Some New Results on Energy of Graphs Samir K. Vaidya ${ }^{1, *}$, Kalpesh M. Popat ${ }^{2}$
${ }^{1}$ Saurashtra University, Rajkot-360005, Gujarat, India
samirkvaidya@yahoo.co.in
${ }^{2}$ Atmiya Institute of Technology \&3 Science, Rajkot-360005, Gujarat, India kalpeshmpopat@gmail.com

(Received August 26, 2016)

Abstract

The eigenvalue of a graph G is the eigenvalue of its adjacency matrix. The energy $E(G)$ of G is the sum of absolute values of its eigenvalues. A natural question arises: How the energy of a given graph G can be related with the graph obtained from G by means of some graph operations? In order to answer this question, we have considered two graphs namely, splitting graph $S^{\prime}(G)$ and shadow graph $D_{2}(G)$. It has been proven that $E\left(S^{\prime}(G)\right)=\sqrt{5} E(G)$ and $E\left(D_{2}(G)\right)=2 E(G)$.

1 Introduction

All graphs considered here are simple, finite and undirected. For standard terminology and notations related to graph theory, we follow Balakrishnan and Ranganathan [2] while for algebra we follow Lang [7].

The adjacency matrix $A(G)$ of a graph G with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is an $n \times n$ matrix [$\left.a_{i j}\right]$ such that, $a_{i j}=1$ if v_{i} is adjacent to v_{j}, and 0 otherwise.

The eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of the graph G are the eigenvalues of its adjacency matrix. The set of eigenvalues of the graph with their multiplicities is known as spectrum of the graph.

In 1978 Gutman [5] defined the energy of a graph G as the sum of absolute values of the eigenvalues of graph G and denoted it by $E(G)$. Hence,

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

In 2004, Bapat and Pati [3] proved that if the energy of a graph is rational then it must be an even integer, while Pirzada and Gutman [9] established that the energy of a graph is never the square root of an odd integer. A brief account of graph energy is given in [1] as well as in the books $[4,8]$. Some fundamental results on graph energy are also reported in the thesis of Sriraj [10].

The present work is intended to relate the graph energy to larger graphs obtained from the given graph by means of some graph operations.

Let $A \in R^{m \times n}, B \in R^{p \times q}$. Then the Kronecker product (or tensor product) of A and B is defined as the matrix

$$
A \otimes B=\left[\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & \ddots & \vdots \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}\right]
$$

Proposition 1.1. [6] Let $A \in M^{m}$ and $B \in M^{n}$. Furthermore, let λ be an eigenvalues of matrix A with corresponding eigenvector x, and μ an eigenvalue of matrix B with corresponding eigenvector y. Then $\lambda \mu$ is an eigenvalue of $A \otimes B$ with corresponding eigenvector $x \otimes y$.

2 Energy of Splitting Graph

The splitting graph $S^{\prime}(G)$ of a graph G is obtained by adding to each vertex v a new vertex v^{\prime}, such that v^{\prime} is adjacent to every vertex that is adjacent to v in G. We prove the following result.

Theorem 2.1. $E\left(S^{\prime}(G)\right)=\sqrt{5} E(G)$.
Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the graph G. Then its adjacency matrix is given by

$$
A(G)=\begin{gathered}
\\
\boldsymbol{v}_{\mathbf{1}} \\
\boldsymbol{v}_{\mathbf{2}} \\
\boldsymbol{v}_{\mathbf{3}} \\
\vdots \\
\boldsymbol{v}_{\boldsymbol{n}}
\end{gathered}\left[\begin{array}{ccccc}
\boldsymbol{v}_{\mathbf{1}} & \boldsymbol{v}_{\mathbf{2}} & \boldsymbol{v}_{\mathbf{3}} & \cdots & \boldsymbol{v}_{\boldsymbol{n}} \\
0 & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & 0 & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & 0 & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & 0
\end{array}\right]
$$

Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices corresponding to $v_{1}, v_{2}, \ldots, v_{n}$, which are added in G to obtain $S^{\prime}(G)$, such that, $N\left(v_{i}\right)=N\left(u_{i}\right), i=1,2, \ldots, n$. Then $A\left(S^{\prime}(G)\right)$ can be written as a block matrix as follows

That is,

$$
A\left(S^{\prime}(G)\right)=\left[\begin{array}{cc}
A(G) & A(G) \\
A(G) & O
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \otimes A(G)
$$

Hence,

$$
\operatorname{spec}\left(S^{\prime}(G)\right)=\binom{\left(\frac{1+\sqrt{5}}{2}\right) \lambda_{i}\binom{\frac{1-\sqrt{5}}{2}}{n} \lambda_{i}}{n}
$$

where $\lambda_{i}, i=1,2, \ldots, n$, are the eigenvalues of G, while $\left(\frac{1 \pm \sqrt{5}}{2}\right)$ are the eigenvalues of $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Here,

$$
\begin{aligned}
E\left(S^{\prime}(G)\right) & =\sum_{i=1}^{n}\left|\left(\frac{1 \pm \sqrt{5}}{2}\right) \lambda_{i}\right|=\sum_{i=1}^{n}\left|\lambda_{i}\right|\left[\frac{\sqrt{5}+1}{2}+\frac{\sqrt{5}-1}{2}\right] \\
& =\sqrt{5} \sum_{i=1}^{n}\left|\lambda_{i}\right|=\sqrt{5} E(G) .
\end{aligned}
$$

