Communications in Mathematical and in Computer Chemistry

Some New Results on Energy of Graphs

Samir K. Vaidya^{1,*}, Kalpesh M. Popat²

¹Saurashtra University, Rajkot-360005, Gujarat, India samirkvaidya@yahoo.co.in

²Atmiya Institute of Technology & Science, Rajkot-360005, Gujarat, India kalpeshmpopat@gmail.com

(Received August 26, 2016)

Abstract

The eigenvalue of a graph G is the eigenvalue of its adjacency matrix. The energy E(G) of G is the sum of absolute values of its eigenvalues. A natural question arises: How the energy of a given graph G can be related with the graph obtained from G by means of some graph operations? In order to answer this question, we have considered two graphs namely, splitting graph S'(G) and shadow graph $D_2(G)$. It has been proven that $E(S'(G)) = \sqrt{5} E(G)$ and $E(D_2(G)) = 2E(G)$.

1 Introduction

All graphs considered here are simple, finite and undirected. For standard terminology and notations related to graph theory, we follow Balakrishnan and Ranganathan [2] while for algebra we follow Lang [7].

The adjacency matrix A(G) of a graph G with vertices v_1, v_2, \ldots, v_n is an $n \times n$ matrix $[a_{ij}]$ such that, $a_{ij} = 1$ if v_i is adjacent to v_j , and 0 otherwise.

The eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ of the graph G are the eigenvalues of its adjacency matrix. The set of eigenvalues of the graph with their multiplicities is known as spectrum of the graph.

In 1978 Gutman [5] defined the energy of a graph G as the sum of absolute values of the eigenvalues of graph G and denoted it by E(G). Hence,

$$E(G) = \sum_{i=1}^{n} |\lambda_i|$$

-590-

In 2004, Bapat and Pati [3] proved that if the energy of a graph is rational then it must be an even integer, while Pirzada and Gutman [9] established that the energy of a graph is never the square root of an odd integer. A brief account of graph energy is given in [1] as well as in the books [4,8]. Some fundamental results on graph energy are also reported in the thesis of Sriraj [10].

The present work is intended to relate the graph energy to larger graphs obtained from the given graph by means of some graph operations.

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{p \times q}$. Then the *Kronecker product* (or tensor product) of A and B is defined as the matrix

$$A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix}$$

Proposition 1.1. [6] Let $A \in M^m$ and $B \in M^n$. Furthermore, let λ be an eigenvalues of matrix A with corresponding eigenvector x, and μ an eigenvalue of matrix B with corresponding eigenvector y. Then $\lambda \mu$ is an eigenvalue of $A \otimes B$ with corresponding eigenvector $x \otimes y$.

2 Energy of Splitting Graph

The splitting graph S'(G) of a graph G is obtained by adding to each vertex v a new vertex v', such that v' is adjacent to every vertex that is adjacent to v in G. We prove the following result.

Theorem 2.1. $E(S'(G)) = \sqrt{5} E(G)$.

Proof: Let v_1, v_2, \ldots, v_n be the vertices of the graph G. Then its adjacency matrix is given by

Let u_1, u_2, \ldots, u_n be the vertices corresponding to v_1, v_2, \ldots, v_n , which are added in G to obtain S'(G), such that, $N(v_i) = N(u_i)$, $i = 1, 2, \ldots, n$. Then A(S'(G)) can be written as a block matrix as follows

