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Abstract

In this paper, we investigate the edge-Wiener index, the Szeged index, the edge-Szeged
index, and the PI index, which are some of the most studied distance-based topological
indices. As the main result we show that for benzenoid systems these indices can be
computed in sub-linear time with respect to the number of vertices. More precisely, they
can be computed in the time linearly dependent on the length of the boundary cycle of a
benzenoid system.

1 Introduction

Molecular structure-descriptors, also called topological indices, are used in theoretical

chemistry for the design of quantitative structure-property relations (QSPR) and quanti-

tative structure-activity relations (QSAR). Distance-based topological indices are defined

by using distances in molecular graphs and can be very useful in a drug discovery process,

see [23].

The most famous distance-based topological index is the Wiener index and it was

first introduced in 1947 by H. Wiener [28]. The Wiener index of a connected graph G is

defined as
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W (G) =
∑

{u,v}⊆V (G)

dG(u, v).

It has known correlations with a large number of physico-chemical properties of organic

molecules and also possesses interesting mathematical properties. Therefore, the Wiener

index has been extensively studied in mathematical and chemical literature, see [21].

It turns out that the Wiener index of a tree can be computed as the sum of edge

contributions. Inspired by this fact, the Szeged index was introduced (see [11]) as

Sz(G) =
∑

e=uv∈E(G)

nu(e)nv(e),

where nu(e) denotes the number of vertices of a graph G whose distance to u is smaller

than the distance to v and nv(e) denotes the number of vertices of G whose distance to

v is smaller than the distance to u. Motivated by the success of the Szeged index, in [15]

a similar molecular descriptor called the PI index (or the edge-PI index) was defined by

PI(G) =
∑

e=uv∈E(G)

(
mu(e) + mv(e)

)
,

where the numbers mu(e) and mv(e) are the edge-variants of the numbers nu(e) and nv(e).

Later [16], a vertex version of the PI index, called the vertex-PI index, was also defined as

PIv(G) =
∑

e=uv∈E(G)

(
nu(e)+nv(e)

)
. Obviously, for any bipartite graph G the vertex-PI

index can be computed as PIv(G) = |V (G)| · |E(G)|. In 2008, the edge-version of the

Szeged index, called the edge-Szeged index, was defined (see [12]) as

Sze(G) =
∑

e=uv∈E(G)

mu(e)mv(e).

Papers [1,4,22,25–27] present a sample of relevant recent investigations on the mentioned

distance-based topological indices.

Finally, the edge-Wiener index of a graph was independently introduced in [13, 17].

In [13] several possible variations of the concept were discussed and it was suggested that

the edge-Wiener index of a graph G should be defined as the Wiener index of the line

graph of G. For some recent studies on the edge-Wiener index see [2, 5, 20].

In this paper, we investigate the mentioned indices of benzenoid systems, which are

one of the most extensively studied family of chemical graphs. In [7] it was proved that

the Wiener index and the Szeged index of a benzenoid system can be computed in linear
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time. Almost 20 years later, in [14] an algorithm was developed that, for a given benzenoid

system G computes the edge-Wiener index of G in linear time. Moreover, similar linear

time algorithms for the edge-Szeged index and the PI index of benzenoid systems were

developed in [24]. All these algorithms are based on the cut method and more information

about this method can be found in survey papers [18, 19].

In addition to this, Chepoi and Klavžar proved [8] that the Wiener index of a benzenoid

system can be computed in the time dependent on the number of vertices in the boundary

cycle of a benzenoid system. More precisely, the Wiener index of a benzenoid system with

the boundary cycle Z can be computed in O(|Z|) time, where |Z| denotes the number of

vertices on cycle Z. The proof of this result is based on the result of Chazelle [3], where

he develop an algorithm for computing all vertex-edge visible pairs of edges of a simple

(finite) polygon.

Therefore, we generalize the mentioned results and prove that the edge-Wiener index,

the Szeged index, the edge-Szeged index, and the PI index of a benzenoid system with

the boundary cycle Z can be computed in O(|Z|) time.

