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Abstract

Occupation of an interval by self-replicating initial pulses is studied numerically.
Two different approximates in different categories are proposed for the numerical
solutions of some initial-boundary value problems. The sinc differential quadrature
combined with third-fourth order implicit Rosenbrock and exponential B-spline col-
location methods are setup to obtain the numerical solutions of the mentioned
problems. The numerical simulations containing occupation of single initial pulse,
non or slow occupation model and covering the domain with two initial pulses are
demonstrated by using both proposed methods.

1 Introduction

Reaction, diffusion, and reaction-diffusion systems are used to model for many phenomena

occuring in physical chemistry and biology [1–5]. According to Nicolis and Prigogine [5],

there exist similarities on evolution of dilute intermediate substances in many cases in

both physical chemistry and biology. Some at least almost regular patterns frequently

form in the concentrations that are reacting chemically and diffusing [5, 6]. Gray-Scott
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system, which will be described below, is a model for self-replicating structures in two

space dimensions and self-replicating pulses in one space dimension [7–10]. Moreover, the

interaction between the activator and the inhibitor causes some self-replicating patterns

covering traveling waves, stripes, spots and similar structures [11]. Pearson also reported

that the spot structures formed by some reaction-diffusion systems clone themselves until

the whole domain is covered [6]. Gray & Scott showed that the system can also repre-

sent a non-diffusive isotermal formulation [12]. Some experiments demonstrating various

phenomena on patterns were performed in the study [13].

Consider two irreversible coupled chemical reactions in a gel reactor with inert product

P and a non-equilibrium constraint represented a feed term for U :

U + 2V
k1−→ 3V

V
k2−→ P

having cubic rate k1uv
2 and linear rate k2v respectively, and in which both U and V

are demolished during the feed process [12, 14, 15]. Here, the chemical U reacts with the

catalyst V at the rate k1, and the catalyst V decays at a rate k2 [14]. The related gel re-

actor is coupled to a reservoir having the chemicals U and V with constant concentrations

inside. Both chemicals are removed from the reactor dependently on the concentrations.

The diffusivity coefficients of both reactions are chemically relevant positive numbers [15].

This chemical reaction and diffusion of the self-replicating pattern in one space dimension

leads to a coupled nonlinear reaction-diffusion system:

∂u

∂t
= ε1

∂2u

∂x2
− uv2 + f − fu

∂v

∂t
= ε2

∂2v

∂x2
+ uv2 − (f + k)v

(1)

containing dimensionless equations with two chemicals u(x, t) and v(x, t) [6, 10, 16]. In

the system, f denotes the feed rate of U from the reservoir into the reactor, k is the

dimensionless rate constant of the second reaction, and ε1 and ε2 are diffusion constants.

The concentration of V in the reservoir is assumed to be zero [15]. This system is similar to

autocatalytic Sel’Kov glycolysis model [17] and Gray-Scott model mentioned in [18]. Some

exact homoclinic and heteroclinic solutions for cubic Gray-Scott autocatalysis system with

stability analysis were proposed in [14]. The linear stability of singular homoclinic and

spatially periodic stationary solutions for one dimensional model are analyzed by Doelman

et al [15].
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Consider a pair of pulses represented by u(x, t) and v(x, t) with the assumption u(x, t) → 1

and v(x, t) → 0 as x → ±∞ initially. A pulse enlarges when the flux of U into it is high

enough to maintain the first reaction and supports the amount of the material V while

it is leaving the pulse due to the effect of the diffusion. At the same time, while a pulse

widens, the middle collapses owing to the insufficient U to support high V . This causes a

division of the pulse into two pulses moving away from each other consuming the U from

close parts of the intervals. The split of pulses keeps dependent on the existence of the

sufficient U behind moving pulses [15].

