest path linking u to x in G, let p be a vertex in P \ P ′ adjacent to x,

and let q be a neighbor of u not on P ′. Let G′ ∈ Γ′M be the graph obtained

from G by replacing the edges xp and uq by xq and up. By using P ′ ∪ {up}

and P ′ ∪ {xq} in G′ instead of xp and uq in G to connect vertices, we have:

- D(G) ⊆ D(G′). Indeed, if a vertex is on a cycle in G, then it belongs to a

cycle in G′.

- D′(G) ⊂ D′(G′). Indeed, if a vertex w is on a path in G that links two

vertices y1 and y2 with the same degree in D(G), then w is on a path in

G′ linking y1 to y2 (which proves D′(G) ⊆ D′(G′)). Moreover, all vertices

on P ′ belong to H(G′) since (P ∪ P ′) \ {xp} is a path linking w1 to w2

in G′. Since at least one vertex on P ′ does not belong to H(G) (else u

and x would belong to the same connected component of H(G)), we have

D′(G) ⊂ D′(G′).

Hence, G′ is a graph in Γ′M with |D(G′)∪D′(G′)| > |D(G)∪D′(G)|, a contra-

diction.

w2=p

u

v
x

w1

q

u

v=x
p

q

u

v=w
q

p

(a) (b) (c) (d)

Figure 1. Illustration of Lemma 3.1

.
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Consider the graph in Figure 1(a). Cases 1 and 2.1 do not apply since all vertices of

H(G) belong to the same connected component of G. By applying the edge exchange of

case 2.2, we obtain the graph in Figure 1(b) with one more integer in D′(G). The graph

in Figure 1(b) has two vertices u and v with the same degree 6 ∈ D′(G), but in different

connected components of G. By applying the edge exchange of case 2.1, one gets the

graph in Figure 1(c) with the same number of connected components, but in which the

edge exchange of case 1 can be applied to obtain the graph in Figure 1(d) which is now

connected.

We now introduce some additional notations. Let Pr be the set containing all partitions

of all subsets of {2, . . . , r}. For example, for r = 4, P4 contains the 15 following partitions:

• the 5 non-empty partitions of {2, 3, 4} :
{
{2}, {3}, {4}

}
,
{
{2}, {3, 4}

}
,
{
{3}, {2, 4}

}
,{

{4}, {2, 3}
}

, and
{
{2, 3, 4}

}
;

• the 2 non-empty partitions of {2, 3} :
{
{2}, {3}

}
,
{
{2, 3}

}
;

• the 2 non-empty partitions of {2, 4} :
{
{2}, {4}

}
,
{
{2, 4}

}
;

• the 2 non-empty partitions of {3, 4} :
{
{3}, {4}

}
,
{
{3, 4}

}
;

• the 3 non-empty partitions of {2}, {3} and {4} :
{
{2}
}

,
{
{3}
}

,
{
{4}
}

;

• the empty partition.

Also, for a partition p ∈ Pr, let Er(p) be the set of all integers that appear in a subset of p

(i.e., Er(p) = ∪s∈p s, and let Er(p) = {2, . . . , r}\Er(p). For example, for p = {{2, 3}, {5}},

we have E6(p) = {2, 3, 5} and E6(p) = {4, 6}.

Now, let I(M) be the set of integers i in {2, . . . , r} such that
∑i

j=1mji+
∑r

j=imij ≥ 1.

For a partition p ∈ Pr, we denote by |p|M be the number of subsets s ∈ p such that

s ∩ I(M) 6= ∅. For example, for I(M) = {2, 3, 5, 6, 8} and p = {{2, 4}, {3}, {5, 8}, {7}},

we have |p|M = 3.

There is a bijection between Pr and the set of partitions of {1, . . . , r}. Indeed, to

every partition p ∈ Pr, we can associate a partition of the set {1, . . . , r} by adding the

bloc Er(p) ∪ {1} to p. Hence, the total number of partitions in Pr is the rth Bell number

Br (sequence A000110 in OEIS [15]).
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We are now ready to prove the main theorem that characterizes those matrices M for

which there is a simple connected M -graph G.

Theorem 3.1. Let M = [mij] be a symmetric r × r matrix of non-negative integers.

