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Abstract

It was conjectured in literature that the inequality M1(G)
n ≤ M2(G)

m holds for all
simple graphs, where M1(G) and M2(G) are the first and the second Zagreb index.
By further research it was proven that the inequality holds for several graph classes
such as chemical graphs, trees, unicyclic graphs and subdivided graphs, but that
generally it does not hold since counter examples have been established in several
other graph classes. So, the conjecture generally does not hold. Given the behavior
of graphs satisfying the conjecture to some general graph operations it was further
conjectured that the inequality might hold for almost all simple graphs. In this
paper we will prove that this conjecture is true, by proving that the probability of
a random graph G on n vertices to satisfy the inequality tends to 1 as n tends to
infinity.

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 78 (2017) 323-336
                         

                                          ISSN 0340 - 6253 



1 Introduction

For a simple graph G = (V,E) having n = |V | vertices and m = |E| edges first Zagreb

index M1(G) and second Zagreb index M2(G) are defined as

M1(G) =
∑
u∈V

dG(u)2, M2(G) =
∑
uv∈E

dG(u)dG(v),

where dG(u) denotes the degree of vertex u ∈ V. These indices were introduced in [4],

while the study of their chemical importance and mathematical properties is given in [1],

[3], [5], [10], [13]. In [6] Hansen and Vukičević noted that for general graphs, the order of

magnitude of M1 is O(n3) while the order of magnitude of M2 is O(n4) and that, therefore,

it might be useful to compare M1/n and M2/m instead of comparing M1 and M2. They

did some testing using AGX system ( [2]) which led them to the following conjecture.

Conjecture 1 (posed in [6]) For all simple connected graphs G it holds that

M1(G)

n
≤ M2(G)

m

and the bound is tight for complete graphs.

This turned out to be a very interesting conjecture, because it was proved that it

is true for some well known graph classes such as chemical graphs ( [6]), trees ( [15]),

unicyclic graphs ( [8]) and subdivided graphs ( [7]), while generally it does not hold since

counter examples have been established in several other graph classes such as bicyclic

graphs ( [7], [14]) and graphs with large stars attached ( [11]). Since the conjecture

generated a lot of scientific research, a survey on the development of this conjecture was

made in 2011 (see [9]). Still, the problem of characterizing graphs satisfying Conjecture

1 remained unsolved.

In [12] Stevanović made some further progress on the conjecture by proving that the

set of graphs satisfying Conjecture 1 is closed under arbitrary NEPS graph operation,

while the set of the counterexamples to Conjecture 1 is closed under the direct product of

graphs only. Since NEPS graph operation is much more general than the direct product of

graphs, this led Stevanović to conjecture in the conclusion of his paper the possibility that

Conjecture 1 may be valid for the majority of graphs, perhaps even for almost all graphs.

In this paper we will prove that Stevanović was right in conjecturing so, because (as we

will prove) the probability that a random graph G on n vertices satisfies the Conjecture

1 tends to 1 as n tends to infinity.
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2 Main results

Let Ωn be the set of all simple graphs on n vertices and let the power set P(Ωn) be it’s

sigma algebra. Let G ∈ Ωn be a graph on n vertices. For a vertex u ∈ V of graph G we

define xu as

xu = dG(u)− n− 1

2

where dG(u) denotes the degree of vertex u. Now, for a random graph G ∈ Ωn with n

vertices and m edges we define the following properties:

A1) G is connected;

A2) the inequality
∣∣m− 1

2

(
n
2

)∣∣ ≤ n1.1 holds for G;

A3) the inequality
∑

u∈V x
2
u ≥ n1.8 holds for G;

A4) for every vertex u ∈ V it holds that |xu| ≤ n0.6;

A5) for every vertex u ∈ V it holds that
∣∣∣∑v,uv∈E xv

∣∣∣ ≤ n1.1.

In the context of sigma algebra P(Ωn) we can say that the set Ai ∈ P(Ωn) (for

i = 1, . . . , 5) consists of graphs G ∈ Ωn which have property Ai. The following lemma

gives us asymptotic probabilities of the events Aci , where Aci denotes the complement of

Ai, and it is the collection of the results of several auxiliary lemmas which will be proved

in the next section (the proofs are a bit lengthy and technical).

Lemma 2 For every i = 1, . . . , 5 it holds that

lim
n→∞

P (Aci) = 0.

