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Abstract

A reactive BGK-type model is proposed for a binary mixture of rarefied gases,
by resorting to a simple Boltzmann collision operator for a slow irreversible de-
excitation reaction, in a process driven by mechanical encounters. The hydro-
dynamic limit is worked out by a Chapman-Enskog asymptotic procedure up to
the Navier-Stokes equations, and can fit exactly Fick’s law for diffusion velocities
and Newton’s law for the viscous stress, which is traceless in the present scaling.
Transport coefficients are not affected by the chemical reaction, whereas reactive
effects are described by additional source terms (integrals involving the chemical
cross sections), vanishing at chemical equilibrium, which in turn are not affected by
mechanical relaxation parameters.

1 Introduction

Relaxation time approximations of BGK type [1, 2] constitute probably the most an-

cient and yet the most popular and flexible simplified kinetic models of the true integro-

differential Boltzmann equation in Rarefied Gas Dynamics [3, 4], retaining the most sig-

nificant mathematical and physical features of the actual Boltzmann equation. On the

other hand, BGK approaches have been extended to more complex physical scenarios,

like gas mixtures [5, 6] and reversible bimolecular chemical reactions [7–9], considered in

a kinetic framework [10].

As well known, one of the main shortcomings of the BGK approach is the partial

reliability of its hydrodynamic regime in the asymptotic continuum limit. Even for a single
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monoatomic gas, it is impossible to fit simultaneously, by a single relaxation parameter,

viscosity coefficient and thermal conductivity, so that the Prandtl number is incorrect.

This crucial drawback can be overcome by resorting to the so called ellipsoidal BGK (ES-

BGK) model [11], which, in more recent times, has been cast in a consistent and elegant

mathematical frame, also for polyatomic gases [12,13]. Such a statistical model allows for

different scales of relaxation, and introduces then additional disposable parameters, to be

used in order to fit the required transport coefficients.

On the other hand, quite severe difficulties are encountered when trying to apply the

BGK strategy to a gas made up by different species, like the ones occurring in any real-

world application. A significant breakthrough in this direction, aimed mainly at fitting

the Fick’s matrix for diffusion velocities, has been performed in recent years, for the simple

case of a binary mixture [14] as well as for a general number of components [15]. It is

worth to mention that the same algorithm as in [15] can be successfully applied in order to

deal with reversible reactions in multicomponent mixtures [16,17]. These last generalized

BGK models might be considered as “ellipsoidal”, in some broad sense. In fact, they allow

to quantitatively improve the hydrodynamic limit, in the spirit of the pioneering work on

the subject [11], but entail typically an isotropic Gaussian attractor, leading eventually

to a correct representation of diffusion velocities, but not of the Prandtl number.

The present note is aimed at generalizing the results of [14] to a reactive frame. The

quoted article presented explicit results for the simplest conceivable case of a binary inert

mixture of monoatomic gases, in which the additional constraint was a faster equalization

of drift velocities of the two species in the relaxation to equilibrium, introducing thus a

second relaxation parameter. It was shown that all conservation and variational properties

are fulfilled, and positivity requirements of the macroscopic fields can be controlled. Here

we assume that one of the two species (say, the second) is an excited state of the other,

sharing then the same mass, and the mixture is reactive in the sense that the de-excitation

process occurs via the irreversible binary interaction (without mass exchange)

A2 + As −→ A1 + As, s = 1, 2 (1)

which is of interest in several combustion problems, like for instance in flame structure [18],

and motivates thus the present investigation. This model is probably the simplest way

to mimic a polyatomic gas as a mixture of (identical) monoatomic gases, corresponding

to two different energy levels of the internal structure. Reaction (1) takes place together
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with all possible mechanical (elastic) encounters between the two species, with probability

determined by the relevant microscopic differential cross sections σ, depending as usual on

impinging relative speed g and deflection angle χ [4]. The common mass will be denoted

by m, and the energies of chemical bond may be normalized as 0 for the ground state and

E > 0 for the excited one (exothermic reaction).