In the study, we focus, for convenience, on the solution of initial-boundary value problem

in a finite problem interval [a, b] constructed by combining the system (1) with boundary

conditions
u(a, t) = 1, u(b, t) = 1, t ≥ 0

v(a, t) = 0, v(b, t) = 0, t ≥ 0
(2)

and the initial conditions for both functions given as

u(x, 0) = g1(x), v(x, 0) = g2(x) (3)

So far, many types of analytical and numerical solutions have been proposed for many

problems arising in the fields covering chemistry, biology, physics and branches of all

engineering fields [19–32]. In many of those methods particularly numerical methods,

various techniques were setup by using various basis functions like B-spline functions of

different degrees. The structure of those piecewise functions provides easy programmable

algorithms, low algebraic calculation costs and reduced complexity. Recently, different

from the classical polynomial B-splines, new types of B-spline functions such as extended

B-splines have been appeared in some numerical studies [33].

A particular class of B-spline functions are bell-shaped twicely differentiable exponential

cubic B-spline functions and form a basis for the functions defined in the same space [34].

There exist few studies for numerical solutions of linear or nonlinear partial differential

equations or systems in the related literature. The collocation method based on expo-

nential B-spline functions was used to solve singular perturbation problem by Sakai and

Usmani [35]. Radunuvic [36] developed the collocation method based on cardinal ex-

ponential B-splines and solved a singularly perturbed boundary value problem by using

the exponential nature and the multiresolution properties of those functions. Another

study in the related literature deals with numerical solution of a self-adjoint singularly
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perturbed Dirichlet boundary value problem by using exponential B-spline functions [37].

Besides problems for ordinary differential equations, some initial-boundary value problems

for linear or nonlinear partial differential equations have also been solved numerically by

using combination of exponential B-spline functions and various time integration meth-

ods [38–40].

Different from piecewise B-spline functions, sine cardinal functions have also great im-

portance for many numerical methods used for solutions of differential equations. Even

though those functions have been implemented as basis functions for the solutions of many

initial value problems, only one study appears in the related literature which uses them

in the differential quadrature method [41].

In the present study, we setup an exponential cubic B-spline collocation and sine cardinal

functions based differential quadrature methods for solutions of Gray-Scott system. The

rest of the paper is organized as follows. Section 2 gives brief descriptions of both sine

cardinal functions with their properties and exponential cubic B-spline functions. Then,

the design of the proposed methods, discretization of the Gray-Scott system. In Section

3, application of the proposed methods for solutions of initial-boundary value problems

for the Gray-Scott system in one dimension. A conclusion is presented in the last section.

2 Numerical methods

2.1 Sinc differential quadrature method (SDQ)
and its application

The Sinc functions

Dm(x) =


sin

([
x−m∆x

∆x

]
π

)
[
x−m∆x

∆x

]
π

, x 6= m∆x

1 , x = m∆x

(4)

where ∆x = xm − xm−1 is the equal grid size constitute a basis for the functions defined

on the real line [43–46]. The functional values of sinc functions at grids are described

in [46] as:

Dm(xj) = δmj (5)

Let w be defined on (−∞,∞). Then, the infinite series

C(w)(x) =
∞∑

m=−∞

w(m∆x)Dm(x) (6)
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is named the cardinal of w if it converges [47]. First two principle derivatives of a Sinc

function Dm(x) are:

D′
m(x) =


π

∆x
(x−m∆x) cos

x−m∆x

∆x
π − sin

x−m∆x

∆x
π

π

∆x
(x−m∆x)2

, x 6= m∆x

0 , x = m∆x

(7)

D′′
m(x) =


− π

∆x
sin

x−m∆x

∆x
π

x−m∆x
−

2 cos
x−m∆x

∆x
π

(x−m∆x)2
+

2 sin
x−m∆x

∆x
π

π

∆x
(x−m∆x)3

, x 6= m∆x

− π2

3∆x2
, x = m∆x

(8)

Differential quadrature derivative approximation model is given as ”the derivative of order

p. of a function w(x) at xm is approximated by finite weighted sum of nodal function values,

i.e.,

∂w(q)(x)

∂x(q)

∣∣∣∣
x=xm

=
N∑
i=1

c
(q)
miw(xi), m = 1, 2, . . . , N, (9)

where the partition of the finite problem interval [a, b] is a = x1 < x2 < . . . < xN = b,

c
(q)
mi are the weighting coefficients of functional values for the q. th order derivative [48]”.

