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Abstract

A new high algebraic order four–stages symmetric two–step method is developed, for the
first time in the literature, in the present paper. Requesting the elimination of the phase–lag
and its first, second and third derivatives and requiring also the highest possible algebraic order,
we determine the coefficients of the method. We study also the affection of the elimination of the
phase–lag and its derivatives on the efficiency of the new proposed method. More specifically
we will investigate the following:

• the development of the method,

• the calculation of the local truncation error (LTE) of the new proposed method,

• the analysis of the method which consists of two stages: Stage 1: LTE analysis based on
a test problem which is the radial Schrödinger equation. Stage 2: Stability and Interval
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of Periodicity Analysis based on a scalar test equation with frequency different than the
frequency of the scalar test equation used for the phase–lag analysis,

• the introduction of two embedding techniques for the error control: one which is based on
the algebraic order of the methods and the new one which is based on the highest possible
order of the eliminated derivative of the phase–lag,

• the efficiency of the new proposed method based on the application of it to two problems:
(i) the resonance problem of the Schrödinger equation and (ii) the coupled differential
equations arising from the Schrödinger equation.

Based on the above study, it will be proved that the new proposed method is very effective for

the numerical solution of the Schrödinger equation and related initial-value or boundary-value

problems with periodical and /or oscillating solutions. We note here that the new developed

method is an improvement of the recent developed methods in [1], [2], [3] and [4].

1. INTRODUCTION

A new four–stages symmetric two–step method of twelfth algebraic order for the effec-

tive approximate solution of the Schrödinger equation and related problems is proposed,

for the first time in the literature, in this paper. The efficiency of the new propose method

will be studied by applying it on the approximate solution of

• the radial time independent Schrödinger equation and

• the coupled differential equation of the Schrödinger equation type.

The above problems and their efficient solution are very important on Computational

Chemistry (see [5] and references therein). A significant part of the quantum chemical

calculations contains, as critical part, the Schrödinger equation. We mention that we can

have only numerical solution of the Schrödinger’s equation for more than one particle.

The effective numerical solution of the Schrödinger equation can give us the following:

1. computation of important molecular properties (such as vibrational energy levels

and wave functions of systems) and

2. provide us an essential presentation of the molecule’s electronic structure (see for

more details in [6–9]).

The method proposed in this paper will improve the methods developed for the first

time in the literature in [1], [2] and [4]. In more details the methods obtained in [1]

and [2] are of tenth algebraic order, while the new proposed method is of twelfth algebraic
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order. Additionally, while the method obtained in [4] is of twelfth algebraic order and

has eliminated the phase–lag and its first and second derivatives, the new method, which

is first introduced in the literature, is of twelfth algebraic order and has eliminated the

phase–lag and its first, second and third derivatives. Additionally, we give a new error

control which is based on high order vanishing of the derivatives of the phase–lag.

The above mentioned problems which will be studied in this paper belong to the cat-

egory of the special second order initial value problems with periodical and/or oscillating

solution of the form:

z′′(x) = f(x, z), z(x0) = z0 and z′(x0) = z′0. (1)

More specifically, we will investigate the numerical solution of systems of ordinary

differential equations of second order in the model of which the first derivative z′ does not

appear explicitly and additionally their solutions have with periodical and/or oscillating

behavior.

Below we give some bibliography on the subject of the paper. We give the bibliography

based on the categories of methods which developed the last decades:

1. In [43], [46], [55], [58] – [61], [52] [69], exponentially, trigonometrically and phase

fitted Runge–Kutta and Runge–Kutta Nyström methods was developed.

2. Multistep exponentially, trigonometrically and phase fitted methods and multistep

methods with minimal phase–lag developed in [1]– [4], [14]– [17], [21]– [24], [30],

[34], [40], [44]– [45], [49], [54], [56]– [57], [63]– [64], [70]– [71].

3. Symplectic integrators in [38]– [39], [47], [50], [53], [61]– [62], [67].

4. Nonlinear methods developed in [48].

5. General methods are developed in [10]– [13], [18]– [20], [31]– [33], [36]– [37].

2. ANALYSIS OF SYMMETRIC 2m

MULTISTEP METHODS

The analysis of symmetric multistep methods is based on the following algorithm:

1. Presentation of the general form of the 2m–step finite difference method for the

numerical solution of the initial value problem (1):

m∑
i=−m

ci zn+i = h2

m∑
i=−m

bi f(xn+i, zn+i). (2)
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2. Definitions: (1) Space of integration which is known as integration interval and

(2) stepsize (step length) of integration

3. Procedure for the numerical solution of the initial value problem (1) using the above

determined 2m–step method:

• Let us consider the space [a, b] as the integration interval for the approximate

integration of the initial value problem (1).

• Using the points {xi}mi=−m ∈ [a, b] we divide the above determined integration

interval [a, b] into m equally spaced intervals.

• Based on the above division of the integration area using the points xi, i =

−m(1)m, the quantity h by h = |xi+1−xi|, i = 1−m(1)m− 1 is determined.

We call this quantity the stepsize of integration or the step length of

integration.

4. Determination of a subclass of the general 2m–step methods which is called sym-

metric 2m–step methods.

Definition 1. A method (2) is called symmetric if and only if c−i = ci and b−i = bi,

i = 0(1)m.

Remark 1. The linear operator

L(x) =
m∑

i=−m

ci z(x+ ih)− h2

m∑
i=−m

bi z
′′(x+ ih) (3)

where z ∈ C2, is associated with the 2m–step Method determined by (2).

5. Definition of the algebraic order q of a 2m–step Method presented by (2)

Definition 2. [10] We call that a 2m–step method given by (2) has algebraic of

order q if the associated linear operator L given by (3) vanishes for any linear

combination of the linearly independent functions 1, x, x2, . . . , xq+1.

6. Introduction and Definition of the terms for a symmetric 2m–step method: scalar

test equation, difference equation and characteristic equation

Application of the symmetric 2m–step method (2) to the scalar test equation

z′′ = −φ2 z (4)
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leads to the following difference equation:

Am(v) zn+m + · · ·+A1(v) zn+1 +A0(v) zn +A1(v) zn−1 + · · ·+Am(v) zn−m = 0 (5)

and the associated characteristic equation

Am(v)λ
m + · · ·+ A1(v)λ+ A0(v) + A1(v)λ

−1 + · · ·+ Am(v)λ
−m = 0. (6)

where v = φh, h is the step length and Aj(v) j = 0(1)k are polynomials of v which

are called stability polynomials of the symmetric 2m–step method (2).

7. Introduction and Definition of the terms for a symmetric 2m–step method: interval

of periodicity, phase–lag, phase-fitted method

Definition 3. [11] We say that a symmetric 2m–step method with characteristic

equation given by (6) has a non–zero interval of periodicity (0, v20) when , for all

v ∈ (0, v20), the roots λi, i = 1(1)2m of characteristic equation Eq. (6) satisfy:

λ1 = eiθ(v) , λ2 = e−iθ(v) and |λi| ≤ 1 , i = 3(1)2m (7)

where θ(v) is a real function of v.

Definition 4. (see [11]) A symmetric 2m–step method is called P -stable method if

its interval of periodicity is equal to (0,∞).

Definition 5. A symmetric 2m–step method is called singularly almost P -stable

method if its interval of periodicity is equal to (0,∞)− S 2.

Definition 6. [12], [13] For any symmetric 2m–step method with a characteristic

equation given by (6), the phase–lag is defined as the leading term in the expansion

of

t = v − θ(v). (8)

In the above mentioned case if the quantity t = O(vs+1) as v → ∞, then the order

of the phase–lag is equal to s.

Definition 7. [14] We call a symmetric 2m–step method phase-fitted if its phase–

lag is equal to zero.

2where S is a set of distinct points
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8. Direct formula for the computation of the phase–lag for a symmetric 2m–step

method

Theorem 1. [12] A symmetric 2m–step method with the characteristic equation

given by (6) has phase–lag order s and phase–lag constant c given by

−cvs+2 +O(vs+4) =
2Am(v) cos(mv) + · · ·+ 2Aj(v) cos(j v) + · · ·+ A0(v)

2m2Am(v) + · · ·+ 2 j2Aj(v) + · · ·+ 2A1(v)
. (9)

Remark 2. The above formula (9) is a direct one for the computation of the phase–lag

of any symmetric 2m–step method.