The mechanical (elastic) collision operator is constructed in terms of different isotropic

non-equilibrium attractors, with suitable drift velocities and temperatures, ensuring all

pertinent mathematical requirements (conservation laws, collision equilibria, H-theorem).

The model satisfies a maximum entropy principle and displays two disposable relaxation

parameters for fitting transport coefficients. The reactive collision operator is taken to

be slow with respect to the mechanical one (which plays the dominant role in driving the

overall evolution problem) with typical relaxation time of the same order as the macro-

scopic time scale. Such a physical two-scale scenario is typical when interactions of some

resonant type play an important role in the evolution, making collision between particles

of the same species the leading process in the mixture. The present approach can be

useful, for instance, in aerothermodynamics, where one is interested in rate coefficients

in case of thermochemical non-equilibrium. Similar approaches in different contexts lead

generally to multitemperature descriptions (such as occurrence of translational and vibra-

tional temperatures) at macroscopic level [19]. We shall construct the reactive collision

integral along the lines of the kinetic Boltzmann model proposed in [20] for a classical

problem of extended thermodynamics [21], in whose frame polyatomic gases have been

also dealt with [22]. The collision operator is defined in terms of the reactive cross sections

σ11
21 and σ12

22 relevant to the encounters (1). Other scalings, as well as other problems, will

be hopefully matter of future research.

The physical problem under investigation is then driven by purely elastic events, rather

than by all energy-preserving encounters. In other words, these events do not realize that

the two components are different states of the same species. In addition, the slower

interactive mechanism linking together the two components of the mixture in a single gas

is microscopically irreversible, peculiarities which constitute another motivation of the

present work. While the dominant (mechanical) operator preserves number of particles

in each species, total momentum, and total kinetic energy, the presence of reaction, no

matter how slow, reduces the number of conserved quantities to total number of particles,
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total momentum, and overall (mechanical plus chemical) total energy, making the problem

singular from a mathematical point of view in the asymptotic continuum limit.

The paper is organized as follows. In the next Section we shall write down, in dimen-

sionless form, the proposed generalized BGK model with chemical reaction, and, after

analyzing, for the readers’ convenience, its main features, we shall establish the main

properties to be used in the Chapman-Enskog asymptotic expansion. In Section 3 we

shall perform the hydrodynamic limit up to first order corrections (Navier-Stokes fluid-

dynamic level) and achieve the sought reaction diffusion equations with proper reaction

rates and transport coefficients. Results are finally briefly commented on, emphasizing

the chemical corrections with respect to the non-reacting frame.

2 The kinetic reactive BGK model

The re-scaled (dimensionless) kinetic equations governing the evolution of the distribution

functions fs in the reactive binary mixture described in the Introduction read as

∂f εs
∂t

+ v · ∇xf
ε
s =

ν

ε

(
Gs[f

ε
1 , f

ε
2 ]− f εs

)
+ Js[f

ε
1 , f

ε
2 ], s = 1, 2 (2)

where ε is the small positive parameter, Knudsen-like number, ratio of the fast to the slow

time scales, ν > 0 is a (constant) relaxation parameter, and where, as usual, x ∈ R3 is

space variable and v ∈ R3 molecular velocity. Denoting by ns,us, Ts the standard number

density, drift velocity, and temperature of species s, the generalized BGK attractor takes

the Gaussian form [14]