The weighting coefficients c
(q)
mi are determined using any basis function set spanning the

problem interval.

2.1.1 The first order derivative approximation weighting coefficients

Assume that q = 1 in the fundamental differential quadrature derivative equation9. The

Sinc functions set {Dm(x)}m=N
m=1 forms a basis for the functions defined on [x1 = a, b =

xN ]. Then, the weighting coefficients c
(1)
1i of belonging to the node x1 are determined by

substituting each Sinc basis functions Dm(x) into the fundamental differential quadrature

equation 9. Substitution of D1(x) and using (7) and (8) will lead the algebraic equation

D′
1(x1) =

N∑
i=1

c
(1)
1i D1(xi)

= c
(1)
11 D1(x1) + c

(1)
12 D1(x2) + . . .+ c

(1)
1ND1(xN)

= c
(1)
11 δ11 + c

(1)
12 δ12 + . . .+ c

(1)
1Nδ1N

0 = c
(1)
11

(10)

to give the weighting coefficient c
(1)
11 .
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The weighting coefficent c
(1)
12 is computed by substitution of D2(x) into Eq.(9) as

D′
2(x1) =

N∑
i=1

c
(1)
2i D2(xi)

= c
(1)
11 D2(x1) + c

(1)
12 D2(x2) + . . .+ c

(1)
1ND2(xN)

= c
(1)
11 δ21 + c

(1)
12 δ22 + . . .+ c

(1)
1Nδ2N

(−1)2+1

∆x(1− 2)
= c

(1)
12

(11)

It is easy to generalize that the weighting coefficients c
(1)
1i related to the first node x1 are

determined by putting each Sinc functions Dm(x),m = 1, 2, . . . , N into the differential

quadrature approximation equation (9) as

c
(1)
1i =

(−1)1−i

∆x(1− i)
, 1 6= i (12)

c
(1)
11 = 0 (13)

When the weighting coefficents c
(1)
mi belonging to the node xm is wanted to be determined,

a general explicit formulation is used [41,42]:

c
(1)
mi =

(−1)m−i

∆x(m− i)
,m 6= i (14)

c(1)mm = 0 (15)

2.1.2 Determination of the second order approximation weights

When q is assumed as 2 and m = 1 in the Eq.(9), following the same fashion in the

determination of the first order derivative approximation weighting coefficients, use of

D1(x) base will lead the equation

D′′
1(x1) =

N∑
i=1

c
(2)
1i D1(xi)

= c
(2)
11 D1(x1) + c

(2)
12 D1(x2) + . . .+ c

(2)
1ND1(xN)

= c
(2)
11 δ11 + c

(2)
12 δ12 + . . .+ c

(2)
1Nδ1N

−π2

3∆x2
= c

(2)
11

(16)
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to give c
(2)
11 . Substitution of D2(x) into (9) will give the equation

D′′
2(x1) =

N∑
i=1

c
(2)
1i D2(xi)

= c
(2)
11 D2(x1) + c

(2)
12 D2(x2) + . . .+ c

(2)
1ND2(xN)

= c
(2)
11 δ21 + c

(2)
12 δ22 + . . .+ c

(2)
1Nδ2N

2
(−1)(2+1+1)

(∆x)2(1− 2)2
= c

(2)
12

(17)

for the weighting coefficient c
(2)
12 . Any weighting coefficient c

(2)
mi focused on the node xm

can be determined by using an explicit formulation [41,42]:

c
(2)
mi =

2(−1)m−i+1

∆x2(m− i)2
,m 6= i (18)

c(2)mm = − π2

3∆x2
(19)