We proceed as follows. In the next section we give some definitions and important

concepts needed later. In section 3 we prove that the Szeged index of a benzenoid system

can be computed in sub-linear time. To prove this, we recall the result claiming that

the Szeged index of a benzenoid system can be expressed as the sum of weighted Szeged

indices of related weighted quotient trees. A method to obtain the weighted trees is also

presented. Similar results for the edge-Wiener index, the edge-Szeged index, and the

PI index are stated in section 4, but in these cases our method to obtain the weighted

quotient trees is different and requires some additional insights.

2 Preliminaries

In the present paper all graphs are simple, finite and connected. We define dG(u, v) to

be the usual shortest-path distance between two vertices u, v ∈ V (G). In addition, for a

vertex x ∈ V (G) and an edge e = uv ∈ E(G) we set

dG(x, e) = min{dG(x, u), dG(x, v)} .

The distance dG(e, f) between edges e and f of a graph G is defined as the distance

between vertices e and f in the line graph L(G). Here we follow this convention because

in this way the pair (E(G), dG) forms a metric space.
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The edge-Wiener index of a graph G is defined as

We(G) =
1

2

∑
e∈E(G)

∑
f∈E(G)

dG(e, f). (1)

Let G be a graph and e = uv an edge of G. Throughout the paper we will use the

following notation:

N1(e|G) = {x ∈ V (G) | dG(x, u) < dG(x, v)},

N2(e|G) = {x ∈ V (G) | dG(x, v) < dG(x, u)},

M1(e|G) = {f ∈ E(G) | dG(f, u) < dG(f, v)},

M2(e|G) = {f ∈ E(G) | dG(f, v) < dG(f, u)}.

Using introduced notation, the Szeged index of a graph G is defined as

Sz(G) =
∑

e∈E(G)

|N1(e|G)| · |N2(e|G)|.

The edge-Szeged index is defined by the formula

Sze(G) =
∑

e∈E(G)

|M1(e|G)| · |M2(e|G)|.

The PI index (or the edge-PI index ) of a graph G is defined as

PI(G) = PIe(G) =
∑

e∈E(G)

(
|M1(e|G)|+ |M2(e|G)|

)
.

Let G be a graph and let w : V (G)→ R+ and w′ : E(G)→ R+ be given functions. Then

(G,w), (G,w′), and (G,w,w′) are a vertex-weighted graph, an edge-weighted graph, and a

vertex-edge weighted graph, respectively.

Let H be the hexagonal (graphite) lattice and let Z be a cycle on it. Then a benzenoid

system is induced by the vertices and edges of H, lying on Z and in its interior. For

an example of a benzenoid system see Figure 1. Note that in paper [10] such benzenoid

systems are called simple.
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Figure 1. A benzenoid system with three directions of edges.

The edge set of a benzenoid system G can be naturally partitioned into sets E1, E2, and

E3 of edges of the same direction. For i ∈ {1, 2, 3}, set Gi = G−Ei. Then the connected

components of the graph Gi are paths. The quotient graph Ti, i ∈ {1, 2, 3}, has these

paths as vertices, two such paths (i.e. components of Gi) P1 and P2 being adjacent in Ti

if some edge in Ei joins a vertex of P1 to a vertex of P2. It is known that T1, T2, and T3

are trees (see [6]).

3 The Szeged index

In this section, we prove that the Szeged index of a benzenoid system G can be computed

in sub-linear time. To prove this, we extend the main idea from papers [8, 10] where it

was proved that the Wiener index of a benzenoid system can be computed in sub-linear

time with respect to the number of vertices. First we define the weighted quotient trees.

Let T1, T2, T3 be the quotient trees defined in the preliminaries. We can extend the

quotient trees to weighted trees (Ti, wi, w
′
i), i ∈ {1, 2, 3}, as follows:

• for C ∈ V (Ti), let wi(C) be the number of vertices in the component C of Gi =

G− Ei;

• for E = C1C2 ∈ E(Ti), let w′i(E) be the number of edges between components C1

and C2.

In the following lemma we prove that the weighted trees can be obtained in O(|Z|)

time where Z is the boundary cycle of a benzenoid system and |Z| denotes the number

of vertices on Z.
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Lemma 3.1 Let G be a benzenoid system and let Z be its boundary cycle. Then each

tree (Ti, wi, w
′
i), i ∈ {1, 2, 3}, can be obtained in O(|Z|) time.

Proof. Let i ∈ {1, 2, 3}. We will describe the construction of vertex-edge weighted tree

(Ti, wi, w
′
i) that depends only on the boundary cycle Z.