There is a simple connneted M-graph G if and only if the following conditions hold:

(C1) ni = 1
i
(

r∑
j=i

mij +
i∑

j=1

mji) is an integer for all i = 1, . . . , r;

(C2) mii ≤ 1
2
(ni(ni − 1)) for all i = 2, . . . , r such that 1 ≤ ni ≤ i.

(C3) mij ≤ ninj for all 2 ≤ i < j ≤ r such that 1 ≤ ni < j and 1 ≤ nj < i.

(C4)
∑
s 6=s′

s,s′∈p

∑
i∈s
j∈s′

mij +
∑

i∈Er(p)

j∈Er(p)

mij +
∑
i≤j

{i,j}⊆Er(p)

mij −m11 ≥
∑

i∈Er(p)

ni + |p|M − 1 for all p ∈ Pr.

Proof. Necessity. Let G be a simple connected M -graph. It follows from Theorem 2.1

that conditions (C1)-(C3) hold. Moreover, condition (C1) implies that I(M) is the set of

all integers i ∈ {2, . . . , r} such that ni ≥ 1. Let p be any partition in Pr, and let us prove

that condition (C4) also holds. For this purpose, we construct a new (not necessarily

simple) graph G′ from G as follows: we first remove all vertices of degree 1; then, for

every s ∈ p with s ∩ I(M) 6= ∅, we contract all vertices of degree i ∈ s in G to a single

vertex vs; finally, we remove all loops. Clearly, G′ is also connected, and contains |p|M
vertices that result from contractions, as well as all vertices of G with a degree i /∈ Er(p).

Let n′ be the number of vertices in G′, and let m′ be its number of edges. We then have:

n′ =
∑

i∈Er(p)

ni + |p|M ; (a)

m′ =
∑
s 6=s′

s,s′∈p

∑
i∈s
j∈s′

mij +
∑

i∈Er(p)

j∈Er(p)

mij +
∑
i≤j

{i,j}⊆Er(p)

mij. (b)

It remains to prove that m′ −m11 ≥ n′ − 1.

• If m11 > 0, then G contains only two vertices (since it is connected), and m11 = 1.

Hence, n′ = m′ = 0, which implies m′ −m11 = n′ − 1.

• If m11 = 0, then m′ ≥ n′−1 (since G′ is connected), which is equivalent to m′−m11 ≥

n′ − 1.

Sufficiency. Assume M satisfies conditions (C1)-(C4). We know from Theorem 2.1 that

ΓM is not empty. So let G be a simple M -graph in Γ′M with maximum value |D(G) ∪
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D′(G)|. It remains to prove that G is connected. Let H1, . . . , Hk be the connected

components of H(G), and let sj be the set of integers i ∈ D(G) ∪ D′(G) such that Hj

contains at least one vertex of degree i. It follows from Lemma 3.1 that p = {s1, . . . , sk}
is a partition of D(G) ∪D′(G).

Let G′ be the (not necessarily simple) graph obtained from G by contracting all vertices

in Hj (j = 1, . . . , k) to a single vertex vj, and by removing all loops. It is sufficient to

prove that G′ is connected, since this implies that the original graph G is also connected.

Let n′ and m′ denote, respectively, the number of vertices and edges in G′. We have

n′ = n1 +
∑

i∈Er(p)

ni + |p|M ; (a’)

m′ =
r∑

i=1

m1i +
∑
s 6=s′

s,s′∈p

∑
i∈s
j∈s′

mij +
∑

i∈Er(p)

j∈Er(p)

mij +
∑
i≤j

{i,j}⊆Er(p)

mij. (b’)

Condition (C4) then implies m′ −
∑r

i=1m1i −m11 ≥ n′ − n1 − 1, which is equivalent to

m′ ≥ n′ − 1 since n1 = m11 +
∑r

i=1m1i (by condition (C1)).

Assume, by contradiction, that G′ is not connected. Since m′ ≥ n′ − 1, it contains a

cycle or multiple edges. If a vertex u /∈ H(G) is connected to a vj (1 ≤ j ≤ k) by multiple

edges in G′, then two vertices of Hj are adjacent to u in G. But since Hj is connected,

this means that u belongs to a cycle in G, and hence u ∈ H(G), a contradiction.