Gs[f
ε
1 , f

ε
2 ](v) = ns

( m

2πT ∗

) 3
2

exp
[
− m

2T ∗
(
v − u∗s

)2]
, s = 1, 2 (3)

where the fictitious parameters u∗s and T ∗ are determined by the actual mass velocity u

and gas temperature T and by an additional relaxation parameter η, with ν ≤ η ≤ 2ν, as

u∗s =
(

1− η

ν

)
us+

η

ν
u, T ∗ = T− 1

3n

(
1− η

ν

)2 2∑
s=1

ρs(us−u)2 >
1

n

2∑
s=1

nsTs > 0, (4)

with ρs = mns for mass density. We remark that the attractor (3) is made up by Gaussians

which are isotropic with respect to different auxiliary drift velocities, and that it allowed

to fit Fick’s diffusion law in the inert case. We also recall for convenience the definition

of the higher order macroscopic fields in terms of the corresponding species quantities
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(defined in the standard way), including pressure tensor P and heat flux vector q, namely

u =
1

ρ

2∑
s=1

ρsus, nT =
2∑

s=1

nsTs +
1

3

2∑
s=1

ρs(us − u)2

P =
2∑

s=1

Ps +
2∑

s=1

ρs(us − u)⊗ (us − u)

q =
2∑

s=1

qs +
2∑

s=1

(us − u) ·Ps +
3

2

2∑
s=1

nsTs(us − u) +
1

2

2∑
s=1

ρs(us − u)(us − u)2 .

(5)

The collision invariants of the mechanical (elastic) collision operator ν(Gs − fs) are the

test functions pairs

(1, 0) (0, 1) (mv,mv)

(
1

2
mv2,

1

2
mv2

)
, (6)

and its collision equilibrium is given by the six-parameter family of Maxwellian distribu-

tions

fMs (v) = ns

( m

2πT

) 3
2

exp
[
− m

2T

(
v − u

)2]
, s = 1, 2 (7)

at common macroscopic velocity and temperature.

The chemical collision operator Js, according to the kinetic model [23], takes, in the

present irreversible scenario, the rather complicated form

J1 [f1, f2] (v) = 2

∫
R3×S2

Θ
(
g2 − 4E

m

)g2−
g
σ11
21(g−, χ)f2(v

21
11)f1(w

21
11) d3wd2n̂

′

+

∫
R3×S2

Θ
(
g2 − 4E

m

)g2−
g
σ12
22(g−, χ)f2(v

22
12)f2(w

22
12) d3wd2n̂

′

−
∫
R3×S2

g σ11
21(g, χ)f1(v)f2(w) d3wd2n̂

′

J2 [f1, f2] (v) =

∫
R3×S2

Θ
(
g2 − 4E

m

)g2−
g
σ12
22(g−, χ)f2(v

22
12)f2(w

22
12) d3wd2n̂

′

−
∫
R3×S2

g σ11
21(g, χ)f2(v)f1(w) d3wd2n̂

′

−2

∫
R3×S2

g σ12
22(g, χ)f2(v)f2(w) d3wd2n̂

′

(8)

where x and t dependence are omitted for brevity, Θ stands for unit step (Heaviside)

function, and the auxiliary velocities are defined by

vhkij =
1

2

(
v + w + ghkij n̂

′
)
, whk

ij =
1

2

(
v + w − ghkij n̂′

)
(9)
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where

g2212 = g2111 = g− =

(
g2 − 4E

m

) 1
2

, g = |v −w|, cosχ = n̂ · n̂′ . (10)

Here and below it is implicitly understood that integrations with respect to velocity

variables range all over R3, and integrations with respect to unit vectors like n̂ = (v−w)/g

or n̂′ range all over the unit sphere S2. The operator Js is better represented in a weak

form of more direct physical meaning, namely, for any pair of smooth test functions ϕs(v),

we have

2∑
s=1

∫
ϕs(v)Js[f1, f2](v)d3v =

=

∫∫∫
g σ11

21(g, χ)
[
ϕ1(v

11
21) + ϕ1(w

11
21)− ϕ2(v)− ϕ1(w)

]
f2(v)f1(w) d3vd3wd2n̂

′

+

∫∫∫
g σ12

22(g, χ)
[
ϕ1(v

12
22) + ϕ2(w

12
22)− ϕ2(v)− ϕ2(w)