Proof. This lemma is direct consequence of Lemmas 8, 9, 10, 11 and 12 stated and

proved in the next section.

Now, we can proceed to our main results.

Theorem 3 Probability that random simple graph G ∈ Ωn satisfies properties A1, A2,

A3, A4 and A5 tends to 1 as n tends to infinity.
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Proof. We want to establish probability of an event A = A1∩A2∩A3∩A4∩A5 ∈ P(Ωn).

Note that

P (A) = 1− P (Ac) = 1− P (Ac1 ∪ Ac2 ∪ Ac3 ∪ Ac4 ∪ Ac5) ≥

≥ 1− P (Ac1)− P (Ac2)− P (Ac3)− P (Ac4)− P (Ac5).

From Lemma 2 it follows that

lim
n→∞

P (A) = 1−
∑5

i=1
lim
n→∞

P (Aci) = 1

which proves the theorem.

Theorem 4 For sufficiently large n it holds that every simple graph G ∈ Ωn which satis-

fies properties A1, A2, A3, A4 and A5 also satisfies the inequality

M1(G)

n
≤ M2(G)

m
.

Proof. Let G ∈ A = A1 ∩A2 ∩A3 ∩A4 ∩A5 ∈ P(Ωn) be a graph with n vertices and m

edges. Note that for the graph G the inequality from the theorem statement is equivalent

to

n
∑
uv∈E

(
n− 1

2
+ xu

)(
n− 1

2
+ xv

)
−m

∑
u∈V

(
n− 1

2
+ xu

)2

≥ 0,

which can be rewritten as

n

(
n− 1

2

) ∑
uv∈E

(xu + xv) + n
∑
uv∈E

xuxv − 2m

(
n− 1

2

)∑
u∈V

xu −m
∑
u∈V

x2u ≥ 0.

Now, note that the following equality holds∑
uv∈E

(xu + xv) =
∑
u∈V

dG(u)xu =
∑
u∈V

(
n− 1

2
+ xu

)
xu =

n− 1

2

∑
u∈V

xu +
∑
u∈V

x2u.

Therefore, the inequality is further equivalent to

(n− 1)

(
1

2

(
n

2

)
−m

)∑
u∈V

xu +

((
n

2

)
−m

)∑
u∈V

x2u + n
∑
uv∈E

xuxv ≥ 0.

Now, using the handshaking lemma we note that∑
u∈V

xu =
∑
u∈V

(
dG(u)− n− 1

2

)
= 2m− n(n− 1)

2
= 2m−

(
n

2

)
,

which means that the inequality is further equivalent to

(n− 1)

(
1

2

(
n

2

)
−m

)(
2m−

(
n

2

))
+

((
n

2

)
−m

)∑
u∈V

x2u + n
∑
uv∈E

xuxv ≥ 0.
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We have finally transformed the inequality to the form which is fit for proving using the

properties of graph G. Let us denote

f(G) = (n− 1)

(
1

2

(
n

2

)
−m

)(
2m−

(
n

2

))
+

((
n

2

)
−m

)∑
u∈V

x2u + n
∑
uv∈E

xuxv.

Now, since G ∈ A ⊆ A2 we have∣∣∣∣(n− 1)

(
1

2

(
n

2

)
−m

)(
2m−

(
n

2

))∣∣∣∣ ≤ n · n1.1 · 2n11 = 2n3.2.

Also, since G ∈ A ⊆ A4 ∩ A5 we have∣∣∣∣∣n∑
uv∈E

xuxv

∣∣∣∣∣ =

∣∣∣∣∣n2 ∑
u∈V

xu
∑

v,uv∈E

xv

∣∣∣∣∣ ≤ n

2
· n · n0.6 · n1.1 =

1

2
n3.7.

Finally, since G ∈ A2 ∩ A3 we have((
n

2

)
−m

)∑
u∈V

x2u =

(
1

2

(
n

2

)
−
(
m− 1

2

(
n

2

)))∑
u∈V

x2u

≥
(

1

2

(
n

2

)
− n1.1

)
n1.8.

Therefore, it holds that

f(G) ≥
(

1

2

(
n

2

)
− n1.1

)
n1.8 − 2n3.2 − 1

2
n3.7 = g(n).

Since limn→∞ g(n) = +∞, it follows that for sufficiently large n the expression g(n) is

positive, which further implies f(G) ≥ 0 which proves the theorem.

Now, we can state the theorem which is the main result of this paper.