2.1.3 Discretization of the Gray–Scott system

Replacing the space derivative terms by their DQM approximations in Gray-Scott (1)

leads to an ordinary differential equation system of the form

∂u(x, t)

∂t

∣∣∣∣
x=xm

= ε1

N∑
i=1

c
(2)
miu(xi, t)− u(xm, t)v

2(xm, t) + f − fu(xm, t)

∂v(x, t)

∂t

∣∣∣∣
x=xm

= ε2

N∑
i=1

c
(2)
miv(xi, t) + u(xm, t)v

2(xm, t)− (f + k)v(xm, t)

(20)

where c
(2)
mi are the weighting coefficients of each u(xm, t) and v(xm, t) for the second order

derivative approximations at the grid xm. Before time integration of the system 20, the

implementation of the boundary conditions reduces it to

∂u(x, t)

∂t

∣∣∣∣
x=xm

= ε1

N−1∑
i=2

c
(2)
miu(xi, t)− u(xm, t)v

2(xm, t) + f − fu(xm, t) + c
(2)
m1 + c

(2)
mN

∂v(x, t)

∂t

∣∣∣∣
x=xm

= ε2

N−1∑
i=2

c
(2)
miv(xi, t) + u(xm, t)v

2(xm, t)− (f + k)v(xm, t)

(21)

The fully space discretized system (21) is integrated with respect to the time variable t

by using the third-fourth order Runge-Kutta Rosenbrock method.

2.2 Exponential cubic B-spline collocation method (ECC)

Let π be a uniform partition of the finite interval [a, b] defined as:

π : a = x0 < x1 < . . . < xN = b
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with equal mesh size h = xm+1 − xm ,m = 0, 1, . . . , N − 1. Then, the exponential cubic
B-spline functions are defined as;

Cm(x) =


b2

(
(xm−2 − x)− 1

λ sinh(λ(xm−2 − x))
)

, [xm−2, xm−1]
a1 + b1(xm − x) + c1 exp(λ(xm − x)) + d1 exp(−λ(xm − x)) , [xm−1, xm]
a1 + b1(x− xm) + c1 exp(λ(x− xm)) + d1 exp(−λ(x− xm)) , [xm, xm+1]
b2

(
(x− xm+2)− 1

λ sinh(λ(x− xm+2))
)

, [xm+1, xm+2]
0 , otherwise

(22)

where

a1 =
λh cosh(λh)

λh cosh(λh)− sinh(λh)
,

b1 =
λ

2

cosh(λh)(cosh(λh)− 1) + sinh2(λh)

(λh cosh(λh)− sinh(λh))(1− cosh(λh))
,

b2 =
λ

2(λh cosh(λh)− sinh(λh))
,

c1 =
1

4

exp(−λh)(1− cosh(λh)) + sinh(λh)(exp(−λh)− 1))

(λh cosh(λh)− sinh(λh))(1− cosh(λh))
,

d1 =
1

4

exp(λh)(cosh(λh)− 1) + sinh(λh)(exp(λh)− 1))

(λh cosh(λh)− sinh(λh))(1− cosh(λh))
,

where λ is a real parameter [34]. The exponential B-spline function set {Cm(x)}m=N+1
m=−1

constitutes a basis for the functions defined over the interval [a, b]. The bell-shape of the

exponential cubic B-spline function for λ = 1 is demonstrated in Fig. 1.

Figure 1. Exponential B-spline for λ = 1

The nonzero functional values of each exponential B-spline Cm(x) and its two principle

derivatives at the grids are tabulated in Table 1.