The main idea is based on Chazelle algorithm [3] for computing all vertex-edge visible

pairs of edges of a simple (finite) polygon. More precisely, we apply the algorithm of

Chazelle for the direction Ei as follows. Let D be the region in the plane bounded by

cycle Z such that Z is included in D. We define a cut segment as a straight line segment

lying completely in D and connecting two distinct vertices of Z. A cut segment of type i

is a cut segment perpendicular to the edges from the set Ei. We divide D into strips by

all the cut segments of type i, see an example in Figure 2. Note that some strips can be

triangles. Such a subdivision of D will be denoted by Di. Moreover, any strip of Di can

take two values: 1 and 1
2
. The strip takes value 1 if it is a rectangle and value 1

2
otherwise.

Figure 2. Subdivisions D1, D2, and D3 of a benzenoid system from Figure 1.

Let Ci be the set of all cut segments of type i. Furthermore, let C ′i be the set of all

vertices of Z that are not on any cut segment of type i. Now we define a new graph Γi

whose vertices are the elements in the set Ci∪C ′i and two vertices of Γi are adjacent if and

only if the corresponding elements belong to a common strip of Di. From the definition

of Γi it follows that it is a tree. Note that Γi can be derived from Di in linear time.

An edge of Γi is called thick if it is defined by a strip with value 1 and thin otherwise.

Every cut segment of Ci is incident to exactly one thick edge, all remaining vertices of Γi

being incident only to thin edges. Moreover, we define a weight for each thick edge f as

follows. Let F be the rectangular strip of Di corresponding to f . Edge f gets a weight

equal to the number of edges in G that lie completely in F .

Finally, we define a weight for all the vertices of Γi as follows. Any element of C ′i gets
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weight 1 and any element of Ci gets the same weight as the thick edge incident to it.

Obviously, the weight of any vertex in Ci represents the number of vertices of G lying on

the corresponding cut segment. If we contract all thin edges of Γi and use the described

weights also on the new tree, we obtain the vertex-edge weighted tree (see Figure 3). It

is obvious from the construction that the obtained tree is exactly (Ti, wi, w
′
i).

Figure 3. Weighted trees Γi and Ti, i ∈ {1, 2, 3}, of a benzenoid system from
Figure 1.

From this construction it follows that (Ti, wi, w
′
i) can be obtained in O(|Z|) time.

Next, we define the Szeged index of a vertex-edge weighted graph (G,w,w′) as

Sz(G,w,w′) =
∑

e∈E(G)

w′(e)n1(e|(G,w))n2(e|(G,w)),

where for i ∈ {1, 2} we have

ni(e|(G,w)) =
∑

x∈Ni(e|G)

w(x).

The following theorem is important for our consideration.

Theorem 3.2 [7, 9] If G is a benzenoid system, then

Sz(G) = Sz(T1, w1, w
′
1) + Sz(T2, w2, w

′
2) + Sz(T3, w3, w

′
3).

To compute the Szeged index of benzenoid systems in sub-linear time, we also need the

next lemma.
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Lemma 3.3 [7,9] Let (T,w,w′) be a vertex-edge weighted tree with n vertices. Then the

Szeged index Sz(T,w,w′) can be computed in O(n) time.

The main result of this section now follows easily.

Theorem 3.4 Let G be a benzenoid system with the boundary cycle Z. Then the Szeged

index Sz(G) can be computed in O(|Z|) time.

Proof. From Lemma 3.1 it follows that the trees (T1, w1, w
′
1), (T2, w2, w

′
2), and (T3, w3, w

′
3)

can be obtained in O(|Z|) time. By Lemma 3.3, the Szeged index of each mentioned tree

can be computed in linear time with respect to |Z|. Finally, using Theorem 3.2, the

Szeged index Sz(G) can be computed in O(|Z|) time.

4 The edge–Wiener index, the edge–Szeged index,

and the PI index

In the present section we show that the edge-Wiener index, the edge-Szeged index, and

the PI index of a benzenoid system G can be computed in sub-linear time. As in the

previous section we construct weighted trees. However, the weights are not the same as

before.