Theorem 5 Probability that random graph G on n vertices satisfies the inequality

M1(G)

n
≤ M2(G)

m

tends to 1 as n tends to infinity.

Proof. This theorem is direct consequence of Theorems 3 i 4.

3 Auxiliary lemmas

Now, we first want to state and prove two lemmas with properties which will be of use

to us in proving the five lemmas which will follow (in which we will prove that the

probability of property Ai not holding for G ∈ Ωn tends to zero as n tends to infinity for

each i = 1, . . . , 5).
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Lemma 6 If 0.5 < α < 1, then there is sufficiently large N0 ∈ N such that for every

integer N ≥ N0 and for every 0 < ε < 2α− 1 it holds that

1

2N

(
N⌊

N
2
−Nα

⌋) =
1

2N

(
N⌈

N
2

+Nα
⌉) ≤ 1

2Nε .

Proof. Let us denote N1 =
⌊
N
2
−Nα

⌋
and N2 =

⌈
N
2

+Nα
⌉
. We will prove the claim

for N1 and then the claim for N2 follows from symmetry of binomial coefficients. Let us

denote K = N
2
−
⌊
N
2
−Nα

⌋
. Now, N1 = N

2
−K and N2 = N

2
+K, therefore N1 +N2 = N.

Let us define function f(N) = N !√
2πN(N

e
)N
. Note that limN→∞ f(N) = 1. Now we have

1

2N

(
N

N1

)
=

1

2N
N !

N1!N2!

=
f(N)

f(N1)f(N2)

√
2πN√

2πN1

√
2πN2

1

2N
NN

NN1
1 NN2

2

.

If we define function g(N) = (1 + 1
N

)N , it further holds

1

2N
NN

NN1
1 NN2

2

=
1

2N
NN

(N
2
−K)

N
2
−K(N

2
+K)

N
2
+K

=
1

2N
(N2)

N
2

(N
2

4
−K2)

N
2

(N
2

+K)−K

(N
2
−K)−K

=

(
g(
N2 − 4K2

4K2
)

N
N+2K g(

N − 2K

2K
)−2
) 2K2

N−2K

.

Note that limN→∞ g(N) = e > 2 and limN→∞( 2K2

N−2K ·N
−ε) > 1 for every 0 < ε < 2α− 1.

Therefore, there exists sufficiently large N0 such that for every N ≥ N0 it holds that

1

2N

(
N

N1

)
≤ 1

2Nε

which proves the lemma.

Lemma 7 There is sufficiently large N0 ∈ N such that for every integer N ≥ N0 it holds

that
b∑

k=a

1

2N

(
N

k

)
≤ b− a+ 1√

N
.

Proof. Since
b∑

k=a

1

2N

(
N

k

)
≤ (b− a+ 1)

1

2N

(
N

dN/2e

)
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it is sufficient to prove that for sufficiently large N it holds that 1
2N

(
N
dN/2e

)
≤ 1√

N
. Note

that for even N using Stirling formula we obtain

lim
N→∞

√
N

2N

(
N

dN/2e

)
= lim

n→∞

√
N

2N

√
2πN(Ne−1)N(√
2πN

2
(N
2
e−1)

N
2

)2 =

√
2

π
< 1.

The proof for odd n is similar, so the lemma is proved.

Lemma 8 It holds that limn→∞ P (Ac1) = 0.

Proof. Note that Ac1 consists of all graphs G ∈ Ωn which are disconnected. Let B be the

set of all graphs on n vertices in which at least one pair of vertices doesn’t have common

neighbor. Obviously, Ac1 ⊆ B. Note that B = ∪u,v∈VBu,v, where Bu,v is the set of all

graphs on n vertices in which pair of vertices u, v ∈ V doesn’t have common neighbor. It

is obvious that P (Bu,v) = (3
4
)n−2. Therefore, we have

P (Ac1) ≤ P (B) ≤
∑
u,v∈V

P (Bu,v) =

(
n

2

)(
3

4

)n−2
= f(n).

Now it follows that limn→∞ P (Ac1) ≤ limn→∞ f(n) = 0 and the lemma is proved.

Lemma 9 It holds that limn→∞ P (Ac2) = 0.