Assume that the solutions u(x, t) and v(x, t) be in the form

u(x, t) ∼=
N+1∑
i=−1

δiCi(x), v(x, t) ∼=
N+1∑
i=−1

φiCi(x) (23)
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Table 1. Cm(x) and its principle two derivatives at the grids

x xm−2 xm−1 xm xm+1 xm+2

Cm 0
sinh(λh)− λh

2(λh cosh(λh)− sinh(λh))
1

sinh(λh)− λh

2(λh cosh(λh)− sinh(λh))
0

C
′
m 0

λ(1− cosh(λh))

2(λh cosh(λh)− sinh(λh))
0

λ(cosh(λh)− 1)

2(λh cosh(λh)− sinh(λh))
0

C
′′
m 0

λ2 sinh(λh)

2(λh cosh(λh)− sinh(λh))
−

λ2 sinh(λh)

λh cosh(λh)− sinh(λh)

λ2 sinh(λh)

2(λh cosh(λh)− sinh(λh))
0

where δi are time dependent variables that will be determined from the collocation

method. The first two principle derivatives of u(x, t) and v(x, t) can be determined as

u′(x, t) ∼=
N+1∑
i=−1

δiC
′
i(x), u′′(x, t) ∼=

N+1∑
i=−1

δiC
′′
i (x)

v′(x, t) ∼=
N+1∑
i=−1

φiC
′
i(x), v′′(x, t) ∼=

N+1∑
i=−1

φiC
′′
i (x)

(24)

Using the equations (23) and (24) with functional values of each exponential B-spline

given in Table 1, and its first two principle derivatives at the grids can be written in the

form

ui = u(xi, t) ∼=
s− λh

2(λhc− s)
δi−1 + δi +

s− λh

2(λhc− s)
δi+1

u′
i = u′(xi, t) ∼=

λ(1− c)

2(λhc− s)
δi−1 +

λ(c− 1)

2(λhc− s)
δi+1

u′′
i = u′′(xi, t) ∼=

λ2s

2(λhc− s)
δi−1 −

λ2s

λhc− s
δi +

λ2s

2(λhc− s)
δi+1.

vi = v(xi, t) ∼=
s− λh

2(λhc− s)
φi−1 + φi +

s− λh

2(λhc− s)
φi+1,

v′i = v′(xi, t) ∼=
λ(1− c)

2(λhc− s)
φi−1 +

λ(c− 1)

2(λhc− s)
φi+1

v′′i = v′′(xi, t) ∼=
λ2s

2(λhc− s)
φi−1 −

λ2s

λhc− s
φi +

λ2s

2(λhc− s)
φi+1.

(25)

where s = sinhλh and c = coshλh. After discretizing the Gray-Scott system (1) in time

by the Crank-Nicholson method, it reduces to

un+1 − un

∆t
= ε1

un+1
xx + un

xx

2
− (u2v)n+1 + (u2v)n

2
+ f(1− un+1 + un

2
)

vn+1 − vn

∆t
= ε2

vn+1
xx + vnxx

2
+

(u2v)n+1 + (u2v)n

2
+ (f + k)(

vn+1 + vn

2
)

(26)

where un+1 = u(x, tn+1) and vn+1 = v(x, tn+1) denote the solutions of Gray-Scott system

at the (n+1).th time level. It should be mentioned that here tn+1 = tn+∆t, and tn = n∆t.

Substitution of approximate solutions into (26) and rearranging the resultant system lead

to
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νm1δ
n+1
m−1 + νm2φ

n+1
m−1 + νm3δ

n+1
m + νm4φ

n+1
m + νm1δ

n+1
m+1 + νm2φ

n+1
m+1 (27)

= νm5δ
n
m−1 + νm6δ

n
m + νm5δ

n
m+1

and

νm7δ
n+1
m−1 + νm8φ

n+1
m−1 + νm9δ

n+1
m + νm10φ

n+1
m + νm7δ

n+1
m+1 + νm8φ

n+1
m+1 (28)