Let T1, T2, T3 be the quotient trees defined in the preliminaries. In this section we

extend the quotient trees to weighted trees (Ti, wi), (Ti, w
′
i), (Ti, wi, w

′
i) as follows:

• for C ∈ V (Ti), let wi(C) be the number of edges in the component C of Gi = G−Ei;

• for E = C1C2 ∈ E(Ti), let w′i(E) be the number of edges between components C1

and C2.

In the next lemma we prove that each of the trees (T1, w1, w
′
1), (T2, w2, w

′
2), and

(T3, w3, w
′
3) can be obtained in sub-linear time with respect to the number of vertices

in the benzenoid system. Note that the first part of the proof of the following lemma is

the same as in the proof of Lemma 3.1. For this reason, we skip some steps of the proof.

Lemma 4.1 Let G be a benzenoid system and let Z be its boundary cycle. Then each

tree (Ti, wi, w
′
i), i ∈ {1, 2, 3}, can be obtained in O(|Z|) time.
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Proof. Let i ∈ {1, 2, 3} and define the tree Γi exactly as in the proof of Lemma 3.1.

Now, we define a weight just for all the edges of the graph Γi. If f is an edge of Γi, let F

be a strip of Di corresponding to f . Edge f gets a weight equal to the number of edges

of G that lie completely in F . Note that the thick edges are weighted as before.

Finally, we contract all thin edges of Γi and obtain a weighted tree in the following

way. Every edge of a new tree is weighted by the weight of the corresponding thick edge.

The weight of any vertex of this new tree is defined as the sum of all the weights of thin

edges incident to the corresponding vertex in Γi (see Figure 4). It is obvious from the

construction that the obtained tree is exactly (Ti, wi, w
′
i).

Figure 4. Weighted trees Γi and Ti, i ∈ {1, 2, 3}, of a benzenoid system from
Figure 1.

From this construction it follows that (Ti, wi, w
′
i) can be obtained in O(|Z|) time.

4.1 The edge–Wiener index

In the preliminaries we defined the edge-Wiener index in such a way that the distance

between two edges of a graph is equal to the distance between corresponding vertices in

the line graph. On the other hand, for edges e = ab and f = xy of a graph G it is also

legitimate to set

d̂G(e, f) = min{dG(a, x), dG(a, y), dG(b, x), dG(b, y)}.

Obviously, for any two distinct edges e, f ∈ E(G) it holds dG(e, f) = d̂G(e, f)+1. Replac-

ing d with d̂ in (1), a variant of the edge-Wiener index from [17] is obtained, let us denote
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it with Ŵe(G). It is easy to see that We(G) and Ŵe(G) are connected in the following

way (cf. [13, Corollary 8] and [17, Theorem 2.4]):

Ŵe(G) = We(G)−
(
|E(G)|

2

)
.

The definitions of the Wiener indices can be extended to weighted graphs as follows.

Let G be a graph and let (G,w), (G,w′), and (G,w,w′) be a vertex-weighted graph, an

edge-weighted graph, and a vertex-edge weighted graph, respectively. The corresponding

Wiener indices of these weighted graphs are defined as

W (G,w) =
1

2

∑
x∈V (G)

∑
y∈V (G)

w(x)w(y)dG(x, y) ,

Ŵe(G,w′) =
1

2

∑
e∈E(G)

∑
f∈E(G)

w′(e)w′(f)d̂G(e, f) ,

Wve(G,w,w′) =
∑

x∈V (G)

∑
e∈E(G)

w(x)w′(e)dG(x, e) .

The following result says that the edge-Wiener index of a benzenoid system can be com-

puted as the sum of Wiener indices of weighted quotient trees.

Theorem 4.2 [14] If G is a benzenoid system, then

Ŵe(G) =
3∑

i=1

(
Ŵe(Ti, w

′
i) + W (Ti, wi) + Wve(Ti, wi, w

′
i)
)
.

The following lemma claims that the Wiener indices of weighted quotient trees can be

computed in linear time.

Lemma 4.3 [14] Let (T,w,w′) be a vertex-edge-weighted tree with n vertices and m

edges. Then the indices Ŵe(T,w
′), W (T,w), and Wve(T,w,w

′) can be computed in O(n) =

O(m) time.

Proof. See the proof of Theorem 4.1 in [14].

Finally, we are able to proof the main result of this subsection.

Theorem 4.4 Let G be a benzenoid system with the boundary cycle Z. Then the edge-

Wiener index We(G) can be computed in O(|Z|) time.