Proof. Note that Ac2 consists of all graphs G ∈ Ωn in which the inequality
∣∣m− 1

2

(
n
2

)∣∣ ≤
n1.1 does not hold. Let us denote N =

(
n
2

)
. Now, we define

B1 = {G ∈ Ωn : m− N
2
> n1.1},

B2 = {G ∈ Ωn : m− N
2
< −n1.1}.

Obviously Ac2 = B1 ∪ B2, where B1 ∩ B2 = φ. Therefore, it holds that P (Ac2) = P (B1) +

P (B2). We have to prove that limn→∞ P (Bi) = 0 for i = 1, 2. Note that

P (B1) =
|B1|
|Ωn|

=
1

2N

∑N

m=dN2 +n1.1e
(
N
m

)
≤ N

2N
max

dN/2+n1.1e<m≤N

(
N
m

)
≤ N

2N

(
N

dN/2 + n1.1e

)
Since N0.53 ≤ (n2)0.53 < n1.1, by Lemma 6 have

lim
n→∞

P (B1) ≤ lim
N→∞

N

2N0.05 = 0.

The proof for limn→∞ P (B2) = 0 is completely analogous, so the lemma is proved.
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Lemma 10 It holds that limn→∞ P (Ac3) = 0.

Proof. Note that A3 consists of all graphs G ∈ Ωn in which the inequality
∑

u∈V x
2
u ≥ n1.8

holds. Let us define B to be the set of all graphs G ∈ Ωn in which for at least dn0.95e

vertices u ∈ V it holds that |xu| ≥ n0.45. Note that for G ∈ B it then holds that∑
u∈V

x2u ≥
⌈
n0.95

⌉
(n0.45)2 ≥ n1.85.

Therefore B ⊆ A3, which implies Ac3 ⊆ Bc, which further implies that it is sufficient to

prove that limn→∞ P (Bc) = 0. Note that Bc consists of all graphs G ∈ Ωn in which for at

most dn0.95e − 1 vertices u ∈ V it holds that |xu| ≥ n0.45.

Now, for a graph G ∈ Ωn with set of vertices {u1, . . . , un} let us define d−G(ui) to

be the number of neighbors vertex ui has in the set {u1, . . . , ui−1}, and let d+G(ui) =

dG(ui)−d−G(ui). For each i = 1, . . . , n we further define Bi to consist of all graphs G ∈ Ωn

in which the equality |xui | < n0.45 holds. We want to establish the probability P (Bi).

For that purpose let us define events Di,j ∈ P(Ωn) so that Di,j consists of those graphs

G ∈ Ωn in which d−G(ui) = j holds. Obviously, for every i = 1, . . . , n it holds that

Ωn = Di,0 ∪Di,1 ∪ . . . ∪Di,i−1

and Di,j ∩Di,k = φ for all 0 ≤ j < k ≤ i− 1. Therefore, it holds that

P (Bi) = P (Bi|Di,0)P (Di,0) + P (Bi|Di,2)P (Di,2) + . . .+ P (Bi|Di,i−1)P (Di,i−1).

Let us establish P (Bi|Di,j), i.e. probability that in a graph G vertex ui for which

dG(ui) = j also satisfies |xui | < n0.45. Note that the inequality |xui | < n0.45 is equiva-

lent to
∣∣dG(ui)− n−1

2

∣∣ < n0.45, which is further equivalent to

n− 1

2
− j − n0.45 < d+G(ui) <

n− 1

2
− j + n0.45.

Therefore, by Lemma 7 we have

P (Bi|Di,j) =
|Bi|
|Di,j|

=
1

2n−i

bn−1
2
−j+n0.45c∑

d=dn−1
2
−j−n0.45e

(
n− i
d

)

≤
(⌊

n− 1

2
− j + n0.45

⌋
−
⌈
n− 1

2
− j − n0.45

⌉
+ 1

)
1√
n− i

≤ 1 + 2n0.45

(n− i)0.5
.
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Since limn→∞
1+2n0.45

(n−i)0.5 ·n
0.04 = 0 < 1 for i ≤ dn0.99e , we conclude that for sufficiently large

n and i ≤ dn0.99e it holds that P (Bi|Di,j) ≤ n−0.04. Therefore, for sufficiently large n and

i ≤ dn0.99e we obtain

P (Bi) =
i−1∑
j=0

P (Bi|Di,j)P (Di,j) ≤ n−0.04
i−1∑
j=0

P (Di,j) = n−0.04.