		v_1	v_2	v_3	•••	v_n	u_1	u_2	u_3	•	u_n
	v_1	ΓO	a_{12}	a_{13}		a_{1n}	0	a_{12}	a_{13}	• • •	a_{1n}
	v_2	a_{21}	0	a_{23}		a_{2n}	a_{21}	0	a_{23}	•••	a_{2n}
	v_3	a_{31}	a_{32}	0		a_{3n}	a_{31}	a_{32}	0	•••	a_{3n}
	÷	:	÷	÷	·	:	:	÷	:	·	:
	v_n	a_{n1}	a_{n2}	a_{n3}		0	a_{n1}	a_{n2}	a_{n3}		0
A(S'(G)) =		+									+
	u_1	0	a_{12}	a_{13}		a_{1n}	0	0	0	• • •	0
	u_2	a_{21}	0	a_{23}		a_{2n}	0	0	0	• • •	0
	u_3	a_{31}	a_{32}	0	•••	a_{3n}	0	0	0	• • •	0
	÷	:	÷	÷		÷	÷	÷	÷	· .	:
	u_n	La_{n1}	a_{n2}	a_{n3}		0	0	0	0	• • •	0]

That is,

$$A(S'(G)) = \begin{bmatrix} A(G) & A(G) \\ A(G) & O \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \otimes A(G).$$

Hence,

$$spec(S'(G)) = \left(\begin{pmatrix} \frac{1+\sqrt{5}}{2} \\ n \end{pmatrix} \lambda_i & \begin{pmatrix} \frac{1-\sqrt{5}}{2} \\ n \end{pmatrix} \lambda_i \\ n & n \end{pmatrix}$$

where λ_i , i = 1, 2, ..., n, are the eigenvalues of G, while $\left(\frac{1 \pm \sqrt{5}}{2}\right)$ are the eigenvalues of $\begin{bmatrix} 1 & 1\\ 1 & 0 \end{bmatrix}$. Here, $E(S'(G)) = \sum_{i=1}^n \left| \left(\frac{1 \pm \sqrt{5}}{2}\right) \lambda_i \right| = \sum_{i=1}^n |\lambda_i| \left[\frac{\sqrt{5}+1}{2} + \frac{\sqrt{5}-1}{2}\right]$ $= \sqrt{5} \sum_{i=1}^n |\lambda_i| = \sqrt{5} E(G).$

Illustration 2.2. Consider the cycle C_4 and its spitting graph $S'(C_4)$. It is obvious that $E(C_4) = 4$ as $spec(C_4) = \begin{pmatrix} -2 & 2 & 0 \\ 1 & 1 & 2 \end{pmatrix}$.

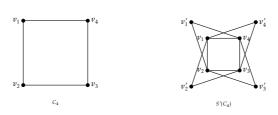


Figure 1

$$A(S'(C_4)) = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_1' & \mathbf{v}_2' & \mathbf{v}_3' & \mathbf{v}_4' \\ \mathbf{v}_1 & \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_1' & 1 & 0 & 1 & 0 & 1 & 0 \\ \mathbf{v}_1' & \mathbf{v}_1' & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ \mathbf{v}_2' & \mathbf{v}_3' & \mathbf{v}_4' & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ \end{bmatrix}$$
Therefore, $spec(S'(C_4)) = \begin{pmatrix} 1 + \sqrt{5} & 1 - \sqrt{5} & -1 - \sqrt{5} & -1 + \sqrt{5} & 0 \\ 1 & 1 & 1 & 1 & 4 \end{pmatrix}$.

Hence,

$$E(S'(C_4)) = 4\sqrt{5} = \sqrt{5} E(C_4)$$

3 Energy of Shadow Graph

The shadow graph $D_2(G)$ of a connected graph G is constructed by taking two copies of G, say G' and G''. Join each vertex u' in G' to the neighbors of the corresponding vertex u'' in G''.

Theorem 3.1. $E(D_2(G)) = 2E(G)$.