Remark 3. For the specific case of a symmetric two–step method and for the calculation

of its phase–lag, we will apply the above mentioned direct formula (9) with m = 2.

3. THE NEW TWELFTH ALGEBRAIC ORDER
FOUR–STAGES SYMMETRIC TWO–STEP METHOD
WITH VANISHED PHASE–LAG AND ITS FIRST,

SECOND AND THIRD DERIVATIVES

We consider the family of methods

ẑn = zn − a0 h
2
(
fn+1 − 2 fn + fn−1

)
− 2 a1 h

2 fn

z̃n = zn − a2 h
2
(
fn+1 − 2 f̂n + fn−1

)
z̄n = zn − a3 h

2
(
fn+1 − 2 f̃n + fn−1

)
zn+1 + a4 zn + zn−1 = h2

[
b1 (fn+1 + fn−1) + b0 f̄n

]
(10)

where fi = z′′ (xi, zi) , i = −2(1)2, f̂n = z′′ (xn, ẑn), f̃n = z′′ (xn, z̃n) , f̄n = z′′ (xn, z̄n) and

aj, j = 0(1)4 and bi, i = 0, 1 are parameters.

We give attention to the following case of the above noted family of methods (10):

a0 = − 27

3200
, a1 =

3

32
, a2 = − 10

693
. (11)

The requirement the above symmetric two-step method (10) with the newly defined

free parameters (11) to have eliminated the phase–lag and its first, second and third

derivatives leads to the following system of equations:

Phase− Lag(PL) =
T0

Tdenom

= 0 (12)
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FirstDerivative of thePhase−−Lag =
T1

T 2
denom

= 0 (13)

SecondDerivative of thePhase−−Lag =
T2

T 3
denom

= 0 (14)

ThirdDerivative of thePhase−−Lag =
T3

T 4
denom

= 0 (15)

where Tj, j = 0(1)3 and Tdenom are given in the Appendix A.

In order to obtain the free parameters of the new proposed method (10) we solve the

system of equations (12)–(15):

a4 =
T4

Tdenom1

, a3 = 2310
T5

Tdenom2

b0 =
1

81

T6

Tdenom3

, b1 =
1

81

T7

Tdenom3

(16)

where Tj, j = 4(1)7, Tdenom1, Tdenom2 and Tdenom3 are given in the Appendix B.

We use the Taylor series expansions given in the Appendix C in the cases of heavy

cancelations for some values of |v| of the above mentioned formulae given by (16).

The behavior of the coefficients is given in the Figure 1.

We indicate the new proposed method (10) with the coefficients given by (11) and (16)

and their Taylor series expansions given in Appendix C with the symbol: NM4SH3DV .

For this method, the local truncation error is equal to:

LTENM4SH3DV =
307

186810624000
h14

(
z(14)n −35φ8 z(6)n −84φ10 z(4)n −70φ12 z(2)n

)
+O

(
h16
)
.

(17)

4. ANALYSIS OF THE NEW OBTAINED METHOD

4.1. Comparative Local Truncation Error (LTE) Analysis

The following test problem is used for the local truncation error analysis:

z′′(x) = (V (x)− Vc +G) z(x) (18)

where

• V (x) is a potential function,

• Vc a constant approximation of the potential on the specific point x,

• G = Vc − E and
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Figure 1. Behavior of the free parameters of the new proposed method (10) given
by (16) for several values of v = φh.

• E is the energy.

Remark 4. The Eq. (18) is the radial time independent Schrödinger equation with po-

tential V (x).

We will investigate the following methods:

4.1.1. Classical Method (i.e., Method (10) with Constant Coefficients)

LTECL =
307

186810624000
h14 z(14)n +O

(
h16
)
. (19)
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4.1.2. Method with Vanished Phase–Lag and Its First

and Second Derivatives Developed in [4]

LTENM4SH2DV =
307

186810624000
h14

(
z(14)n − 15φ8 z(6)n

− 24φ10 z(4)n − 10φ12 z(2)n

)
+O

(
h16
)
. (20)

4.1.3. Method with Vanished Phase–Lag and Its First,

Second and Third Derivatives Developed in Section 3.

LTENM4SH3DV =
307

186810624000
h14

(
z(14)n − 35φ8 z(6)n

− 84φ10 z(4)n − 70φ12 z(2)n

)
+O

(
h16
)
. (21)

The following scheme is followed

• We calculate the new formulae of the Local Truncation Errors (LTEs) which are

based on the test problem (18)

• In order to achieve the above we have to compute the derivatives of the function z

which are included in the formulae of LTEs mentioned above (19), (20) and (21).

• In order to satisfy the above step we use expressions of the derivatives of the function

z. Some of the requested expressions for the derivative of the function z are given

in the Appendix D.

• Using the above achieved new formulae of the derivatives of the approximation of

the function z to the point xn and substitute them into the formulae of LTEs (19),

(20) and (21), we obtain the new formulae of LTEs produced from the test equation

(18).

• The new formulae of LTEs produced above are dependent from the quantity G and

the energy E.

• We study two cases for the parameter G:
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1. The Potential and the Energy are closed each other.

Consequently we have

G = Vc − E ≈ 0 ⇒ Gi = 0, i = 1, 2, . . . . (22)

The general form of the LTEs is given by:

LTE = h14

j∑
k=0

Bk G
k (23)

where Bk are constant numbers (classical case) or formulae of v and G = Vc−E

(frequency dependent cases).

Remark 5. In the case G = Vc − E ≈ 0, we have:

LTEG=0 = h14B0 (24)

where B0 is equal for all the above formulae (19), (20) and (21).

Therefore, for G = Vc − E ≈ 0 we have that:

LTECL = LTENM4SH2DV = LTENM4SH3DV = h14B0 (25)

where B0 is given in the Appendix E at every point x = xn.

Theorem 2. From (22) it is easy to see that for G = Vc − E ≈ 0 the local

truncation error for the classical method (constant coefficients), the local trun-

cation error for the method with eliminated phase–lag and its first and second

derivatives and the local truncation error for the method with eliminated phase–

lag and its first, second and third derivatives are the same and equal to h14B0,

where B0 is given in the Appendix E and consequently for G = 0 the methods

are of comparable accuracy.

2. The Potential and the Energy are far from each other. Therefore,

G >> 0 or G << 0 and the value of |G| is a large number. For these cases the

most accurate method is the method with asymptotic form of LTE which has

the minimum power of G.

• Finally we compute, based on the above, the asymptotic expressions of the LTEs.
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4.1.4. Classical Method

LTECL =
307

186810624000
h14

(
z (x) G7 + · · ·

)
+O

(
h16
)
. (26)

4.1.5. Method with Vanished Phase–Lag and Its First

and Second Derivatives Developed in [4]

LTENM4SH2DV =
307

2335132800
h14

((
d2

dx2
g (x)

)
z (x) G5 + · · ·

)
+O

(
h16
)
. (27)

4.1.6. Method with Vanished Phase–Lag and Its First,

Second and Third Derivatives Developed in Section 3.

LTENM4SH3DV =
307

6671808000
h14

[(
15

(
d

dx
g (x)

)2

z (x)

+ 20 g (x) z (x)
d2

dx2
g (x) + 27

(
d4

dx4
g (x)

)
z (x)

+ 10

(
d3

dx3
g (x)

)
d

dx
z (x)

)
G4 + · · ·

]
+O

(
h16
)
. (28)

From the above mentioned analysis we have the following theorem:

Theorem 3. • Classical Method (i.e., the method (10) with constant coefficients):

For this method the error increases as the seventh power of G.

• High Algebraic Order Two–Step Method with Vanished Phase–lag and its First and

Second Derivatives developed in [4]: For this method the error increases as the fifth

power of G.

• Twelfth Algebraic Order Two–Step Method with Eliminated Phase–lag and its First,

Second and Third Derivatives developed in Section 3: For this method the error

increases as the fourth power of G.