Also, if two vertices vi and vj (1 ≤ i < j ≤ k) are connected by multiple edges in G′,

then there are (not necessarily distinct) vertices ui,1 and ui,2 in Hi and (not necessarily

distinct, unless ui,1 = ui,2) vertices uj,1 and uj,2 in Hj such that ui,1 is adjacent to uj,1

and ui,2 is adjacent to uj,2 in G. Since both Hi and Hj are connected, this means that G

contains a cycle with vertices in Hi and Hj, which contradicts the fact that Hi and Hj

are different connected components of H(G).

We have thus proven that G′ does not contain any multiple edge, which means that

there is a cycle C = w0w2 . . . wtw0 in G′ (since m′ ≥ n′ − 1). Every edge on C that links

wi to wi+1 (indices being taken modulo t + 1) corresponds to an edge in G that links a

vertex xi to a vertex yi+1. If wi /∈ {v1, . . . , vk}, then wi = xi = yi. If wi ∈ {v1, . . . , vk},

then xi and yi belong to the same connected component of H(G), which means that there

is a path (with possibly only one vertex) connecting xi to yi in G. Hence, G contains a

cycle with a vertex wi /∈ H(G), or with two vertices xi and yi+1 in two different connected

components of H(G), a contradiction.
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While conditions (C4) of Theorem 3.1 are numerous, particularly for large values of r,

they may prove to be useful in the case of chemical graphs, where r = ∆(G) ≤ 4. Indeed,

as already observed, P4 contains only 15 partitions.

4 An integer programming model

Let n and m be two positive integers. In this section, we show how to determine a

symmetric r× r matrix M = [mij] of non-negative integers that satisfies all conditions of

Theorem 3.1 as well as the two following conditions:

(C5) n =
∑r

i=1 ni

(C6) m =
∑

1≤i≤j≤rmij.

An M -graph with such a matrix M has n vertices and m edges. Finding such a matrix

can be done using an Integer Linear Programming (ILP) model. Since M has to be

symmetric, we consider non-negative integer variables mij for all 1 ≤ i ≤ j ≤ r. The ILP

also uses non-negative integer variables ni (i = 1, . . . , r) which are constrained as follows,

to satisfy condition (C1) :

r∑
j=i

mij +
i∑

j=1

mji = ini ∀i = 1, . . . , r (1)

In order to impose condition (C2), we consider new Boolean variables xik defined for

i = 1, . . . , r and k = 1, . . . , i, and impose

ni ≥ (k + 1)(1− xik) ∀i = 2, . . . , r,∀k = 1, . . . , i (2)

mii + xikm ≤ k(k − 1)

2
+m ∀i = 2, . . . , r,∀k = 1, . . . , i (3)

Constraints (2) imply that xik = 1 when ni ≤ k, while xik can take value 0 or 1 otherwise.

Consider any i ∈ {2, . . . , r}:

• if ni > i, constraints (3) do not impose any restriction since xik can be set equal to

0 for all k = 1, . . . , i;

• if ni = 0, constraints (3) impose a series of upper bounds on mii, the strongest one

being obtained with k = 1. We thus get mii ≤ 0, which is already imposed by

constraints (1);

-699-



• if 1 ≤ ni ≤ i, constraints (3) impose a series of upper bounds on mii, the strongest

one being obtained with k = ni (i.e., mii ≤ 1
2
ni(ni − 1)), which corresponds to

condition (C2).

Condition (C3) is imposed in a similar way:

mij +mxjk ≤ kni +m ∀2 ≤ i < j ≤ r,∀k = 1, . . . , i− 1 (4)

mij +mxik ≤ knj +m ∀2 ≤ i < j ≤ r,∀k = 1, . . . , j − 1 (5)

Indeed, consider any i, j such that 2 ≤ i < j ≤ r:

• if ni ≥ j and nj ≥ i, no constraint is imposed since xjk in (4) and xik in (5) can be

set equal to 0 for all considered values of k;

• if ni = 0 or nj = 0, constraints (4) and (5) are not more restrictive than constraints

(1) which impose mij = 0;

• if ni ≥ j and 1 ≤ nj ≤ i− 1, constraints (4) impose mij ≤ ninj, which is not more

restrictive then mij ≤ jnj imposed by constraints (1) (while constraints (5) do not

impose any restriction);

• if nj ≥ i and 1 ≤ ni ≤ j − 1, constraints (5) impose mij ≤ ninj, which is not more

restrictive then mij ≤ ini imposed by constraints (1).