= νm11φ
n
m−1 + νm12φ

n
m + νm11φ

n
m+1

where

νm1 =

(
2

∆t
+ f + L2

1

)
α1 − ε1γ1 νm7 = L2

1α1

νm2 = 2K1L1α1 νm8 =

(
2

∆t
+ (f + k) + 2K1L1

)
α1 − ε2γ1

νm3 =

(
2

∆t
+ f + L2

1

)
− ε1γ2 νm9 = L2

1

νm4 = 2K1L1 νm10 =

(
2

∆t
+ (f + k) + 2K1L1

)
− ε2γ2

νm5 =

(
2

∆t
− f + L2

1

)
α1 + ε1γ1 νm11 =

(
2

∆t
− (f + k)−K1L1

)
α1 + ε2γ1

νm6 =

(
2

∆t
− f + L2

1

)
+ ε1γ2 νm12 =

(
2

∆t
− (f + k)−K1L1

)
+ ε2γ2

K1 = α1δ
n
m−1 + α2δ

n
m + α3δ

n
m+1 L1 = α1φ

n
m−1 + α2φ

n
m + α3φ

n
m+1

α1 =
s− λh

2(λhc− s)
, γ1 =

λ2s

2(λhc− s)
, γ2 = − λ2s

phc− s
.

The system with (27) and (28) can be converted the following matrices system;

Axn+1 = Bxn + 2C (29)

where

A =



νm1 νm2 νm3 νm4 νm1 νm2

νm5 0 νm6 0 νm5 0
νm1 νm2 νm3 νm4 νm1 νm2

νm5 0 νm6 0 νm5 0
. . . . . . . . . . . . . . . . . .

νm1 νm2 νm3 νm4 νm1 νm2

νm5 0 νm6 0 νm5 0



B =



νm7 νm8 νm9 νm10 νm7 νm8

0 νm11 0 νm12 0 νm11

νm7 νm8 νm9 νm10 νm7 νm8

0 νm11 0 νm12 0 νm11

. . . . . . . . . . . . . . . . . .

νm7 νm8 νm9 νm10 νm7 νm8

0 νm11 0 νm12 0 νm11


and C =


f
0
...
f
0


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The system (29) consists of 2N+2 linear equations with 2N+6 unknown parameters xn =

(δn−1, φ
n
−1, δ

n
0 , φ

n
0 , . . . , δ

n
N+1, φ

n
N+1). Adapting the boundary conditions to new variables δ

and φ and eliminating the variables with subscripts −1 and N + 1 by substituting

δn−1 =
2(λhc− s)

s− λh
− 2(λhc− s)

s− λh
δn0 − δn1 ,

φn
−1 = −2(λhc− s)

s− λh
φn
0 − φn

1 ,

δnN+1 =
2(λhc− s)

s− λh
− δnN−1 −

2(λhc− s)

s− λh
δnN ,

φn
N+1 = −φn

N−1 −
2(λhc− s)

s− λh
φn
N ,

(30)

into the system (29) generates a solvable system containing equal equations and number

of unknowns. The reduced septa-diagonal system of (2N + 2) equations with (2N + 2)

is solved by well known Thomas algorithm with inner iteration to improve the results in

each time step.

2.3 Adapting the initial state

In order to be able to start time integration of the iterative system (29), the initial

parameters δ0−1, φ
0
−1, δ

0
0, φ

0
0, . . . , δ

0
N+1, φ

0
N+1 are required to be calculated from the initial

condition and first space derivative of the initial conditions at the boundaries as the

following

u
′
(a, 0) =

λ(1− c)

2(λhc− s)
δ0−1 +

λ(c− 1)

2(λhc− s)
δ01

u(xm, 0) =
s− λh

2(λhc− s)
δ0m−1 + δ0m +

s− λh

2(λhc− s)
δ0m+1, m = 0, 1, .., N − 1

u′(b, 0) =
λ(1− c)

2(λhc− s)
δ0N−1 +

λ(c− 1)

2(λhc− s)
δ0N+1

(31)

and

v
′
(a, 0) =

λ(1− c)

2(λhc− s)
φ0
−1 +

λ(c− 1)

2(λhc− s)
φ0
1

v(xm, 0) =
s− λh

2(λhc− s)
φ0
m−1 + φ0

m +
s− λh

2(λhc− s)
φ0
m+1, m = 0, 1, ..., N

v′(b, 0) =
λ(1− c)

2(λhc− s)
φ0
N−1 +

λ(c− 1)

2(λhc− s)
φ0
N+1

(32)
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3 Simulations of motions of patterns governed by

Gray–Scott system

In this section, the diffusion of some initial pulses are obtained by using both the differ-

ential quadrature and collocation methods.