If we denote p = 1 − n−0.04, this means that for i ≤ dn0.99e the probability of vertex ui

to have |xu| ≥ n0.45 is at least p. Let us define event D to consist of all graphs G ∈ Ω

in which for at most dn0.95e − 1 vertices from {u1, . . . , udn0.99e} it holds that |xu| ≥ n0.45.

Therefore, for sufficiently large n the probability P (D) is smaller than the probability

P (B(dn0.99e , p) < dn0.95e) where B(dn0.99e , p) is binomial distribution. Note that Bc ⊆ D

which implies P (Bc) ≤ P (D). Therefore,

lim
n→∞

P (Bc) ≤ lim
n→∞

P (D)

≤ lim
n→∞

P (B(
⌈
n0.99

⌉
, p) <

⌈
n0.95

⌉
)

≤ lim
n→∞

P (B(
⌈
n0.99

⌉
,
1

2
) <

⌈
n0.95

⌉
)

≤ lim
n→∞

dn0.95e∑
k=0

(
dn0.99e
k

)(
1

2

)dn0.99e

≤ lim
n→∞

n

2dn0.99e max
0≤k≤dn0.95e

(
dn0.99e
k

)
.

Since for sufficiently large n it holds that

⌈
n0.95

⌉
≤
⌊⌈
n0.99

⌉
/2−

⌈
n0.99

⌉0.53⌋
we further have

lim
n→∞

P (Bc) ≤ lim
n→∞

n

2dn0.99e

(
dn0.99e⌊

dn0.99e /2− dn0.99e0.53
⌋).

Now by Lemma 6 we obtain

lim
n→∞

P (Bc) ≤ lim
n→∞

n

2dn0.99e0.05
= 0.

which proves the lemma.

Lemma 11 It holds that limn→∞ P (Ac4) = 0.
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Proof. Note that Ac4 consists of all graphs G ∈ Ωn in which for at least one vertex u ∈ V

it holds that |xu| > n0.6. Since |xu| > n0.6 is equivalent to
∣∣dG(u)− n−1

2

∣∣ > n0.6, let us

define

B1 = {G ∈ Ωn : (∃u ∈ V )(dG(u) > n−1
2

+ n0.6)}

B2 = {G ∈ Ωn : (∃u ∈ V )(dG(u) <
n− 1

2
− n0.6)}

Obviously, it holds that Ac4 = B1 ∪B2. Therefore,

P (Ac4) = P (B1 ∪B2) ≤ P (B1) + P (B2).

Note that

lim
n→∞

P (B1) = lim
n→∞

(
n
1

)
2n−1

n−1∑
d=dn−1

2
+n0.6e

(
n− 1

d

)

≤ lim
n→∞

n2

2n−1
max

dn−1
2

+n0.6e≤d≤n−1

(
n− 1

d

)

= lim
n→∞

n2

2n−1

(
n− 1⌈

n−1
2

+ n0.6
⌉) ≤ {n0.6 < (n− 1)0.53}

≤ lim
n→∞

n2

2n−1

(
n− 1⌈

n−1
2

+ (n− 1)0.53
⌉) .

Now by Lemma 6 we obtain that

lim
n→∞

P (B1) ≤ lim
n→∞

n2

2(n−1)0.05 = 0.

Completely analogously one can prove that limn→∞ P (B2) = 0 and the lemma is proved.

Lemma 12 It holds that limn→∞ P (Ac5) = 0.

Proof. Note that Ac5 consists of all graphs G ∈ Ωn in which for at least one vertex u ∈ V

it holds that
∣∣∣∑v,uv∈E xv

∣∣∣ > n1.1. Let us define

B1 = {G ∈ Ωn : (∃u ∈ V )(
∑

v,uv∈Exv > n1.1)},

B2 = {G ∈ Ωn : (∃u ∈ V )(
∑

v,uv∈Exv < −n
1.1)}.

Note that Ac5 = B1 ∪B2, which implies that

P (Ac5) = P (B1 ∪B2) ≤ P (B1) + P (B2).
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Let us first prove that limn→∞ P (Bi) = 0. For u ∈ {u1, . . . , un} fixed, let us now define

B1,u = {G ∈ Ωn :
∑

v,uv∈Exv > n1.1}. Obviously, it holds that

B1 =
⋃
u∈V

B1,u

which implies

P (B1) ≤
∑
u∈V

P (B1,u).