• if 1 ≤ nj ≤ i− 1 and 1 ≤ ni ≤ j − 1, both (4) and (5) impose condition (C3).

For imposing condition (C4), the only difficulty is the term |p|M since M is not known.

By definition, I(M) is the set of integers i in {2, . . . , r} such that mii +
∑r

j=1mij ≥ 1,

and it follows from constraints (1) that this is equivalent to say that I(M) is the set of

integers i in {2, . . . , r} such that ni ≥ 1. Hence, given a partition p ∈ Pr and a set s ∈ p,

we have s ∩ I(M) 6= ∅ if and only if there exists i ∈ s with ni ≥ 1. We therefore define

Boolean variables qs for all non-empty subsets s of {2, . . . , r} so that

qs =

{
1 if there is an integer i ∈ s such that ni ≥ 1
0 otherwise.

This is done by imposing the following constraints:∑
i∈s

ni ≤ nqs ∀ non-empty s ⊆ {2, . . . , r} (6)∑
i∈s

ni ≥ qs ∀ non-empty s ⊆ {2, . . . , r} (7)
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Since |p|M =
∑

s∈p qs, we can now impose Condition (C4) as follows. For a partition

p ∈ Pr, let A(p) be the set of pairs (i, j) such that i < j and there are two distinct sets

s, s′ in p with i ∈ s and j ∈ s′. Also, let B(p) be the set of pairs (i, j) such that i < j

and either i ∈ Er(p) and j ∈ Er(p), or j ∈ Er(p) and i ∈ Er(p). Condition (C4) is then

imposed by the following constraint:∑
(i,j)∈A(p)∪B(p)

mij +
∑
i≤j

{i,j}⊆Er(p)

mij −m11 ≥
∑

i∈Er(p)

ni +
∑
s∈p

qs − 1 ∀p ∈ Pr (8)

Clearly, conditions (C5) and (C6) are imposed as follows, where n and m are fixed integers.

r∑
i=1

ni = n (9)∑
1≤i≤j≤r

mij = m (10)

Finally, the following constraints define the possible values of all variables:

mij ∈ N ∀i = 1, . . . , r,∀j = i, . . . , r (11)

ni ∈ N ∀i = 1, . . . , r (12)

xik ∈ {0, 1} ∀i = 2, . . . , r,∀k = 1, . . . , i (13)

qs ∈ {0, 1} ∀ non-empty s ⊆ {2, . . . , r} (14)

A simple calculation shows that there are 2r−1 + r(r + 2) − 2 variables and 2r + r
2
(r2 −

r + 6)− 4 +Br constraints (where Br denotes the rth Bell number).

4.1 Finding more than one matrix

Given any matrix M produced by the ILP of the previous section, we now show how to

generate a different one (if any) that also satisfies conditions (C1)-(C6). This is done as

follows. Let {Mij} denote the values of the matrix obtained using the ILP of the previous

section. For all 1 ≤ i ≤ j ≤ r with Mij > 0, we define a Boolean variable yij so that

yij = 1 if and only if Mij < mij. This is done by imposing the following constraints:

Mij +myij ≥ mij ∀1 ≤ i ≤ j ≤ r with Mij > 0 (15)

yij(Mij + 1) ≤ mij ∀1 ≤ i ≤ j ≤ r with Mij > 0 (16)

yij ∈ {0, 1} ∀1 ≤ i ≤ j ≤ r with Mij > 0 (17)
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In a similar way, we consider, we consider Boolean variable zij so that zij = 1 if and only

if Mij > mij:

Mij +m(1− zij) ≥ mij + 1 ∀1 ≤ i ≤ j ≤ r with Mij > 0 (18)

(1− zij)Mij ≤ mij ∀1 ≤ i ≤ j ≤ r with Mij > 0 (19)

zij ∈ {0, 1} ∀1 ≤ i ≤ j ≤ r with Mij > 0 (20)

In order to generate a new matrix different from the previous one, it is then sufficient to

add the constraint that at least one of the yij and zij variables must be equal to 1. This

is simply done as follows:

r∑
i=1

r∑
j=i

(yij + zij) ≥ 1 (21)

5 Constructing simple connected graphs that

optimize a given invariant

The construction of a simple M -graph or a simple connected M -graph can be done as

described in Sections 2 and 3. More precisely, given a matrix M that satisfies conditions

(C1)-(C3), Algorithm 1 in Table 1 constructs a simple M -graph, following the proof of

Theorems 2.1. Instructions 2-13 build an M -graph, instructions 15-18 remove loops, and

instructions 19-25 remove multiple edges. Note that we do not consider the case where

two vertices with the same degree i have a loop, since such a situation never occurs with

the construction phase in 2-13. Also, cases (a) and (b) of Theorem 2.1 correspond to

instructions 20-21, while case (c) is treated in 22-23.