In the first example, the replications of two initial pulses formed by initial conditions

represented by u and v and covering the related domain are simulated for particular

choice of diffusion coefficients. The results of decreasing one of the diffusion coefficients

in the system are also examined.

In the second example, the initial conditions for both u(x, t) and v(x, t) in the first example

are manipulated to give two initial pulses represented by both functions. The diffusion and

replicating themselves of more initial pulses, as a result covering the domain is simulated.

3.1 Diffusion of single initial pulse

The diffusion of two single initial pulses represented by u(x, t) and v(x, t) are simulated by

the proposed methods. This problem is the solution of the initial-boundary value problem

for the system (1) combined with the initial conditions

u(x, 0) = 1− 1

2
sin100 (πx)

v(x, 0) =
1

4
sin100 (πx)

(33)

and the boundary conditions (2) [16]. In the first case, the diffusion of initial pulse is

studied. The simulations are accomplished in t ∈ [0, 2000] with the parameters ε1 = 10−4,

ε2 = 10−6, f = 0.024, k = 0.06 over the finite interval [0, 1]. The time increment ∆t = 0.1

is used with various numbers of grids in the interval of the problem. The simulations of

diffusion of both u(x, t) and v(x, t) obtained by the proposed methods are plotted in Fig.

2(a) and Fig. 2(b). The motions of both pulses can be observed more clearly by tracking

the projections, Fig. 2(c) and Fig. 2(d).

The initial upside-down pulse represented by the initial condition for u(x, t) replicates

itself at the beginning of the simulation, Fig. 2(a). Both replicas begin to travel on

opposite sides and get far away from each other, Fig. 2(c). At about t = 900, both of

the pulses replicate themselves again and the number of pulses reaches four. All replicas

keep their propagations as time goes. The ones close to the ends of the interval continue

to their motions towards the ends of the interval. The remaining two that are close to
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each other propagate towards each other.

The pulse represented by v(x, t) is a positive pulse initially. At the beginning of the

simulation, the initial pulse replicates itself, Fig. 2(b). These two replicas separate from

each other and move far away as time goes. At about the time t = 900 both pulses replicate

themselves, Fig. 2(d). The separation of new replicates lasts till approximately t = 1000.

After this time, we observe four well-separated pulses. The inner replicas move closer

to each other, as the others moving towards the ends of the domain. Both simulations

of u(x, t) and v(x, t) generated by both proposed methods are in a good agreement with

expected results and the simulations with Zegeling& Kok [16]’ s results.

(a) Coverage of the domain by the initial
single pulse represented by u

(b) Coverage of the domain by the initial
single pulse represented by v

(c) Projection of u (d) Projection of v

Figure 2. Occupation of a domain by single initial pulses in t ∈ [0, 2000]

We run the same simulation with the same values of the parameters in the same initial

conditions except ε1.
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The selection of the diffusion coefficient ε1 as 10
−5 causes that the initial pulses represented

by u(x, t)and v(x, t) replicates themselves only at the beginning of the simulation. The

well-separated pulses represented by u(x, t) protect their positions by standing where they

are after replication during the long simulation period. Both pulses preserve their shapes

and heights as time goes and do not generate more replicas in the simulation process time.

The same results can also be stated for the two replicas of initial pulse represented by

the function v(x, t). The replicas are formed at the beginning of the simulation duration.

Neither of them move in any direction but both preserve their shapes like the pulses

represented by u(x, t). The projections of the simulations of both functions u(x, t) and

v(x, t) in the long simulation period [0, 25000] are given in Fig 3(a)-Fig 3(b).