Illustration 2.2. Consider the cycle C_{4} and its spitting graph $S^{\prime}\left(C_{4}\right)$. It is obvious that $E\left(C_{4}\right)=4$ as $\operatorname{spec}\left(C_{4}\right)=\left(\begin{array}{ccc}-2 & 2 & 0 \\ 1 & 1 & 2\end{array}\right)$.

C_{4}

$S^{\prime}\left(C_{4}\right)$

Figure 1

Therefore, $\operatorname{spec}\left(S^{\prime}\left(C_{4}\right)\right)=\left(\begin{array}{ccccc}1+\sqrt{5} & 1-\sqrt{5} & -1-\sqrt{5} & -1+\sqrt{5} & 0 \\ 1 & 1 & 1 & 1 & 4\end{array}\right)$.
Hence,

$$
E\left(S^{\prime}\left(C_{4}\right)\right)=4 \sqrt{5}=\sqrt{5} E\left(C_{4}\right)
$$

3 Energy of Shadow Graph

The shadow graph $D_{2}(G)$ of a connected graph G is constructed by taking two copies of G, say G^{\prime} and $G^{\prime \prime}$. Join each vertex u^{\prime} in G^{\prime} to the neighbors of the corresponding vertex $u^{\prime \prime}$ in $G^{\prime \prime}$.

Theorem 3.1. $E\left(D_{2}(G)\right)=2 E(G)$.
Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the graph G. Then its adjacency matrix is same as in the proof of Theorem 2.1. Consider the second copy of graph G with vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ to obtain $D_{2}(G)$, such that, $N\left(v_{i}\right)=N\left(u_{i}\right), i=1,2, \ldots, n$. Then $A\left(D_{2}(G)\right)$ can be written as a block matrix as follows:

That is,

$$
A\left(D_{2}(G)\right)=\left[\begin{array}{cc}
A(G) & A(G) \\
A(G) & A(G)
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \otimes A(G)
$$

Hence,
$\operatorname{spec}\left(\left(D_{2}(G)\right)=\left(\begin{array}{cc}0 & 2 \lambda_{i} \\ n & n\end{array}\right)\right.$, where $\lambda_{i}, i=1,2, \ldots, n$, are the eigenvalues of G, while 0,2 are eigenvalues of $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.

Here,

$$
E\left(D_{2}(G)\right)=\sum_{i=1}^{n}\left|2 \lambda_{i}\right|=2 \sum_{i=1}^{n}\left|\lambda_{i}\right|=2 E(G) .
$$

Illustration 3.2. Consider the cycle C_{4} and its shadow graph $D_{2}\left(C_{4}\right)$. From the previous example it is known that $E\left(C_{4}\right)=4$ and spec $\left(C_{4}\right)=\left(\begin{array}{ccc}-2 & 2 & 0 \\ 1 & 1 & 2\end{array}\right)$.

C_{4}

$D_{2}\left(C_{4}\right)$

Figure 2

Therefore, $\operatorname{spec}\left(D_{2}\left(C_{4}\right)\right)=\left(\begin{array}{ccc}4 & -4 & 0 \\ 1 & 1 & 6\end{array}\right)$. Hence,

$$
E\left(D_{2}\left(C_{4}\right)\right)=8=2 E\left(C_{4}\right) .
$$

4 Concluding Remarks

The energy of a graph is one of the emerging concept within graph theory. This concept serves as a frontier between chemistry and mathematics. The energy of many graphs is known. But we have take up the problem to investigate the energy of a graph obtained by means of some graph operations on a given graph and it has been revealed that the energy of the new graph is a multiple of energy of a given graph.

References

[1] R. Balakrishnan, The energy of a graph, Lin. Algebra Appl. 387 (2004) 287-295.
[2] R. Balakrishnan, K. Ranganathan, A Textbook of Graph Theory, Springer, New York, 2000.
[3] R. B. Bapat, S. Pati, Energy of a graph is never an odd integer, Bull. Kerala Math. Assoc. 1 (2004) 129-132.
[4] D. Cvetković, P. Rowlison, S. Simić,An Introduction to the Theory of Graph Spectra, Cambridge Univ. Press, Cambridge, 2010.
[5] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz 103 (1978) 1-22.
[6] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991.
[7] S. Lang, Algebra, Springer, New York, 2002.
[8] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
[9] S. Pirzada, I. Gutman, Energy of a graph is never the square root of an odd integer, Appl. Anal. Discr. Math. 2 (2008) 118-121.
[10] M. A. Sriraj, Some studies on energy of graphs, Ph. D. Thesis, Univ. Mysore, Mysore, India, 2014.