Similarly, given a matrix M that satisfies conditions (C1)-(C4), Algorithm 2 in Table

2 constructs a simple connected M -graph, following the proof of Theorems 3.1. A is the

set of vertices that belong to a cycle, while B contains all vertices with a degree i ∈ D(G).

Also, A′ is the set of vertices that belong to a path linking two vertices of B with the same

degree, while B′ contains all vertices with a degree i ∈ D′(G). Vertex bv that appears in

instructions 16, 21 and 26, is a neighbor of v ∈ A′ on a path linking two vertices of B

with the same degree. The edge exchange in instructions 8-10 corresponds to case 1 of

Theorem 3.1, while instuctions 20-22 are for case 2.1, and instructions 25-27 for case 2.2.
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Table 1. Construction of a simple M -graph.

Algorithm 1: Construction of a simple M -graph for a matrix M satisfying condi-

tions (C1)-(C3)

1 CONSTRUCTION OF AN M -GRAPH

2 Create r sets Vi (i = 1, · · · , r) of distinct vertices, with |Vi| = ni;

3 Set m′ij = 0 ∀ 1 ≤ i ≤ j ≤ r and I = {(i, j) | i ≤ j and m′ij < mij};
4 while I 6= ∅ do

5 Choose a pair (i, j) ∈ I;

6 if i=j then

7 if there are two vertices u, v of degree < i in Vi then

8 add an edge between u and v;

9 else

10 choose u ∈ Vi of degree < i, and add a loop at u;

11 else

12 choose u ∈ Vi of degree < i and v ∈ Vj of degree < j, and add an edge

between u and v;

13 end

14 REMOVAL OF LOOPS and MULTIPLE EDGES

15 while the graph contains loops do

16 Choose u, v in the same Vi such that there is a loop at u;

17 choose w 6=u adjacent to v; replace a loop at u and an edge between v and w,

by an edge between u and v, and one between u and w;

18 end

19 while the graph contains multiple edges do

20 if there are u, v, w such that euv > 1, ev,w = 0, and v and w belong to the same

Vi then

21 choose q with evq < ewq, remove an edge between u and v and one between

w and q, and add an edge between u and w as well as one between v and q;

22 else

23 Determine u, v, u′, v′ such that u, u′ belong to the same Vi, v, v
′ belong to

the same Vj, euv > 1, and eu′v′ = 0;

24 choose x and y so that eux < eu′x and evy < ev′y, remove one edge between u

with v, one between u′ and x and one between v′ and y; add an edge

between u′ and v′, one between u and x, and one between v and y;

25 end
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Table 2. Construction of a simple connected M -graph.

Algorithm 2: Construction of a simple connected M -graph for a matrix M satis-

fying conditions (C1)-(C4)

1 Use Algorithm 1 to construct a simple M -graph G;

2 while G is not connected do

3 Determine a cycle basis of G and let A be the set of vertices that belong to at

least one cycle ot that basis;

4 foreach vertex v ∈ A do

5 Set Cv equal to a cycle of the basis that contains v;

6 end

7 Determine the set B ⊇ A of vertices with the same degree as at least one vertex

in A;

8 if there are u ∈ B and v ∈ A with the same degree, and belonging to two

different connected components of G then

9 Choose q adjacent to u and p on Cv adjacent to v;

10 Replace the edges uq and vp by up and vq;

11 else

12 set A′ = ∅;
13 foreach vertex v /∈ B do

14 Let u1,. . .,ur be the neighbors of v in G and let Gj (1≤j≤r) be the

connected component of G− v that contains uj;

15 if there are x ∈ Gi ∩B and y ∈ Gj ∩B with the same degree, and with

i 6= j then

16 Choose one such pair x, y of vertices, set bv = x, and add v to A′;

17 end

18 Determine the set B′ ⊇ A′ of vertices having the same degree as at least one

vertex in A′;