]
f2(v)f2(w) d3vd3wd2n̂

′ ,

(11)

where again auxiliary (post-collision) velocities are defined by (9), with now

g1121 = g1222 = g+ =

(
g2 +

4E

m

) 1
2

. (12)

By the same technique as in [20] it is not difficult to prove that collision invariants for the

whole (mechanical plus reactive) collision operator in (2) are provided by the pairs

(1, 1) (mv,mv)

(
1

2
mv2,

1

2
mv2 + E

)
, (13)

and the overall collision equilibrium for the reactive mixture is given by

f eq1 (v) = n
( m

2πT

) 3
2

exp
[
− m

2T

(
v − u

)2]
, f eq2 (v) = 0, (14)

with only five free scalar parameters (n,u, T ). Moreover, exact (non-closed) macroscopic

conservation equations read as

∂n

∂t
+∇x · (nu) = 0

∂

∂t
(ρu) +∇x · (ρu⊗ u) +∇x(nT ) +∇x ·Π = 0

∂

∂t

(1

2
ρu2 +

3

2
nT + En2

)
+∇x ·

[(1

2
ρu2 +

5

2
nT + En2

)
u

+Π · u + q + En2(u2 − u)
]

= 0

(15)
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with appearance of the viscous stress tensor Π = P−nT I (deviatoric part of the pressure

tensor P), of the heat flux q and of the diffusion velocity u2 − u. For later use, we need

also the weak forms of the kinetic equations (2) corresponding to the collision invariants

(6) of the mechanical operator only, which drives the evolution. They may be cast as

a set of six scalar partial differential equations made up by the set (15) of five actual

conservations, plus an additional balance equation, accounting for the fact that particle

number in each species is not preserved by reaction (1), namely

∂n2

∂t
+∇x · (n2u) = −∇x · [n2(u2 − u)]−

2∑
r=1

S2r (16)

with reactive rates (source contributions)

S2r =

∫∫
gσch2r (g)f2(v)fr(w)d3vd3w, σch2r = 2π

∫ π

0

σ1r
2r(g, χ) sinχdχ, r = 1, 2, (17)

which obviously vanish at chemical equilibrium, since that corresponds to depletion of the

excited species. According to the Chapman-Enskog singular asymptotic expansion [3,24]

for ε→ 0, hydrodynamic variables to be kept unexpanded are then n1, n2,u, T (and then

also n, ρ1, ρ2 and ρ), whereas constitutive equations are needed for Π, q, u2−u, S2r (r =

1, 2).

Notice how the present facts are at variance with respect to the usual kinetic theory

with reversible chemistry [8,10], where kinetic energy is not a conserved quantity for the

dominant operator, and consequently temperature is not hydrodynamic variable, so that

it is affected (together with scalar pressure) to higher order corrections in the asymptotic

expansion. In the present frame transfer of energy between its kinetic and internal forms is

taken to be a seldom one-directional event, so that excitation energy actually gets entirely

transformed into kinetic energy, but only on the slow scale.

Species velocities us and temperatures Ts have then to be expanded in powers of ε.

They are related however by the constraints following from their definition

2∑
s=1

ρs(us − u) = 0,
2∑

s=1

ns(Ts − T ) +
1

3

2∑
s=1

ρs(us − u)2 = 0. (18)

Being interested here only in a first order fluid-dynamic approximation (Navier-Stokes

level), we shall set

f εs = f (0)
s + εf (1)

s , s = 1, 2 (19)

which implies

us = u(0)
s + εu(1)

s , Ts = T (0)
s + εT (1)

s , S2r = S
(0)
2r + εS

(1)
2r , r = 1, 2. (20)
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The first step in the procedure is