We want to establish the upper bound on P (B1,u) which does not depend on u, but

only on n. For that purpose, let v1, . . . , vk be the neighbors of u in G ∈ B1,u and let

vk+1, . . . , vn−1 be the remaining vertices in G. If we define δij = 1 when uiuj ∈ E, while

δij = 0 otherwise, note that
∑

v,uv∈E xv > n1.1 is equivalent to

2

( ∑
1≤i<j≤k

δij −
1

2

(
k

2

))
+

( ∑
1≤i≤k<j≤n−1

δij +
k(n− k)

2

)
+ k > n1.1.

Let us now define

D1,u = {G ∈ Ωn :
∑

1≤i<j≤kδij −
1
2

(
k
2

)
> n1.09},

D2,u = {G ∈ Ωn :
∑

1≤i≤k<j≤n−1δij + k(n−k)
2

> n1.09}.

Note that for sufficiently large n it holds that Dc
1,u ∩ Dc

2,u ⊆ Bc
1,u, which implies B1,u ⊆

D1,u ∪D2,u, which further implies P (B1,u) ≤ P (D1,u) + P (D2,u). Let us define Sku as the

set of all graphs G ∈ Ωn for which dG(u) = k. Obviously, it holds that

Ωn = S0
u ∪ S1

u ∪ . . . ∪ Sn−1u

while Sku ∩ Sju = φ for 0 ≤ k < j ≤ n− 1. Therefore,

P (Di,u) = P (Di,u|S0
u)P (S0

u) + P (Di,u|S1
u)P (S1

u) + . . .+ P (Di,u|Sn−1u )P (Sn−1u ).

Let us first bound P (D1,u) from above. Note that

P (D1,u|Sku) = 2−(k
2)

(k
2)∑

p=d 12(k
2)+n1.09e

((k
2

)
p

)

≤
(
k

2

)
2−(k

2)
( (

k
2

)⌈
1
2

(
k
2

)
+ n1.09

⌉).
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If k < n0.54, then it holds that 1
2

(
k
2

)
≤ k2 < n1.09, which implies that P (D1,u|Sku) is empty

sum and therefore equal to zero. If on the other hand k ≥ n0.54, then k →∞ as n→∞

and it holds that (
k

2

)0.53

≤ (n2)0.53 ≤ n1.09.

Therefore, by Lemma 6 for sufficiently large
(
k
2

)
it holds that

P (D1,u|Sku) ≤
(
k
2

)
2−
(
k
2

)0.05
≤ {k ≥ n0.54 ⇒

(
k
2

)
≥ n} ≤ n · 2−n0.05

.

Now we have the following bound

P (D1,u) =
n−1∑
k=0

P (D1,u|Sku)P (Sku) ≤ n · 2−n0.05
n−1∑
k=0

P (Sku) = n · 2−n0.05

.

Let us now bound P (D2,u) from above. Note that

p(D2,u|Sku) =
1

2k(n−k)

∑k(n−k)

p=d 12k(n−k)+n1.09e

(
k(n− k)

p

)

≤ k(n− k)

2k(n−k)

(
k(n− k)⌈

1
2
k(n− k) + n1.09

⌉).
If k ≤ n0.08, then k(n− k) ≤ kn < n1.09, which implies that P (D2,u|Sku) is empty sum and

therefore equal to zero. If on the other hand k > n0.08, then k → ∞ as n → ∞ and it

holds that

(k(n− k))0.53 ≤ (n2)0.53 ≤ n1.06 < n1.09.

Therefore, by Lemma 6 for sufficiently large k(n− k) it holds that

p(D2,u|Sku) = k(n− k) · 2−(k(n−k))0.05 ≤ {k(n− k) > n} ≤ n · 2−n0.05

,

which means we have the following bound

P (D2,u) =
n−1∑
k=0

P (D2,u|Sku)P (Sku)

≤ n · 2−n0.05
n−1∑
k=0

P (Sku) = n · 2−n0.05

.

Now for sufficiently large n we have

P (B1,u) ≤ P (D1,u) + P (D2,u) ≤ 2n · 2−n0.05

,

which further implies

P (B1) ≤
∑
u∈V

P (B1,u) ≤
∑
u∈V

2n · 2−n0.05

= 2n2 · 2−n0.05

= f(n).
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Therefore, limn→∞ P (B1) ≤ limn→∞ f(n) = 0. The proof that limn→∞ P (B2) = 0 is

completely analogous, so the lemma is proved.
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