19 if there are u ∈ B′ and v ∈ A′ with the same degree, and belonging to two

different connected components of G then

20 Choose a vertex q adjacent to u;

21 Replace the edges uq and vbv by ubv and vq;

22 else

23 Let H be the subgraph induced by the vertices in B ∪B′;
24 Determine u ∈ B′ and v ∈ A′ with the same degree, and belonging to

two different connected components of H;

25 Choose a vertex q adjacent to u;

26 Replace the edges uq and vbv by ubv and vq;

27 end
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6 Extremal graphs for some Adriatic indices

For a graph G, let I(G) be an invariant that can be written as a function linear in the

numbers ni of vertices of degree i and in the numbers mij of edges with end-degrees i

and j. For example the first and second Zagreb indices [7] and the Randić index [14] are

defined as follows :

First Zagreb index of G :
r∑

i=1

nii
2

Second Zagreb index of G :
r∑

i=1

r∑
j=i

mijij

Randić index of G :
r∑

i=1

r∑
j=i

mij√
ij

Such indices belong to the set of Adriatic indices studied in [17]. In this section, we

show how to determine simple graphs and simple connected graphs that optimize (i.e.,

minimize or maximize) these invariants.

Given two integers n and m, finding a simple connected graph G with optimal value

I(G) can be done by solving the following ILP, and then building a simple connected

M -graph (with algorithm 2), using the matrix M produced by the ILP:

Minimize or maximize the graph invariant I

Subject to constraints (1)-(14)

Algorithm 3 in Table 3 generates a set of simple connected graphs with n vertices and

m edges that optimize I(G). The algorithm first generate a set of optimal matrices M ,

and a simple connected M -graph for each such matrix M . Finally, additional graphs are

added using a procedure that transforms a simple connected M -graph into another one.

We conjecture that Alogrithm 3 generates all simple connected graphs G with optimal

value I(G).

Conjecture Given any two numbers n and m and a graph invariant I, Algorithm 3 gen-

erates all simple connected graphs G with optimal value I(G).
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Table 3. Construction of a set of simple connected graphs which optimize an in-
variant.

Algorithm 3: Construction of a set S of simple connected graphs G with n vertices,

m edges, and optimal value I(G)

1 Minmize of maximize the invariant I under constraints (1)-(14);

2 Let I∗ be the resulting optimal value, and M the optimal matrix;

3 Set S = ∅;
4 repeat

5 Build a simple connected M -graph G with Algorithm 2;

6 Add G to S;

7 Add constraints (15)-(21) of Section 4.1 to the Integer Linear Program to avoid

generating M again;

8 Solve the new Integer Linear Program, set M equal to the new optimal matrix,

and let I ′ be the resulting optimal value;

9 until I ′ 6= I∗;
10 Consider all graphs in S as not marked;

11 while S contains non-marked graphs do

12 Choose a non-marked graph G in S;

13 foreach quadruple (u, v, x, y) of vertices do

14 if u and v have the same degree, u is linked to x but not to y, and v is

linked to y but not to x then

15 Construct a graph G′ from G by replacing the edges linking u to x and v

to y by edges linking u to y and v to x;

16 if G′ is connected and not yet in S then

17 add G′ to S, and consider G′ as non-marked;

18 end

19 mark G;

20 end

In order to generate the set of simple connected graphs with second-minimum value,

or any kth-minimal value, k > 1, it is sufficient to change the stopping criteria at step 9

of Algorithm 3. Note that in order to determine, in Step 16, whether G′ belongs to S, we

use McKay algorithm [11] to store only non-isomorphic graphs in S.

We illustrate the use of the models and algorithms of Sections 4 and 5 by considering

chemical trees, i.e., trees with maximum degree r ≤ 4. We therefore solve the ILP

by setting r = 4 and m = n − 1. As already mentioned in Section 4, the ILP has
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2r−1 + r(r + 2) − 2 variables and 2r + r
2
(r2 − r + 6) − 4 + Br constraints, which gives a

total of 30 variables and 63 constraints for r = 4, regardless of the number of vertices in

the considered chemical trees. We first identify all simple chemical trees with 6 ≤ n ≤ 15

vertices having minimum, second-minimum, third-minimum, fourth-minimum, and fifth-

minimum value of the Randić index. The set of extremal chemical trees is shown in Figure

3.