Proof: Let v_1, v_2, \ldots, v_n be the vertices of the graph G. Then its adjacency matrix is same as in the proof of Theorem 2.1. Consider the second copy of graph G with vertices $u_1, u_2, u_3, \ldots, u_n$ to obtain $D_2(G)$, such that, $N(v_i) = N(u_i)$, $i = 1, 2, \ldots, n$. Then $A(D_2(G))$ can be written as a block matrix as follows:

		v_1	v_2	v_3	•••	v_n	u_1	u_2	u_3	•	u_n
	v_1	Γ0	a_{12}	a_{13}		a_{1n}	0	a_{12}	a_{13}		a_{1n}
	v_2	a_{21}	0	a_{23}		a_{2n}	a_{21}	0	a_{23}	• • •	a_{2n}
	v_3	a_{31}	a_{32}	0		a_{3n}	a_{31}	a_{32}	0		a_{3n}
	÷	1	÷	÷	·	÷	÷	÷	÷	۰.	:
	v_n	a_{n1}	a_{n2}	a_{n3}		0	a_{n1}	a_{n2}	a_{n3}		0
$A(D_2(G)) =$		+									+
	u_1	0	a_{12}	a_{13}		a_{1n}	0	a_{12}	a_{13}	• • •	a_{1n}
	u_2	a_{21}	0	a_{23}		a_{2n}	a_{21}	0	a_{23}	• • •	a_{2n}
	u_3	a_{31}	a_{32}	0		a_{3n}	a_{31}	a_{32}	0	• • •	a_{3n}
	÷	:	÷	÷	• • •	÷	÷	÷	÷	۰.	:
	u_n	La_{n1}	a_{n2}	a_{n3}	• • •	0	a_{n1}	a_{n2}	a_{n3}		0]

That is,

$$A(D_2(G)) = \begin{bmatrix} A(G) & A(G) \\ A(G) & A(G) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \otimes A(G)$$

Hence,

 $spec((D_2(G)) = \begin{pmatrix} 0 & 2\lambda_i \\ n & n \end{pmatrix}$, where $\lambda_i, i = 1, 2, ..., n$, are the eigenvalues of G, while 0, 2 are eigenvalues of $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Here,

$$E(D_2(G)) = \sum_{i=1}^n |2\lambda_i| = 2\sum_{i=1}^n |\lambda_i| = 2E(G).$$

Illustration 3.2. Consider the cycle C_4 and its shadow graph $D_2(C_4)$. From the previous example it is known that $E(C_4) = 4$ and $spec(C_4) = \begin{pmatrix} -2 & 2 & 0 \\ 1 & 1 & 2 \end{pmatrix}$.

Therefore, $spec(D_2(C_4)) = \begin{pmatrix} 4 & -4 & 0 \\ 1 & 1 & 6 \end{pmatrix}$. Hence, $E(D_2(C_4)) = 8 = 2E(C_4)$.

4 Concluding Remarks

The energy of a graph is one of the emerging concept within graph theory. This concept serves as a frontier between chemistry and mathematics. The energy of many graphs is known. But we have take up the problem to investigate the energy of a graph obtained by means of some graph operations on a given graph and it has been revealed that the energy of the new graph is a multiple of energy of a given graph.

References

- [1] R. Balakrishnan, The energy of a graph, Lin. Algebra Appl. 387 (2004) 287–295.
- [2] R. Balakrishnan, K. Ranganathan, A Textbook of Graph Theory, Springer, New York, 2000.
- [3] R. B. Bapat, S. Pati, Energy of a graph is never an odd integer, Bull. Kerala Math. Assoc. 1 (2004) 129–132.
- [4] D. Cvetković, P. Rowlison, S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge Univ. Press, Cambridge, 2010.
- [5] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz 103 (1978) 1–22.
- [6] R. A. Horn, C. R. Johnson, *Topics in Matrix Analysis*, Cambridge Univ. Press, Cambridge, 1991.
- [7] S. Lang, Algebra, Springer, New York, 2002.
- [8] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
- [9] S. Pirzada, I. Gutman, Energy of a graph is never the square root of an odd integer, Appl. Anal. Discr. Math. 2 (2008) 118–121.
- [10] M. A. Sriraj, Some studies on energy of graphs, Ph. D. Thesis, Univ. Mysore, Mysore, India, 2014.