Gs[f
(0)
1 , f

(0)
2 ] = f (0)

s , s = 1, 2 (21)

which yields [14]

f (0)
s = fMs = ns

( m

2πT

) 3
2

exp
[
− m

2T

(
v − u

)2]
, (22)

from which

u(0)
s = u, T (0)

s = T, S
(0)
2r =n2nr

( m

2πT

)3∫∫
gσch2r (g) exp

[
− m

2T
(v2 + w2)

]
d3vd3w. (23)

Constraints (18) reduce then to

2∑
s=1

ρsu
(1)
s = 0,

2∑
s=1

nsT
(1)
s = 0, (24)

and both Π and q are O(ε). All first order corrections needed for closing the exact

equations (15) and (16) will be worked out in the next Section.

3 Hydrodynamic limit

Bearing (19) and (22) in mind, the kinetic generalized BGK equations for the unknowns

f εs may be ordered in the functional form

f εs (v) = Gs[f
ε
1 , f

ε
2 ](v)− ε

ν

(∂fMs
∂t

+ v · ∇xf
M
s

)
+
ε

ν
Js[f

M
1 , fM2 ] +O(ε2) . (25)

Terms Js
[
fM1 , fM2

]
≡ J

(0)
s are explicit, though complicated, functions of the hydrodynamic

variables, precisely, owing to (8) and (22),

J
(0)
1 (v) = 2fM1 (v)eE/T

∫
Θ(g−)

g2−
g
σch21(g−)fM2 (w) d3w

+fM2 (v)eE/T
∫

Θ(g−)
g2−
g
σch22(g−)fM2 (w) d3w − fM1 (v)

∫
g σch21(g)fM2 (w) d3w

J
(0)
2 (v) = fM2 (v)eE/T

∫
Θ(g−)

g2−
g
σch22(g−)fM2 (w) d3w

−fM1 (v)

∫
g σch21(g)fM2 (w) d3w − 2fM2 (v)

∫
g σch22(g)fM2 (w) d3w .

(26)

Closed form representation might be possible for simple expressions of the cross sections

σch2r . However, all Maxwellians in the integrands are isotropic functions of w − u, and g
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depends only on |(v− u)− (w− u)|, so that all integrals, as well as the Maxwellians out

of them, depend only on |v−u|. Therefore, an important implication of (26) is that both

J
(0)
s are isotropic functions of the peculiar velocity c = v − u.

The derivatives of Maxwellians in (25) may be performed by lengthy but known ma-

nipulations, leading to

∂fMs
∂t

+ v · ∇xf
M
s = fMs

[
∂ns
∂t

1

ns
+
m

T
c · ∂u

∂t
+

1

T

(
m

2T
c2 − 3

2

)
∂T

∂t

+
1

ns
∇xns · v +

m

T
v · ∇xu · c +

1

T

(
mc2

2T
− 3

2

)
∇xT · v

]
.

(27)

On the other hand, the exact balance equations (15) and (16), after some algebra, may

be ordered as

∂n1

∂t
+∇x · (n1u)−

2∑
r=1

S
(0)
2r = O(ε)

∂n2

∂t
+∇x · (n2u) +

2∑
r=1

S
(0)
2r = O(ε)

∂u

∂t
+ u · ∇xu +

1

ρ
∇x(nT ) = O(ε)

∂T

∂t
+ u · ∇xT +

2

3
T ∇x · u−

2E

3n

2∑
r=1

S
(0)
2r = O(ε),

(28)

which, as usual, can be used in order to eliminate time derivatives from (27). In the

result, we may separate mechanical and chemical contributions as

∂fMs
∂t

+ v · ∇xf
M
s =

(
DfMs
Dt

)
ME

+

(
DfMs
Dt

)
CH

(29)

where(
DfMs
Dt

)
ME

=

[
1

ns

(
c · (∇xns)−

ns
n

c · (∇xn)

)
+
m

T

(
c⊗ c− 1

3
c2I

)
: ∇xu

+
1

T

(
mc2

2T
− 5

2

)
c · ∇xT

]
fMs (v) +O(ε)

(
DfMs
Dt

)
CH

= fMs (v)

[
(−1)s−1

ns
+

2E

3nT

(
mc2

2T
− 3

2

)] 2∑
r=1

S
(0)
2r +O(ε) .