For comparison, a similar study was performed in [6] and [10], where the authors

analyse chemical trees with minimum, second-minimum and third-minimum Randić index.

They give one example of such extreme graphs for every n = 6, 7, . . . , 24. A careful

comparison of these studies shows that three graphs presented in [6] and [10] (at page

87) are not correct: their second-minimum and third-minimum for n = 11, and their

third-minimum for n = 14 have a Randić index strictly larger than our fifth-minimum.

For example, the graphs shown in Figure 3 with n = 11 have a Randić index of 4.5, 4.62,

4, 65, 4.66, and 4.69, while the graph presented in [6] and [10] as second-minimum, and

drawn in Figure 2, has value 4.71.

Figure 2. Chemical tree with 11 vertices and presented in [6] and [10] as second-
minimum for the Randić index.

Condition (C4) is essential to ensure the connectivity. For comparison, we show in

Figure 4 the simple graphs having maximum degree r ≤ 4, m = n− 1 edges, 4 ≤ n ≤ 13

vertices, and minimum Randić index. These graphs were obtained by replacing constraint

(9) by the inequality
∑r

i=1 ni ≤ n to allow isolated vertices, by removing constraints (6),

(7), and (8), by using Algorithm 1 instead of Algorithm 2 at step 5 of Algorithm 3, and

by removing the connectivity condition at step 16 of Algorithm 3.
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n = 6

n = 7

n = 8 

n = 9

n = 10

n = 11

n = 12

n = 13

n = 14

n = 15

minimum second-minimum third-minimum fourth-minimum fifth-minimum

Figure 3. Extremal chemical trees for the Randić index.

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

n = 10 n = 11 n = 12 n = 13
Figure 4. Graphs with minimum Randić index and n− 1 edges.
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Let Rn be the minimum Randić index of a chemical tree with n vertices, and let

R∗n be the minimum Randić index of a simple graph with n vertices, m − 1 edges and

maximum degree r ≤ 4. Clearly, Rn ≥ R∗n. The difference Rn−R∗n is somehow a price of

connectivity [1] which we represent in Figure 5 for n ≤ 99. The curve indicates a regular

shape for all n ≥ 11. By analysing the extreme graphs for R∗n, we have observed that they

all have n−1
2

vertices of degree 4, and n+1
2

isolated vertices if n is odd, and n−2
2

vertices of

degree 4, 1 vertex of degree 2, and n
2

isolated vertices if n is even. The regular shape of

the curve in Figure 5 is due to the fact that for all n ≥ 11, we have

Rn −R∗n =



n
6

if n mod 6 = 0
n−1
6

+
√
3−1
2

if n mod 6 = 1
n+4
6
−
√
2
2

if n mod 6 = 2
n−3
6

+
√
2
2

if n mod 6 = 3
n−4
6

+ 1+
√
3−
√
2

2
if n mod 6 = 4

n+1
6

if n mod 6 = 5.
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0
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n 

nR
n

- R
*

Figure 5. Price of connectivity for the Randić index of chemical trees.

As final illustration of the use of the proposed methods, we give in Figure 6 all sim-

ple chemical trees with 6 ≤ n ≤ 12 vertices having minimum, second-minimum, third-

minimum, fourth-minimum, and fifth-minimum value of the second Zageb index.

While this was not the case for the Randić index, it happens several times that an

extremal value of the second Zagreb index is reached with more than one M -matrix.

Extreme graphs having the same value, but different M -matrices are separated with a

dotted line in Figure 6. For example, for n = 10, there are 4 graphs with fourth-minimum

value of the second Zagreb index. The first one was obtained from a first M -matrix, while

the three others were obtained from a second M -matrix.
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minimum second-minimum third-minimum fourth-minimum fifth-minimum

n = 6

n = 7

n = 8

n = 9

n = 10

n = 11

n = 12

Figure 6. Extremal chemical trees for the second Zagreb index.

7 Conclusion

We have given necessary and sufficient conditions on the numbers mij of edges with end-

degrees i and j for the existence of a simple graph or a simple connected graph with fixed

maximum degree. These conditions can be imposed by an integer programming model,

and graphs with these mij values can be generated using the proposed algorithms.

We have shown that these models and algorithms are very helpful to determine all

extremal graphs of Adriatic indices that linearly depend on the ni and mij values.
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