(a) Projection of u (b) Projection of v

Figure 3. Simulations of standing pulses t ∈ [0, 25000]

3.2 Diffusion of double initial pulses

The initial conditions (33) have been manipulated to give two separated initial pulses by

rewriting the sine function in the initial conditions as sum of two sine functions. Then,

x−x0 and x− x̃0 are substituted instead of x in the modified initial condition containing

the sum of two sine functions. Thus, the peaks of both pulses are positioned at x0 and

x̃0. Under this modifications the initial conditions are formed as

u(x, 0) = 1−
[
0.5 sin100(π(x− x0)) + 0.5 sin100(π(x− x̃0))

]
v(x, 0) =

1

4
sin100 (π(x− x0)) +

1

4
sin100 (π(x− x̃0))

(34)

for both u(x, t) and v(x, t). In order to prevent the moving pulses as time goes to hit the

ends of the problem interval, we decreased the diffusion coefficient ε1 to 5 × 10−5. The
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remaining parameters are chosen as the same in the previous example. The numerical

solutions are determined in t ∈ [0, 1200] with the time increment ∆t = 0.1 over the finite

interval [0, 1]. The numerical solutions simulating diffusion of two initial pulses are plotted

in Fig. 4(a) and Fig. 4(b). The occupation of the domain as a result of the diffusion can

be observed clearly in the projections of both functions Fig. 4(c) and Fig. 4(d).

For the sake of compatibility, the peaks of two initial upside-down pulses represented by

u(x, 0) are positioned at x = 0.25 and x = 0.75 by choosing x0 = 0.25 and x̃0 = 0.75,

Fig. 4(a). Both initial pulses replicate themselves at the beginning of the simulation and

separate clearly from each other in the first 100 unit time, Fig. 4(c). As time goes, four

pulses keep their diffusion till t = 700. When the time reaches t = 700, the replication

process starts again. All four pulses replicate themselves to give eight pulses. All pulses

keep to cover the interval until the end of simulation terminating time.

Two positive initial pulses represented by v(x, t) also behave like u(x, t) during the sim-

ulation, Fig. 4(b). At the beginning of the simulation, both pulses replicate themselves

and diffuse to cover the domain, Fig. 4(d). At about t = 700, all four pulses replicate

themselves again. Totally eight replicas keeps to cover the domain.

(a) Diffusion of two initial
pulses for u

(b) Diffusion of two initial
pulses for v

(c) Projection of u

(d) Projection of v

Figure 4. Simulations of motion of initial pulses in t ∈ [0, 1200]
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4 Conclusion

In this study, we setup a differential quadrature algorithm combined with implicit Rosen-

brock method of order four and a collocation method based on exponential B-spline func-

tions for the numerical solutions of some initial-boundary value problems for a nonlinear

Gray-Scott system.

In the first example, we obtained the numerical solutions for the problem modeling single

initial pulse occupying the problem interval. The motions and replications of the two

initial pulses of the system cover the problem interval as time goes. A particular case

for this problem is also simulated by decreasing one of the diffusion coefficient. In this

case, the standing replicas do not propagate the problem domain during the simulation

process.

In the second example, we perform some manipulations on the initial conditions to con-

struct two well-separated upside-down initial pulses and two positive initial pulses repre-

sented by u(x, 0) and v(x, 0), respectively. The generation of replicas and propagations

and occpations in the related interval are simulated successfully.

When compared with the other methods such as variations of finite element methods,

the complexity of the computer programs based on differential quadrature method is

less at the same accuracy level using the same discretization parameters. Moreover, this

property of method is valid for all time integration techniques combined with differential

quadrature. Accuracy of method is better than finite difference methods. The other

method used in the paper is based on exponential B-spline functions. A type of finite

elements technique is implemented to discretize the system in space variable. The Crank-

Nicolson method is used to provide a strong stable algorithm. In conclusion, both methods

generate high accurate strong stable solutions of the initial boundary value problems for

the Gray-Scott system.
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