So, for the numerical solution of the time independent radial Schrödinger equation

the New Proposed Twelfth Algebraic Order Method with vanished phase–lag and its first,

second and third derivatives is the most accurate one , especially for large values of |G| =
|Vc − E|.
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4.2. Stability and Interval of Periodicity Analysis

The following test problem is used for the stability and interval of periodicity analysis

of the new proposed method:

z′′ = −ω2 z. (29)

Remark 6. If we compare the test equations (4) and (29) we arrive to the remark that

the frequencies of these test problems are not equal, i.e. ω 6= φ.

The application of the new proposed four–stages symmetric two–step method to the

scalar test equation (29) leads to the difference equation:

A1 (s, v) (zn+1 + zn−1) + A0 (s, v) zn = 0 (30)

which is associated to the characteristic equation:

A1 (s, v)
(
λ2 + 1

)
+ A0 (s, v) λ = 0 (31)

where

A1 (s, v) = 1 + b1 s
2 + a3 b0 s

4 − 2 a2 a3 b0 s
6 + 4 a0 a2 a3 b0 s

8

A0 (s, v) = a4 + b0 s
2 − 2 a3 b0 s

4 + 4 a2 a3 b0 s
6 + 8 a2 a3 b0 (a1 − a0) s

8 (32)

where s = ω h and v = φh.

Taken the coefficients aj, j = 0(1)2 from (11) and the coefficients bi, j = 0, 1 and

ak, k = 3, 4 from (16) and substituted them into the formulae (32) we have that:

A1 (s, v) =
T8

Tdenom4

, A0 (s, v) = 2
T9

Tdenom4

(33)

where

T8 = 54 s8v2 − 216 s2v8 + 3200 s6v2

− 7332 s2v6 + 110880 s4v2 − 149760 s2v4

+ 997920 s2v2 + 81 (cos (v))2 v10

+ 81 (cos (v))2 s8 − 3037 (cos (v))2 v8

+ 7848 sin (v) v9 + 7848 cos (v) v8

+ 4800 (cos (v))2 s6 − 88560 (cos (v))2 v6

+ 136920 sin (v) v7 − 19200 cos (v) v6
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+ 166320 (cos (v))2 s4 − 1164240 (cos (v))2 v4

+ 394560 sin (v) v5 − 665280 cos (v) v4

+ 665280 sin (v) v3 + 274080 v6 + 1829520 v4

− 1296 cos (v) sin (v) s2v7 − 42936 cos (v) sin (v) s2v5

− 539520 cos (v) sin (v) s2v3

− 665280 cos (v) sin (v) s2v − 166320 s4

+ 27 (cos (v))2 s8v2 − 108 (cos (v))2 s2v8

+ 1296 cos (v) sin (v) v9 + 1600 (cos (v))2 s6v2

− 2532 (cos (v))2 s2v6

− 7848 sin (v) s2v7 + 28680 cos (v) sin (v) v7

− 54936 cos (v) s2v6 + 55440 (cos (v))2 s4v2

− 86880 (cos (v))2 s2v4 + 35736 sin (v) s2v5

+ 270720 cos (v) sin (v) v5 − 96000 cos (v) s2v4

− 332640 (cos (v))2 s2v2 − 125760 sin (v) s2v3

− 665280 cos (v) sin (v) v3 − 665280 cos (v) s2v2

+ 665280 sin (v) s2v + 162 v10 − 81 s8 + 11989 v8 − 4800 s6

T9 = 654 s8v2 − 2616 s2v8 + 3200 s6v2 − 92004 s2v6

+ 110880 s4v2 − 341760 s2v4

− 332640 s2v2 + 981 (cos (v))2 v10

+ 981 (cos (v))2 s8 − 72337 (cos (v))2 v8

+ 3888 sin (v) v9 − 1296 cos (v) v8 + 4800 (cos (v))2 s6

− 88560 (cos (v))2 v6

+ 115200 sin (v) v7 + 38400 cos (v) v6 + 166320 (cos (v))2 s4

− 1164240 (cos (v))2 v4

+ 1330560 sin (v) v5 + 1330560 cos (v) v4 + 235680 v6 + 498960 v4

+ 15696 cos (v) sin (v) s2v7 + 93336 cos (v) sin (v) s2v5

+ 539520 cos (v) sin (v) s2v3 + 665280 cos (v) sin (v) s2v

− 166320 s4 + 327 (cos (v))2 s8v2

− 1308 (cos (v))2 s2v8 − 15696 cos (v) sin (v) v9

+ 1600 (cos (v))2 s6v2 + 22668 (cos (v))2 s2v6
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− 3888 sin (v) s2v7 + 79320 cos (v) sin (v) v7

+ 9072 cos (v) s2v6 + 55440 (cos (v))2 s4v2

− 86880 (cos (v))2 s2v4 − 115200 sin (v) s2v5

− 270720 cos (v) sin (v) v5 + 192000 cos (v) s2v4

− 332640 (cos (v))2 s2v2 − 1330560 sin (v) s2v3

+ 665280 cos (v) sin (v) v3 + 1330560 cos (v) s2v2 + 1962 v10

− 981 s8 + 89785 v8 − 4800 s6 − 648 (cos (v))2 sin (v) v9

− 28920 (cos (v))2 sin (v) v7

− 394560 (cos (v))2 sin (v) v5

− 665280 (cos (v))2 sin (v) v3

+ 648 (cos (v))2 sin (v) s2v7

+ 14664 (cos (v))2 sin (v) s2v5

+ 125760 (cos (v))2 sin (v) s2v3

− 665280 (cos (v))2 sin (v) s2v

− 4536 (cos (v))3 s2v6 − 96000 (cos (v))3 s2v4

− 665280 (cos (v))3 s2v2 + 648 (cos (v))3 v8

− 19200 (cos (v))3 v6 − 665280 (cos (v))3 v4

Tdenom4 = v3
(
81 (cos (v))2 v7 + 1296 cos (v) sin (v) v6

− 3037 (cos (v))2 v5 + 7848 v6 sin (v)

+ 162 v7 + 28680 cos (v) sin (v) v4 + 7848 cos (v) v5

− 88560 (cos (v))2 v3 + 136920 v4 sin (v) + 11989 v5

+ 270720 cos (v) sin (v) v2 − 19200 cos (v) v3

− 1164240 (cos (v))2 v + 394560 v2 sin (v) + 274080 v3

− 665280 cos (v) sin (v)− 665280 cos (v) v + 665280 sin (v) + 1829520 v
)
.

Remark 7. The term P − stable and singularly almost P -stable method are on the prob-

lems where we have the condition ω = φ.

In Figure 2 we present the plot of the s− v plane for the new proposed method.
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Figure 2. The plot of s− v plane of the new proposed symmetric implicit twelfth
algebraic order method with vanished phase–lag and its first, second and
third derivatives.

Remark 8. Observing the above mentioned plane we arrive to the following remarks :

1. the shadowed are is the stable space of the method ,

2. the white area is the unstable space of the method.

Remark 9. The conclusions from the observation of the s − v plane of the method are

depended on the problems on which the specific new proposed method will be applied:

1. Problems for which φ 6= ω. For the problems of this case, the study of the s− v

plane must be done in all the space excluding the area around the first diagonal.

2. Problems for which φ = ω (as an example we refer the Schrödinger equation and

related problems). For the problems of this case, the study of the s − v plane must

be done around the first diagonal of the s− v plane.

If we substitute on the stability polynomials, given by (33), s = v, then we will study

the second case of the above mentioned problems in which the Schrödinger equation and

related problems are belonged. Observing the space around the first diagonal of the plot

s− v we conclude that the interval of periodicity of the new proposed method is equal to

(0,∞).

In Table 1 we present the interval of periodicity of similar methods:
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Table in which the interval of periodicity of the new method is given together with

the intervals of periodicity of similar methods.

Table 1. Comparative Intervals of Periodicity for symmetric two–step methods of
the same form

Method Interval of Periodicity

Method developed in [4] (0, 29)
Method developed in Section 3 (0,∞)

The above developments lead to the following theorem:

Theorem 4. The method developed in section 3:

• is of four stages

• is of twelfth algebraic order,

• has eliminated the phase–lag and its first, second and third derivatives

• has an interval of periodicity equals to: (0,∞).