Proof. From Lemma 4.1 it follows that the trees (T1, w1, w
′
1), (T2, w2, w

′
2), and (T3, w3, w

′
3)

can be obtained in O(|Z|) time. By Lemma 4.3, the Wiener indices of each mentioned

tree can be computed in linear time with respect to |Z|. Finally, using Theorem 4.2, the

edge-Wiener index We(G) can be computed in O(|Z|) time.
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4.2 The edge–Szeged index

To efficiently calculate the edge-Szeged index of a benzenoid system, we define the total-

Szeged index of a vertex-edge weighted graph (G,w,w′) as

Szt(G,w,w′) =
∑

e∈E(G)

w′(e)r1(e|(G,w,w′))r2(e|(G,w,w′)),

where for i ∈ {1, 2} we have

ri(e|(G,w,w′)) =
∑

x∈Ni(e|G)

w(x) +
∑

f∈Mi(e|G)

w′(f).

We can now state the following theorem to express the edge-Szeged index as the sum of

total-Szeged indices of weighted quotient trees.

Theorem 4.5 [24] If G is a benzenoid system, then

Sze(G) = Szt(T1, w1, w
′
1) + Szt(T2, w2, w

′
2) + Szt(T3, w3, w

′
3).

For the fast computation of the edge-Szeged index we also need the following lemma.

Lemma 4.6 [24] Let (T,w,w′) be a vertex-edge weighted tree with n vertices and m

edges. Then the total-Szeged index Szt(T,w,w
′) can be computed in O(m) = O(n) time.

The main result of this subsection now follows easily.

Theorem 4.7 Let G be a benzenoid system with the boundary cycle Z. Then the edge-

Szeged index Sze(G) can be computed in O(|Z|) time.

Proof. By Lemma 4.1, the trees (T1, w1, w
′
1), (T2, w2, w

′
2), and (T3, w3, w

′
3) can be ob-

tained in O(|Z|) time. From Lemma 4.6 it follows that the total-Szeged index of any

mentioned tree can be computed in linear time with respect to |Z|. Finally, using Theo-

rem 4.5, the edge-Szeged index Sze(G) can be computed in O(|Z|) time.

4.3 The PI index

For the PI index we first define the edge-PI index and the vertex-PI index of an edge-

weighted graph (G,w′) and vertex-edge weighted graph (G,w,w′), respectively, in the

following way

PIe(G,w′) =
∑

e∈E(G)

w′(e)
(
m1(e|(G,w′)) + m2(e|(G,w′))

)
,

P Iv(G,w,w′) =
∑

e∈E(G)

w′(e)
(
n1(e|(G,w)) + n2(e|(G,w))

)
,
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where for i ∈ {1, 2} we have

ni(e|(G,w)) =
∑

x∈Ni(e|G)

w(x),

mi(e|(G,w′)) =
∑

f∈Mi(e|G)

w′(f).

The following theorem is crucial for the main result.

Theorem 4.8 [24] If G is a benzenoid system, then

PIe(G) =
3∑

i=1

(
PIe(Ti, w

′
i) + PIv(Ti, wi, w

′
i)
)
.

For the fast computation of the PI index we also need the following two lemmas.

Lemma 4.9 [24] Let (T,w′) be an edge-weighted tree with n vertices and m edges. Then

the PI index PIe(T,w
′) can be computed in O(m) = O(n) time.

Lemma 4.10 [24] Let (T,w,w′) be a vertex-edge weighted tree with n vertices and m

edges. Then the vertex-PI index PIv(T,w,w
′) can be computed in O(m) = O(n) time.

We are ready to show the final result of this subsection.

Theorem 4.11 Let G be a benzenoid system with the boundary cycle Z. Then the PI

index PI(G) can be computed in O(|Z|) time.

Proof. By Lemma 4.1, the trees (T1, w1, w
′
1), (T2, w2, w

′
2), and (T3, w3, w

′
3) can be ob-

tained in O(|Z|) time. From Lemma 4.9 and Lemma 4.10 it follows that the edge-PI

index and the vertex-PI index of any mentioned tree can be computed in linear time

with respect to |Z|. Finally, using Theorem 4.8, the PI index PI(G) can be computed in

O(|Z|) time.
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