(30)

Finally, the relaxation terms Gs in (25) can be expanded versus ε, and, due to (3) and

(4), one gets

Gε
s(v) ≡ Gs [f ε1 , f

ε
2 ] = fMs (v) + εfMs (v)

m

T

(
1− η

ν

)
u(1)
s · c +O(ε2). (31)
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Therefore, collecting results, one ends up with

f (1)
s (v) = f

(1)
sME(v) + f

(1)
sCH(v), (32)

where

f
(1)
sME(v) = fMs (v)

{
m

T

(
1− η

ν

)
u(1)
s · c−

1

ν

[
1

ns
c · ∇xns −

1

n
c · ∇xn

+
m

T

(
cicj −

1

3
c2δij

)∂ui
∂xj

+
1

T

(mc2
2T
− 5

2

)
c · ∇xT

]}

f
(1)
sCH(v) =

1

ν
J (0)
s (v)− 1

ν
fMs (v)

[
(−1)s−1

ns
+

2E

3nT

(
mc2

2T
− 3

2

)] 2∑
r=1

S
(0)
2r .

(33)

This result is not yet explicit, since the needed unknowns f
(1)
s are expressed in terms of

their moments

u(1)
s =

1

ns

∫
cf (1)

s (v)d3c. (34)

In any case, it is evident that the mechanical contribution in (32) is orthogonal to any

isotropic function of c, whereas the chemical one is isotropic in c. In order to complete

the procedure we have now to re-compute u
(1)
s from (32) by taking moment with weight c,

and the solution of the resulting linear algebraic equation for it makes (32) fully explicit.

Skipping details, this leads to

u
(1)
1 = −1

η

T

ρ

n2

n1

∇xn1 +
1

η

T

ρ
∇xn2

u
(1)
2 =

1

η

T

ρ
∇xn1 −

1

η

T

ρ

n1

n2

∇xn2

(35)

showing how diffusion velocities do not depend on the chemical reaction (reactive contri-

butions in (32) disappear upon integration with weight function c). Analogously, f
(1)
sCH is

orthogonal to weight functions like cicj− (1/3)c2δij, or cc2, so that chemical contributions

do not affect viscous stress Π and heat flux q. Fick, Newton, and Fourier law are then

the same as in the inert case of Ref. [14], a result which was, in some sense, expected, in

view of the fact that reactive collisions are slow if compared to the mechanical ones.

In order to complete the hydrodynamic closure, we need only first order corrections

to chemical sources, appearing in (16), which can be rewritten as

S
(1)
2r =

∫∫
gσch2r (g)fM2 (w)f (1)

r (v)d3vd3w +

∫∫
gσch2r (g)f

(1)
2 (v)fMr (w)d3vd3w. (36)
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Here, by usual arguments, the w integrations yield isotropic functions of c, so that me-

chanical contributions f
(1)
sME cancel out in the v integration, and therefore elastic collisions

do not affect the chemical terms of the reactive Navier-Stokes equations. This result re-

sembles analogous conclusions on reversible slow chemistry [16, 25] and provides a new

explicit result for the reactive fluid-dynamic contributions. Notice that O(ε) chemical

sources involve both leading reactive sources S
(0)
2r through f

(1)
s given in (32) and (33).