5. NUMERICAL RESULTS

Our numerical experiments will be based on the application of the new obtained

method on two problems:

• the approximate solution of the radial time–independent Schrödinger equation and

• the approximate solution of coupled differential equations arising from the

Schrödinger equation

5.1. Radial Time–Independent Schrödinger Equation

We will study the numerical solution of the radial time independent Schrödinger equa-

tion which is given by:

z′′(r) = [l(l + 1)/r2 + V (r)− k2] z(r), (34)

where

• we call the effective potential the function W (r) = l(l+1)/r2 + V (r). This function

satisfies the relation: W (x) → 0 as x → ∞,
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• we call the energy the quantity k2 ∈ R ,

• we call angular momentum the quantity l ∈ Z ,

• we call potential the function V .

Since the problem (34)) is a boundary value one, we have to determine the boundary

condition. The initial condition is defined from the value of the function z on the initial

point of the integration area:

z(0) = 0

The final condition is defined at the end point of the integration space and is determined

for large values of r from the physical conditions of the specific problem.

The numerical results from the numerical solution of the problem (34) are produced

taking into account that the new developed method is a frequency dependent method.

Consequently, the frequency φ (which is required from the coefficients of the new method)

for the radial Schrödinger equation (for the case l = 0) is determined by:

φ =
√

|V (r)− k2| =
√

|V (r)− E|

where V (r) is the potential and E is the energy.

5.1.1. Woods–Saxon Potential

Another quantity which is requested for the numerical integration of the radial

Schrödinger equation by the new method is the potential V (r). For our numerical exper-

iments we use the Wood–Saxon potential:

V (r) =
u0

1 + q
− u0 q

a (1 + q)2
(35)

with q = exp
[
r−X0

a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

The plot of the Woods–Saxon potential is given in Figure 3.

Using the methodology proposed by Ixaru et al. ( [15] [17]), we use for the Woods–

Saxon potential approximate values in some critical points (within the integration area).

Based on these approximate values, the value of the parameter φ is defined.

Based on the above, the parameter φ is chosen as follows (see for details [16] and [17]):

φ =



√
−50 + E for r ∈ [0, 6.5− 2h]

√
−37.5 + E for r = 6.5− h

√
−25 + E for r = 6.5

√
−12.5 + E for r = 6.5 + h

√
E for r ∈ [6.5 + 2h, 15].
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Figure 3. Plot of the Woods–Saxon potential.

From the above we observe that, for example, on the point of the integration area r =

6.5− h, the value of φ is equal to:
√
−37.5 + E. Consequently, v = φh =

√
−37.5 + E h.

On the point of the integration area r = 6.5− 3h, the value of φ is equal to:
√
−50 + E,

etc.

5.1.2. The Radial Schrödinger Equation and the Resonance Problem

We will solve numerically the radial time independent Schrödinger equation (34) using

as potential the Woods-Saxon potential (35) and the new developed method.

The area of integration of the above mentioned problem is (0,∞
)
. Consequently,

we have to approximate the infinite interval of integration with a finite one. This is

necessary in order to be possible to apply a numerical methods for the solution of (34).

For our experiments we will approximate the infinite space of integration by the finite

space r ∈ [0, 15]. For our numerical example, we will apply the new propose method to a

large domain of energies: E ∈ [1, 1000].

We observe that for positive energies, E = k2, the potential vanished for x → ∞
faster than the term l(l+1)

x2 . Therefore and in this case the form of the radial Schrödinger

equation is leaded to:

z′′ (r) +

(
k2 − l(l + 1)

r2

)
z (r) = 0 (36)

The mathematical model (36) of the Schrödinger equation has linearly independent

solutions k r jl (k r ) and k r nl (k r), where jl (k r) and nl (k r) are the spherical Bessel and

Neumann functions respectively. Consequently, the asymptotic form of the solution of

equation (34) (when r → ∞) is given by:

z (r) ≈ Akrjl (kr)−Bkrnl (kr)
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≈ AC

[
sin

(
kr − lπ

2

)
+ tan δl cos

(
kr − lπ

2

)]
where δl is the phase shift. The direct formula for the computation of the phase shift is

given by:

tan δl =
p (r2)S (r1)− p (r1)S (r2)

p (r1)C (r1)− p (r2)C (r2)

where r1 and r2 are distinct points in the asymptotic region (we selected as r1 the right

hand end point of the interval of integration (i.e. r1 = 15) and r2 = r1 − h) with S (r) =

k r jl (k r) and C (r) = −k r nl (k r). The problem is considered as an initial–value problem

(as we have mentioned previously), and consequently we need the value of zj, j = 0, 1 in

order to apply a two–step method for the solution of the above described problem. The

value z0 is computed from the initial condition. The value z1 is obtained by using high

order Runge–Kutta–Nyström methods (see [18] and [19]). Based on the starting (initial)

values zi, i = 0, 1 , we can compute at r2 of the asymptotic region the phase shift δl.

We will solve the above described problem for positive energies. This problem has two

types:

• we can find the phase-shift δl or

• we can find those E, for E ∈ [1, 1000], at which δl =
π
2
.

We selected to solve the latter problem, known as the resonance problem.

The boundary conditions are give by:

z(0) = 0 , z(r) = cos
(√

Er
)

for large r.

For comparison purposes we compute the positive eigenenergies of the resonance prob-

lem with the Woods-Saxon potential using the following methods:

• Method QT8: the eighth order multi–step method developed by Quinlan and

Tremaine [20];

• Method QT10: the tenth order multi–step method developed by Quinlan and

Tremaine [20];

• Method QT12: the twelfth order multi–step method developed by Quinlan and

Tremaine [20];

• Method MCR4: the fourth algebraic order method of Chawla and Rao with

minimal phase–lag [21];
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• Method RA: the exponentially–fitted method of Raptis and Allison [22];

• Method MCR6: the hybrid sixth algebraic order method developed by Chawla

and Rao with minimal phase–lag [23];

• Method NMPF1: the Phase-Fitted Method (Case 1) developed in [10];

• Method NMPF2: the Phase-Fitted Method (Case 2) developed in [10];

• Method NMC2: the Method developed in [24] (Case 2);

• Method NMC1: the method developed in [24] (Case 1);

• Method NM2SH2DV: the Two-Step Hybrid Method developed in [1];

• Method NM4SH2DV: the Four Stages Symmetric Two–Step method with elim-

inated phase-lag and its first and second derivatives developed in [4];

• Method NM4SH3DV: the Four Stages Symmetric Two–Step method with elim-

inated phase-lag and its first, second and third derivatives developed in Section

3.

CPU time (in seconds)

E
rr

m
a
x

Figure 4. Accuracy (Digits) for several values of CPU Time (in Seconds) for the
eigenvalue E2 = 341.495874. The nonexistence of a value of Accuracy
(Digits) indicates that for this value of CPU, Accuracy (Digits) is less
than 0.

In Figures 4 and 5, we present the maximum absolute error Errmax = | log10 (Err) |
where

Err = |Ecalculated − Eaccurate|
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Figure 5. Accuracy (Digits) for several values of CPU Time (in Seconds) for the
eigenvalue E3 = 989.701916. The nonexistence of a value of Accuracy
(Digits) indicates that for this value of CPU, Accuracy (Digits) is less
than 0.

of the eigenenergies E2 = 341.495874 and E3 = 989.701916 respectively, for several values

of CPU time (in seconds). The computational cost for each method is calculated via the

CPU time (in seconds).

In order to compute the above mentioned absolute error we need references values

which are mentioned as Eaccurate. For our numerical experiments we use the well known

two-step method of Chawla and Rao [23] with small step size of integration, in order to

determine the reference values. Now the procedure for computation of the absolute errors

mentioned above is the following: For each method we compute the eigenenergies, which

are mentioned as Ecalculated, and we compare the numerically computed eigenenergies with

the reference values.

5.1.3 Remarks and Conclusions on the Numerical Results

for the Radial Schrödinger Equation

The achieved numerical results lead us to the following conclusions:

1. Method QT10 is more efficient than Method MCR4 and Method QT8.

2. Method QT10 is more efficient than Method MCR6 for large CPU time and

less efficient than Method MCR6 for small CPU time.

3. Method QT12 is more efficient than Method QT10

4. Method NMPF1 is more efficient than Method RA and Method NMPF2
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5. Method NMC2 is more efficient than Method RA, Method NMPF2 and

Method NMPF1

6. Method NMC1, is more efficient than all the other methods mentioned above.

7. Method NM2SH2DV, is more efficient than all the other methods mentioned

above.

8. Method NM4SH2DV, is more efficient than all the other methods mentioned

above.

9. Method NM4SH3DV, is the most efficient one.

5.2. Error Estimation

For the numerical solution of the couple differential equations of the Schrödinger type

variable–step methods will be applied. We call a method variable–step when during the

integration procedure changes the stepsize of integration using a local truncation error

estimation (LTEE) technique. Much research has been done the last decades on the

development of numerical methods with constant or variable stepsize for the numerical

solution of coupled differential equations arising from the Schrödinger equation and related

problems (see for example [10]– [71]).

For our numerical experiments we will use an embedded pair and an error estima-

tion procedure. Our methodology is based on the fact that for problems which have

solutions with oscillatory and/or periodical behavior, the approximation is better using

numerical methods with maximal algebraic order and/or with eliminated phase–lag and

its derivatives of the highest possible order.

The local truncation error in yLn+1 is estimated by

LTE =| zHn+1 − zLn+1 | (37)

where zLn+1 and zHn+1 are determined with two methodologies

1. Methodology based on algebraic order of the numerical methods. In this

methodology zLn+1 defines the lower algebraic order solution and is achieved using

the tenth algebraic order method developed in [2] and zHn+1 defines the higher or-

der solution which is achieved using the four–stages symmetric two–step method

of twelfth algebraic order with vanished phase-lag and its first, second and third

derivatives developed in Section 3.
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2. Methodology based on the higher order of the eliminated derivative of

the phase–lag. In this methodology zLn+1 defines the solution which is achieved

using the four–stages symmetric two–step method of twelfth algebraic order with

eliminated phase-lag and its first and second derivatives developed in [4] and zHn+1

defines the solution which is achieved using the four–stages symmetric two–step

method of twelfth algebraic order with vanished phase-lag and its first, second and

third derivatives developed in Section 3.

In our numerical experiments we reduce the changes of the step sizes on duplication

of step sizes. We use the following procedure:

• if LTE < acc then the step size is duplicated, i.e. hn+1 = 2hn.

• if acc ≤ LTE ≤ 100 acc then the step size remains stable , i.e. hn+1 = hn.

• if 100 acc < LTE then the step size is halved and the step is repeated , i.e. hn+1 =

1
2
hn.

where hn is the step length used for the nth step of the integration and acc is the requested

accuracy of the local truncation error LTE.

Remark 10. In our numerical test we use also the well known technique of the local

extrapolation. Based on this technique we accept at each point of integration the higher

order solution zHn+1 while for the error estimation less than acc the lower order solution

zLn+1 is used.

6.3. Coupled Differential Equations

Problems which are expressed via coupled differential equations arising from the

Schrödinger equation can be observed in many areas of sciences like: quantum chemistry,

material science, theoretical physics, quantum physics atomic physics, physical chemistry

and chemical physics, quantum chemistry, etc.

The mathematical model of the close-coupling differential equations of the Schrödinger

is given by: [
d2

dx2
+ k2

i −
li(li + 1)

x2
− Vii

]
zij =

N∑
m=1

Vim zmj

for 1 ≤ i ≤ N and m 6= i.
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The following boundary conditions are hold, since we study the case in which all

channels are open (see for details [25]):

zij = 0 at x = 0

zij ∼ ki xjli (kix)δij +

(
ki
kj

)1/2

Kij ki xnli (kix) (38)

where jl(x) and nl(x) are the spherical Bessel and Neumann functions, respectively.

Remark 11. In the case of close channels the proposed method can be applied also effi-

ciently.

Based on the detailed analysis presented in [25] and defining a matrix K ′ and diagonal

matrices M , N by:

K ′
ij =

(
ki
kj

)1/2

Kij

Mij = kixjli(kix)δij

Nij = kixnli(kix)δij

we achieve that the asymptotic condition (38) is given now by:

z ∼ M+NK′.

The rotational excitation of a diatomic molecule by neutral particle impact is a real

problem which can be found in several scientific areas like quantum chemistry, theoretical

chemistry, theoretical physics, quantum physics, material science, atomic physics, molecu-

lar physics etc. The model of this problem can be expressed via close–coupling differential

equations of the Schrödinger type. In this model we have the following notations:

• the quantum numbers (j, l) present the entrance channel (see for details in [25]),

• the quantum numbers (j′, l′) present the exit channels and

• J = j + l = j′ + l′ presents the total angular momentum.

The above lead to[
d2

dx2
+ k2

j′j −
l′(l′ + 1)

x2

]
zJjlj′l′ (x) =

2µ

~2
∑
j′′

∑
l′′

< j′l′; J | V | j′′l′′; J > zJjlj′′l′′(x)

where

kj′j =
2µ

~2

[
E +

~2

2I
{j(j + 1)− j′(j′ + 1)}

]
.
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E denotes the kinetic energy of the incident particle in the center-of-mass system, I

denotes the moment of inertia of the rotator, and µ denotes the reduced mass of the

system.

The potential V is given by (see for details [25]):

V (x, k̂j′jk̂jj) = V0(x)P0(k̂j′jk̂jj) + V2(x)P2(k̂j′jk̂jj)

and consequently , the element of the coupling matrix can be written as

< j′l′; J | V | j′′l′′; J >= δj′j′′δl′l′′V0(x) + f2(j
′l′, j′′l′′; J)V2(x)

where the f2 coefficients are determined from formulas given by Bernstein et al. [26]

and k̂j′j is a unit vector parallel to the wave vector kj′j and Pi, i = 0, 2 are Legendre

polynomials (see for details [27]). The boundary conditions can be written as:

zJjlj′l′ (x) = 0 at x = 0 (39)

zJjlj′l′ (x) ∼ δjj′δll′ exp[−i(kjjx− 1/2lπ)]−
(
ki
kj

)1/2

SJ(jl; j′l′) exp[i(kj′jx− 1/2l′π)]

where S matrix and K matrix of (38) satisfy the relation:

S = (I+ iK)(I− iK)−1.

For the numerical solution of the above mentioned problem and the computation of

the cross sections for rotational excitation of molecular hydrogen by impact of various

heavy particles, an algorithm is used. This algorithm contains a numerical method for

the step-by-step integration from the initial value to matching points. For our numerical

experiments an analogous algorithm with the algorithm developed for the numerical tests

of [25] is used.

For our numerical tests we choose the S matrix with the following parameters

2µ

~2
= 1000.0 ;

µ

I
= 2.351 ; E = 1.1

V0(x) =
1

x12
− 2

1

x6
; V2(x) = 0.2283V0(x).

Based on the description given in full details in [25], we take the value J = 6 and

we consider excitation of the rotator from the j = 0 state to levels up to j′ = 2, 4 and 6

which has as result sets of four, nine and sixteen coupled differential equations,

respectively. Based on the methodology given by Bernstein [27] and Allison [25], we

consider the potential infinite for values of x less than some x0. Consequently, the wave
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functions tends to zero in this region and the boundary condition (39) effectively are given

by as

zJjlj′l′ (x0) = 0.

For the approximate solution of the above presented problem we have used the follow-

ing methods:

• the Iterative Numerov method of Allison [25] which is indicated as Method I3,

• the variable–step method of Raptis and Cash [28] which is indicated as Method

II,

• the embedded Runge–Kutta Dormand and Prince method 5(4) [19] which is indi-

cated as Method III,

• the embedded Runge–Kutta method ERK4(2) developed in Simos [29] which is

indicated as Method IV,

• the embedded two–step method developed in [1] which is indicated as Method V,

• the embedded two–step method developed in [2] which is indicated as Method VI.

• the embedded two–step method developed in [3] which is indicated asMethod VII.

• the new developed embedded two–step method developed in [4] which is indicated

as Method VIII.