4 Conclusions

We may summarize results of this note as follows. The present kinetic model for a binary

mixture of rarefied gases undergoing an irreversible chemical reaction features a mechan-

ical collision operator of generalized BGK type with two relaxation parameters, aimed at

fitting transport coefficients, coupled to a reactive integral operator of Boltzmann type,

the process being driven by the mechanical part (slow reaction). First, we have proved

that mechanical constitutive equations for diffusion velocities, viscous stress, and heat flux

do not differ from those relevant to the same gas, considered as chemically inert [14]. Con-

versely, we have found that chemical contributions at fluid-dynamic level depend solely

on reactive cross sections: they exhibit source terms which are even O(1) with respect to

the small scaling parameter, so that they would be present also at the Euler level. Such a

rigid separation between mechanics and chemistry is expected to disappear at an higher

level fluid-dynamics (Burnett), or if the chemical time scale were of the same order as

the mechanical one; these investigations will be matter of future work. In any case, the

present relaxation model with irreversible chemistry is in accordance with the standard

scheme of non-equilibrium slowly reacting gas flows, for which the uncoupling between

chemical and mechanical effects at fluid-dynamic level is known [25].

Reactive Navier-Stokes (reaction-diffusion) equations derived in this note for the gen-

eralized BGK model (2) follow from (15) and (16) bearing in mind that

Π = εΠ(1), q = εq(1), u2 = u + εu
(1)
2 , S2r = S

(0)
2r + εS

(1)
2r .
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They read as

∂n

∂t
+∇x · (nu) = 0

∂(ρu)

∂t
+∇x · (ρu⊗ u) +∇x(nT ) = −ε∇x ·Π(1)

∂

∂t

(
1

2
ρu2 +

3

2
nT + En2

)
+∇x ·

[(
1

2
ρu2 +

5

2
nT + En2

)
u

]

= −ε∇x ·
(
Π(1) · u + q(1) + En2u

(1)
2

)
∂n2

∂t
+∇x · (n2u) +

2∑
r=1

S
(0)
2r = −ε∇x ·

(
n2u

(1)
2

)
− ε

2∑
r=1

S
(1)
2r

(37)

where

Π(1) = −1

ν
nT

(
∇xu +

(
∇xu

)T − 2

3
∇x · uI

)

q(1) = −1

ν

5

2

nT

m
∇xT

(38)

which correspond to Newton’s law with viscosity ε
ν
nT and to Fourier’s law with thermal

conductivity ε
ν
5
2
nT
m

, with no Dufour effect, in agreement with the fact that particles of

the two species are essentially monoatomic and mechanically identical [3, 26]. Diffusion

velocities εu
(1)
s are provided by (35), which defines Fick’s diffusion law, without thermal

diffusion (Soret effect), for the same reasons as before. Leading reactive sources are given

by (23), and first order corrections may be rewritten as

S
(1)
2r =

∫∫
gσch2r (g)fM2 (w)f

(1)
rCH(v)d3vd3w +

∫∫
gσch2r (g)f

(1)
2CH(v)fMr (w)d3vd3w, (39)

where fMs is the Maxwellian (7), and f
(1)
sCH is the reactive correction (33), with (26) for

J
(0)
s . The relaxation parameter η may be used to fit exactly any given Fick’s diffusion

matrix. The other relaxation parameter ν may be used to fit either viscosity or thermal

conductivity, but not both transport coefficients simultaneously (Prandtl number can not

be controlled). The quite complicated task of introducing a third relaxation parameter in

order to overcome this drawback, rather typical in the BGK literature for mixtures [15],

will hopefully be matter of future investigation.

Finally, it can be noticed that the viscous stress Π in (38) is traceless at the Navier-

Stokes fluid-dynamic level, namely the so called chemical pressure [8, 10] (equivalent to

the dynamical pressure for polyatomic gases [21]) is here vanishing, and would appear

only as a higher order correction. This is a consequence of the assumed “resonant”
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scaling by which particles of both components tend to keep their internal energy state

in all encounters, so that no reactive mixing effects are present to leading order in the

evolution of the mixture. Such effects show up, after an initial fast transient, at the slower

time scale, where, as a consequence of irreversibility of reaction (1), the evolution leads

eventually to a non-standard equilibrium with depletion of one of the components.
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