• the new developed embedded two–step method with error control based on the order

of the eliminated derivative of the phase-lag of the method developed in this paper

which is indicated as Method IX.

• the new developed embedded two–step method with error control based on the

algebraic order of the method developed in this paper which is indicated asMethod

X.

In Table 2 we present the real time of computation requested by the numerical methods

I-X mentioned above in order to calculate the square of the modulus of the S matrix for

the sets of 4, 9 and 16 coupled differential equations respectively. In the same table we

also present the maximum error in the calculation of the square of the modulus of the S

matrix.

3We note here that Iterative Numerov method developed by Allison [25] is one of the most well-known
methods for the numerical solution of the coupled differential equations arising from the Schrödinger
equation
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Table 2. Coupled Differential Equations. Real time of computation (in sec-
onds) (RTC) and maximum absolute error (MErr) to calculate |S|2 for
the variable–step methods Method I - Method VII. acc=10−6. Note that
hmax is the maximum stepsize.N indicates the number of equations of
the set of coupled differential equations

Method N hmax RTC MErr

Method I 4 0.014 3.25 1.2× 10−3

9 0.014 23.51 5.7× 10−2

16 0.014 99.15 6.8× 10−1

Method II 4 0.056 1.55 8.9× 10−4

9 0.056 8.43 7.4× 10−3

16 0.056 43.32 8.6× 10−2

Method III 4 0.007 45.15 9.0× 100

9
16

Method IV 4 0.112 0.39 1.1× 10−5

9 0.112 3.48 2.8× 10−4

16 0.112 19.31 1.3× 10−3

Method V 4 0.448 0.20 1.1× 10−6

9 0.448 2.07 5.7× 10−6

16 0.448 11.18 8.7× 10−6

Method VI 4 0.448 0.15 3.2× 10−7

9 0.448 1.40 4.3× 10−7

16 0.448 10.13 5.6× 10−7

Method VII 4 0.448 0.10 2.5× 10−7

9 0.448 1.10 3.9× 10−7

16 0.448 9.43 4.2× 10−7

Method VIII 4 0.448 0.08 6.4× 10−8

9 0.448 1.04 7.6× 10−8

16 0.448 9.12 8.5× 10−8

Method IX 4 0.896 0.05 4.2× 10−8

9 0.896 1.00 6.3× 10−8

16 0.896 8.57 7.2× 10−8

Method X 4 0.896 0.04 4.0× 10−8

9 0.896 0.58 5.9× 10−8

16 0.896 8.55 7.0× 10−8

-553-



6. CONCLUSIONS

In this paper we develope, for the first time in the literature, a four–stages twelfth al-

gebraic order symmetric two–step methods with eliminated phase–lag and its first, second

and third derivatives. For this new proposed method we investigated:

• the development of the method ,

• the computation of the local truncation error and the comparison of the asymptotic

form of the local truncation error (based on the radial Schrödinger equation) with

the asymptotic forms of the local truncation error of similar methods,

• the stability and the interval of periodicity analysis and

• the computational effectiveness of the new proposed method. This analysis was

based on the numerical experiments produced by the application of the new method,

well known methods of the literature and recently obtained methods on the radial

Schrödinger equation and on the coupled differential equations arising from the

Schrödinger equation (which are of high importance for chemistry).

The theoretical developments and the numerical achievements obtained above, lead

us to the conclusion that the new proposed method is much more efficient than the other

methods of the literature for the numerical solution of the radial Schrödinger equation

and of the coupled differential equations arising from the Schrödinger equation.

All computations were carried out on a IBM PC-AT compatible 80486 using double

precision arithmetic with 16 significant digits accuracy (IEEE standard).

Acknowledgments : The authors wish to thank the anonymous reviewers for their fruitful

comments and suggestions.

Appendix A: Formulae for the Ti, i = 0(1)3 and Tdenom

T0 =
(
27 v8a3b0 + 1600 v6a3b0 + 55440 v4a3b0 + 55440 v2b1

+ 55440
)
cos (v)− 327 v8a3b0 − 1600 v6a3b0

− 55440 v4a3b0 + 27720 v2b0 + 27720 a4

T1 = −729
(
v8a3b0 +

1600 v6a3b0
27

+
6160 v4a3b0

3
+

6160 v2b1
3
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+
6160

3

)2
sin (v)− 960000

(
v12a3

2b0
2 +

693 v10a3
2b0

2

10

+
18711 v8a3b0

4000

(
b0 +

218 b1
9

)
+

924 v6a3b0
5

(
b0 +

27 a4
800

+ 2 b1 +
327

400

)
+

160083 v4a3b0
50

(
b0 +

20 a4
231

+ 2 b1 +
40

231

)
+

160083 b0a3 (a4 + 2) v2

25
+

160083 a4b1
50

− 160083 b0
50

)
v

T2 = −19683
(
v8a3b0 +

1600 v6a3b0
27

+
6160 v4a3b0

3
+

6160 v2b1
3

+
6160

3

)3
cos (v) + 77760000 v20a3

3b0
3

+ 7445280000 v18a3
3b0

3 − 159667200000 b0
2a3

2
((

a3 −
1701

320000

)
b0

− 20601 b1
160000

)
v16 − 11064936960000 b0

2a3
2
((

a3 −
9

1540

)
b0 −

81 a4
616000

− 9 b1
770

− 981

308000

)
v14 + 2083160217600 b0

2
(
b0 +

7155 a4
117422

− 766153 b1
58711

+
17655

58711

)
a3

2v12 + 44259747840000 b0a3

(
b0

2a3

+

((
5873 a4
47520

+ 2 b1 −
11947

23760

)
a3 −

9 b1
320

)
b0

− 109 b1
2

160

)
v10 + 511200087552000

(
b0

2a3 +
((20 a4

77
+ 2 b1 +

40

77

)
a3

− 40 b1
693

− 3

440

)
b0 +

3 b1
6160

(
a4 −

6400 b1
27

− 2834

9

))
b0a3v

8

+ 1704000291840000 b0a3

((
(a4 + 2) a3 − 1/10 b1 −

50

693

)
b0 −

1

5
b1

2

+

(
16 a4
693

− 68

693

)
b1 −

3 a4
2200

− 109

3300

)
v6

− 2044800350208000 b0a3

(
b0 + (−3/4 a4 + 1/2) b1 +

25 a4
693

+
50

693

)
v4

+
((

(−1022400175104000 a4 − 2044800350208000) a3

− 511200087552000 b1

)
b0 + 511200087552000 a4b1

2
)
v2

− 170400029184000 a4b1 + 170400029184000 b0

T3 = 531441
(
v8a3b0 +

1600 v6a3b0
27

+
6160 v4a3b0

3
+

6160 v2b1
3

+
6160

3

)4
sin (v)− 8398080000 v

(
v26a3

4b0
4 +

12311 v24a3
4b0

4

108

− 24640 b0
3a3

3v22

3

((
a3 −

1701

640000

)
b0 −

20601 b1
320000

)
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− 711480
((

a3 −
13

3850

)
b0 −

81 a4
1232000

− 13 b1
1925

− 981

616000

)
b0

3a3
3v20 − 37945600 v18a3

3b0
3

9

((
a3

− 626711

24640000

)
b0 −

351 a4
246400

+
54777001 b1
110880000

− 1191

123200

)
+ 146090560 b0

2a3
2
((

a3
2 +

34711 a3
1440747

)
b0

2 +
(( 724873 a4

284592000

− 180058 b1
1440747

− 6144947

548856000

)
a3 −

27 b1
35200

)
b0 −

327 b1
2

17600

)
v16

+
4218981536 b0

2a3
2v14

45

(
b0

2a3 +
((1068440 a4

6604389
+

183074 b1
22237

− 239120

6604389

)
a3 −

1620 b1
22237

− 5103

1778960

)
b0 −

243 b1
355792

(
a4

+
211840 b1

243
+

5668

45

))
+

4674897920 v12a3
2b0

2

3

(
b0

2a3

+
((60311 a4

221760
+ 2 b1 +

101891

110880

)
a3 −

58711 b1
554400

− 39

3080

)
b0 +

48607 b1
2

138600
+

(
− 9 a4
6160

− 387

3080

)
b1

− 243 a4
1408000

− 2943

704000

)
+ 13498767744 b0a3

(
b0

3a3
2 +

380 b0
2a3

693

((
a4

+
693 b1
190

+ 2
)
a3 −

6 b1
19

− 136133

1504800

)
+
((

−80 b1
2

231

+

(
72133 a4
19209960

+
79351

4802490

)
b1 −

53 a4
35574

− 2227

160083

)
a3 +

3 b1
2

1232

)
b0 +

109 b1
3

1848

)
v10

+ 67493838720 b0a3

(
a3

(
(a4 + 2) a3 − 1/5 b1 −

136

693

)
b0

2 +
((

−2/5 b1
2

+

(
40 a4
693

− 64

231

)
b1 −

839 a4
78408

− 5279

274428

)
a3 +

4 b1
2

693

+
3 b1
2200

)
b0 +

3 b1
2

6160

(
a4 +

640 b1
27

+
4142

45

))
v8

− 134987677440
(
b0

2a3 +
(
− 9

6160
+
((

−3

5
a4

+
4

5

)
b1 +

8 a4
77

+
16

77

)
a3

)
b0

− 8 b1
693

(
(a4 + 2) b1 −

27 a4
1600

+
4251

1600

))
b0a3v

6

− 134987677440 b0a3

((
(a4 + 2) a3 +

2

5
b1

− 4

99

)
b0 − 2/5 a4b1

2 +
(16 a4
693

− 8

231

)
b1 −

3 a4
4400

− 109

6600

)
v4 +

(
67493838720 b0

2a3
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+
((

(−80992606464 a4 − 26997535488) b1

+
11687244800

3
+

5843622400 a4
3

)
a3

− 13498767744 b1
2
)
b0 + 13498767744 a4b1

3
)
v2

+
(
(13498767744 a4 + 26997535488) a3

+ 13498767744 b1

)
b0 − 13498767744 a4b1

2
)

Tdenom = 27 v8a3b0 + 1600 v6a3b0 + 55440 v4a3b0 + 55440 v2b1 + 55440.

Appendix B: Formulae for the Tj, j = 4(1)7,

Tdenom1, Tdenom2 and Tdenom3

T4 =
(
−1296 v5 + 38400 v3 + 1330560 v

)(
cos (v)

)3
+

((
1296 v6 + 57840 v4 + 789120 v2 + 1330560

)
sin (v)

− 1962 v7 + 144674 v5 + 177120 v3

+ 2328480 v
)(

cos (v)
)2

+
((

31392 v6 − 158640 v4

+ 541440 v2 − 1330560
)
sin (v)

+ 2592 v5 − 76800 v3 − 2661120 v
)
cos (v)

+
(
−7776 v6 − 230400 v4 − 2661120 v2

)
sin (v)

− 3924 v7 − 179570 v5 − 471360 v3 − 997920 v

Tdenom1 =
(
81 v7 − 3037 v5 − 88560 v3 − 1164240 v

)(
cos (v)

)2
+

((
1296 v6 + 28680 v4

+ 270720 v2 − 665280
)
sin (v) + 7848 v5

− 19200 v3 − 665280 v
)
cos (v)

+
(
7848 v6 + 136920 v4 + 394560 v2 + 665280

)
sin (v)

+ 162 v7 + 11989 v5 + 274080 v3 + 1829520 v

T5 =
(
cos (v)

)2
v2 + 3

(
cos (v)

)2
+ 2 v2 − 3

Tdenom2 = v
(
27720 v + 109

(
cos (v)

)2
v7 − 1889

(
cos (v)

)2
v5

− 756 cos (v) v5 + 7240
(
cos (v)

)2
v3

+ 378
(
cos (v)

)3
v5 + 324 v6 sin (v) + 9600 v4 sin (v)
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− 16000 cos (v) v3 + 110880 v2 sin (v)

+ 8000
(
cos (v)

)3
v3 + 55440

(
cos (v)

)3
v

+ 55440
(
cos (v)

)2
sin (v)

+ 27720
(
cos (v)

)2
v − 55440 cos (v) sin (v)

− 110880 cos (v) v + 7667 v5 + 28480 v3

+ 218 v7 − 10480
(
cos (v)

)2
sin (v) v2

− 1222
(
cos (v)

)2
sin (v) v4

− 1308 cos (v) sin (v) v6 − 7778 cos (v) sin (v) v4

− 44960 cos (v) sin (v) v2 − 54
(
cos (v)

)2
sin (v) v6

)
T6 =

(
9072 v5 + 192000 v3 + 1330560 v

)(
cos (v)

)3
+

((
−1296 v6 − 29328 v4 − 251520 v2

+ 1330560
)
sin (v) + 2616 v7 − 45336 v5

+ 173760 v3 + 665280 v
)(

cos (v)
)2

+
((

−31392 v6 − 186672 v4 − 1079040 v2 − 1330560
)
sin (v)

− 18144 v5 − 384000 v3 − 2661120 v
)
cos (v)

+
(
7776 v6 + 230400 v4 + 2661120 v2

)
sin (v)

+ 5232 v7 + 184008 v5 + 683520 v3 + 665280 v

T7 =
(
−108 v7 − 2532 v5 − 86880 v3 − 332640 v

)(
cos (v)

)2
+

((
−1296 v6 − 42936 v4 − 539520 v2 − 665280

)
sin (v)

− 54936 v5 − 96000 v3 − 665280 v
)
cos (v)

+
(
−7848 v6 + 35736 v4 − 125760 v2 + 665280

)
sin (v)

− 216 v7 − 7332 v5 − 149760 v3 + 997920 v

Tdenom3 = v2
((

v7 − 3037 v5

81
− 3280 v3

3
− 43120 v

3

)(
cos (v)

)2
+

((
16 v6 +

9560 v4

27
+

30080 v2

9
− 24640

3

)
sin (v) +

872 v5

9

− 6400 v3

27
− 24640 v

3

)
cos (v) +

(872 v6
9

+
45640 v4

27
+

43840 v2

9

+
24640

3

)
sin (v) + 2 v7 +

11989 v5

81
+

91360 v3

27
+

67760 v

3

)
.
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Appendix C: Taylor Series Expansion Formulae for the coefficients of the

new obtained method given by (16)

a4 = −2− 307 v14

9340531200
− 41 v16

53801459712
− 1552351 v18

39614687304192000
+ · · ·

a3 =
1

200
− 307 v8

4447872000
+

237023 v10

35026992000000

− 7007173 v12

33012239420160000
− 1640860541 v14

1580626023437260800000

+
1200862451441 v16

1593271031624758886400000

− 400971849577846457 v18

2063355691561696341089280000000
+ · · ·

b0 =
5

6
− 307 v10

1111968000
+

739 v12

7472424960
+

4424473 v14

1320489576806400

+
16015614353 v16

101160065499984691200
+

175037669363 v18

19915887895309486080000
+ · · ·

b1 =
1

12
+

307 v10

2223936000
+

67 v12

8302694400
+

460087 v14

1320489576806400

+
691168273 v16

59505920882343936000
− 33090811609 v18

19915887895309486080000
+ · · ·

Appendix D: Expressions for the Derivatives of zn

Expressions of the derivatives which are presented in the formulae of the Local Trun-

cation Errors:

z(2) = (V (x)− Vc +G) z(x)

z(3) =

(
d

dx
g (x)

)
z (x) + (g (x) +G)

d

dx
z (x)

z(4) =

(
d2

dx2
g (x)

)
z (x) + 2

(
d

dx
g (x)

)
d

dx
z (x) + (g (x) +G)2 z (x)

z(5) =

(
d3

dx3
g (x)

)
z (x) + 3

(
d2

dx2
g (x)

)
d

dx
z (x)

+ 4 (g (x) +G) z (x)
d

dx
g (x) + (g (x) +G)2

d

dx
z (x)
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z(6) =

(
d4

dx4
g (x)

)
z (x) + 4

(
d3

dx3
g (x)

)
d

dx
z (x)

+ 7 (g (x) +G) z (x)
d2

dx2
g (x) + 4

(
d

dx
g (x)

)2

z (x)

+ 6 (g (x) +G)

(
d

dx
z (x)

)
d

dx
g (x) + (g (x) +G)3 z (x)

z(7) =

(
d5

dx5
g (x)

)
z (x) + 5

(
d4

dx4
g (x)

)
d

dx
z (x)

+ 11 (g (x) +G) z (x)
d3

dx3
g (x) + 15

(
d

dx
g (x)

)
z (x)

+
d2

dx2
g (x) + 13 (g (x) +G)

(
d

dx
z (x)

)
d2

dx2
g (x)

+ 10

(
d

dx
g (x)

)2
d

dx
z (x) + 9 (g (x) +G)2 z (x)

+
d

dx
g (x) + (g (x) +G)3

d

dx
z (x)

z(8) =

(
d6

dx6
g (x)

)
z (x) + 6

(
d5

dx5
g (x)

)
d

dx
z (x)

+ 16 (g (x) +G) z (x)
d4

dx4
g (x) + 26

(
d

dx
g (x)

)
z (x)

+
d3

dx3
g (x) + 24 (g (x) +G)

(
d

dx
z (x)

)
d3

dx3
g (x)

+ 15

(
d2

dx2
g (x)

)2

z (x) + 48

(
d

dx
g (x)

)

+

(
d

dx
z (x)

)
d2

dx2
g (x) + 22 (g (x) +G)2 z (x)

+
d2

dx2
g (x) + 28 (g (x) +G) z (x)

(
d

dx
g (x)

)2

+ 12 (g (x) +G)2
(

d

dx
z (x)

)
d

dx
g (x) + (g (x) +G)4 z (x)
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· · ·

We compute the j-th derivative of the function z at the point xn, i.e. z
(j)
n , substituting in

the above formulae x with xn.

Appendix E: Formula for the quantity B0

B0 =
107143 (g (x))2

(
d
dx
y (x)

) (
d
dx
g (x)

)
d4

dx4 g (x)

6671808000

+
307 g (x) y (x)

(
d
dx
g (x)

)2 d4

dx4 g (x)

7983360

+
2149 (g (x))2

(
d
dx
y (x)

) (
d2

dx2 g (x)
)

d3

dx3 g (x)

83397600

+
221347 g (x)

(
d
dx
y (x)

) (
d
dx
g (x)

) (
d2

dx2 g (x)
)2

4447872000

+
9517 g (x)

(
d
dx
y (x)

) (
d
dx
g (x)

)2 d3

dx3 g (x)

247104000

+
34691 (g (x))4 y (x) d4

dx4 g (x)

26687232000

+
7061 (g (x))2

(
d
dx
y (x)

)
d7

dx7 g (x)

4670265600

+
166087 (g (x))2 y (x) d8

dx8 g (x)

186810624000

+
1068667 g (x) y (x)

(
d5

dx5 g (x)
)

d3

dx3 g (x)

46702656000

+
883853 g (x) y (x)

(
d6

dx6 g (x)
)

d2

dx2 g (x)

62270208000

+
574397 g (x) y (x)

(
d7

dx7 g (x)
)

d
dx
g (x)

93405312000

+
112669 g (x)

(
d
dx
y (x)

) (
d5

dx5 g (x)
)

d2

dx2 g (x)

4447872000

+
24253 g (x)

(
d
dx
y (x)

) (
d4

dx4 g (x)
)

d3

dx3 g (x)

667180800

+
156263 g (x)

(
d
dx
y (x)

) (
d6

dx6 g (x)
)

d
dx
g (x)

13343616000

+
263099 (g (x))2 y (x)

(
d2

dx2 g (x)
)

d4

dx4 g (x)

8491392000
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+
782543 (g (x))2 y (x)

(
d
dx
g (x)

)
d5

dx5 g (x)

46702656000

+
7061 g (x)

(
d
dx
y (x)

)
d9

dx9 g (x)

18681062400

+
3626591 g (x) y (x)

(
d
dx
g (x)

) (
d2

dx2 g (x)
)

d3

dx3 g (x)

31135104000

+
1494169 g (x) y (x)

(
d2

dx2 g (x)
)3

62270208000

+
5219

(
d3

dx3 g (x)
) (

d
dx
y (x)

)
d6

dx6 g (x)

606528000

+
18727

(
d
dx
g (x)

) (
d
dx
y (x)

)
d8

dx8 g (x)

10378368000

+
598957

(
d
dx
g (x)

)2
y (x)

(
d2

dx2 g (x)
)2

15567552000

+
2149

(
d2

dx2 g (x)
)2 (

d
dx
y (x)

)
d3

dx3 g (x)

40435200

+
129247

(
d2

dx2 g (x)
)2

y (x) d4

dx4 g (x)

5660928000

+
307

(
d
dx
g (x)

)3
y (x) d3

dx3 g (x)

14370048

+
5219

(
d2

dx2 g (x)
)
y (x) d8

dx8 g (x)

5660928000

+
7061

(
d3

dx3 g (x)
)
y (x) d7

dx7 g (x)

4245696000

+
307 (g (x))3

(
d
dx
y (x)

) (
d
dx
g (x)

)
d2

dx2 g (x)

55598400

+
152579 (g (x))3 y (x)

(
d
dx
g (x)

)
d3

dx3 g (x)

13343616000

+
193103 (g (x))2 y (x)

(
d
dx
g (x)

)2 d2

dx2 g (x)

6671808000

+
2149

(
d
dx
g (x)

) (
d
dx
y (x)

) (
d4

dx4 g (x)
)

d2

dx2 g (x)

30888000

+
14429

(
d
dx
g (x)

)
y (x)

(
d5

dx5 g (x)
)

d2

dx2 g (x)

486486000

+
252047

(
d
dx
g (x)

)
y (x)

(
d4

dx4 g (x)
)

d3

dx3 g (x)

6227020800

+
307

(
d11

dx11 g (x)
)

d
dx
y (x)

15567552000
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+
307

(
d5

dx5 g (x)
)2

y (x)

235872000
+

307
(

d12

dx12 g (x)
)
y (x)

186810624000

+
3377

(
d2

dx2 g (x)
) (

d
dx
y (x)

)
d7

dx7 g (x)

707616000

+
307

(
d
dx
g (x)

)3 ( d
dx
y (x)

)
d2

dx2 g (x)

12636000

+
8903

(
d
dx
g (x)

)
y (x) d9

dx9 g (x)

23351328000

+
140299

(
d
dx
g (x)

) (
d
dx
y (x)

) (
d3

dx3 g (x)
)2

3335904000

+
307

(
d4

dx4 g (x)
) (

d
dx
y (x)

)
d5

dx5 g (x)

26956800

+
20569 g (x) y (x) d10

dx10 g (x)

186810624000

+
307 (g (x))4

(
d
dx
y (x)

)
d3

dx3 g (x)

444787200

+
123107

(
d
dx
g (x)

)2
y (x) d6

dx6 g (x)

15567552000

+
307

(
d2

dx2 g (x)
)
y (x)

(
d3

dx3 g (x)
)2

11664000

+
7061

(
d
dx
g (x)

)2 ( d
dx
y (x)

)
d5

dx5 g (x)

370656000

+
13201

(
d4

dx4 g (x)
)
y (x) d6

dx6 g (x)

5660928000

+
7061 (g (x))5 y (x) d2

dx2 g (x)

26687232000

+
357041 (g (x))3 y (x) d6

dx6 g (x)

186810624000

+
147053 (g (x))2 y (x)

(
d3

dx3 g (x)
)2

7783776000

+
83197 g (x) y (x)

(
d4

dx4 g (x)
)2

6227020800
+

197401 (g (x))3 y (x)
(

d2

dx2 g (x)
)2

26687232000

+
307 (g (x))5

(
d
dx
y (x)

)
d
dx
g (x)

4447872000
+

24253 (g (x))3
(

d
dx
y (x)

)
d5

dx5 g (x)

13343616000

+
307 (g (x))7 y (x)

186810624000
+

307 (g (x))4 y (x)
(

d
dx
g (x)

)2
333590400

+
307 g (x) y (x)

(
d
dx
g (x)

)4
51321600

+
307 (g (x))2

(
d
dx
y (x)

) (
d
dx
g (x)

)3
74131200

at every point x = xn.
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