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Abstract 

Nanoworld is a term referring to the level of knowledge and transform of the matter, at 
the nanoscale level, both by nanoscience and nanotechnology. The nanoworld is 
“populated” by thousands of real 3D structures and millions of hypothetical 
constructions, of the rank 3 or higher. The need to distinguish among rather similar 
structures and prove their diversity is a challenging task that the present paper attempts to 
address. Topology was used as a theoretical tool for the design of a single number based 
on the ring signature, accounting for the configuration of rings around any vertex of a 
translational (or rotational) network. Mathematical properties, including the upper bound, 
of a new index, are exemplified on several structures, including the Platonic solids, some 
translational networks and some spongy hypercubes, of which substructures can be 
enumerated by combinatorial formulas accounting for the genus of the embedded surface, 
for the first time reported in literature. 

 

1 Introduction 

At the nanoscale, the world is “populated” with thousands of real 3D structures and millions 

of hypothetical constructions [1,2], of complexity (i.e., rank [3,4]) 3 or higher. Among these, 

zeolites [5] define a class of (natural or synthetic) chemical compounds, of translational 

symmetry [6], consisting of voids, that may host ionic or neutral small specie, and channels 

that may work as molecular sieves, thus facilitating the matter exchange from the two parts of 

a porous wall [7–9]. Zeolites are spongy periodic networks [10–12], decorated with a variety 

of voids/shapes, starting with the basic Tetrahedron; even there are some few convex 

polyhedra [13–15] (triangular prism, hexagonal prism, gyrobisfastigium i.e., J26 Johnson’s 

object [16], truncated octahedron and the cube) that can tessellate alone the 3D space, usually 

more than one type shape will achieve this task, that is the case of zeolites. Two basic 

descriptors are used to distinguish among the huge variety of networks [17–19]: 
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(i) “Vertex symbol” (or “face symbol”), that describes the local topology of a vertex 

(more precisely, the faces/rings around any vertex) and  

(ii) “Tiling”, that gives the tiling signature (i.e., shapes or voids around each tile) of a net. 

 A “tile” is a generalized polyhedron [18] that admits curved faces and vertices of 

degree 2 while a tiling is a filling of space by tiles sharing faces (e.g., by face-to-face 

identification). Neither of these numbers provides a unique description of crystal structures. 

 The article is organized as follows: after the introductory part, the ring signature index 

RSI is defined in Sect. 2. The 3rd section provides a study on a translational network (and its 

medials) thus illustrating the utility of RSI in structure elucidation. Definition of spongy 

hypercubes and their combinatorial and RSI properties are given in Sect. 4. Conclusions and 

references will close the article. 

 

2 Ring signature index 

Define Ring Signature Index RSI as a collection of rings around the vertices of a network, as 

follows: 

 ( ) sk

i s
P x s x= ⋅∑         (1) 

 `(1) / (1)i i iRS P P=         (2) 

 (1/ ) ii
RSI qv RS= ∑         (3) 

In the above, P(x)i is the polynomial of „ring occurrence” or the „ring signature”, or even the 

„vertex configuration”, with s being the size of a „strong” ring occurring ks-times around each 

point i. Next, RSi calculates a „mean ring signature” as the ratio (in x=1) of the first derivative 

to the „zero” derivative of the ring occurrence polynomial. Finally, (eq 3), the summation of 

RSi, which runs over all vertices “v” in the whole molecule (or a “domain” of a translational 

structure), is again mediated “per vertex” and per vertex orbits “q” (under the full symmetry 

group) existing in the whole considered structure. Here „strong” denotes a ring that is not the 

sum of other smaller rings [18]. However, the ring notion may be extended to „circuit” notion, 

in getting more comprehensive information about the topology of the network. 
 

Proposition 1. At the same occurrence k, the mean ring signature RSi is an integer number, 

irrespective of the ring size. 

 The proof comes from the RSi definition, as follows: denote by ks1 and ks2 the (integer 

number) occurrence of two rings around a vertex, of size s1 and s2; since ks1 = ks2 = k (same 

occurrence), then: 
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1 1 2 2 1 2 1 2 1 2( ) / ( ) ( ) / ( )i s sRS s k s k s s k s s s s k= ⋅ + + = + + =    (4) 

 

Proposition 2. Isohedral graphs show integer RSi since they have a single ring type (i.e., are 

face transitive) and a single occurrence number: 

 /iRS sk s k= =         (5) 
 

Proposition 3. There exist graphs that show different occurrence for the same ring size; in 

such a case, RSi may be non-integer, according to the parity of occurrence numbers sum: 

 1 2 1 2 1 2( ) / 2 ( ) / 2 ( ) / 2iRS s k s k s s k k s k k= ⋅ + ⋅ = + = +    (6) 

The above statements were formulated for isohedral (and isogonal, i.e. vertex transitive) 

graphs, where q=1 and RSi = RSI. However, isohedral graphs are not always isogonal: the 

Catalan solid graphs (which are duals to Archimedeans) are all face-transitive but not vertex-

transitive. In vertex non-transitive structures, q >1 and the global index RSI may be a non-

integer number, according to the numbers parity. 

 

Theorem. The upper bound of ring signature index RSI can be combinatorially calculated 

from the vertex degree by 
2

Deg 
 
 

; this is reached in isohedral and isogonal graphs with no 

self-intersection of strong rings. 

 Demonstration comes from the above propositions, basically from proposition 2. It is 

well–known that the maximum number of rings around a vertex equals the combination of the 

number of its connections (i.e., degrees, Deg) [20,21] taken two. This is the case described by 

eq. (5): RSi,max = kmax = 
2

Deg 
 
 

. However, some isohedral graphs can be seen as “networks” 

(i.e., with rings that intersect to each other), like Icosahedron I, Octahedron O, 16-Cell, 24-

Cell, etc.; in such cases, the set of connections is split, at least in two subsets (for which, e.g., 

Deg=Deg1+Deg2) and, because 
2

Deg 
 
 

 > 1

2

Deg 
 
 

 + 2

2

Deg 
 
 

, the maximum value of RSi is less 

than kmax (see Table 1, e.g., 24-Cell_net). The case Deg1=Deg2 recovers the case of eq (4), 

with RSi=k<kmax. Since the isogonal graphs have only one vertex orbit (q=1), it means that 

RSi=RSI and the theorem is demonstrated. Maximal RSI values are found in Dodecahedron D, 

Tetrahedron T or the Hypercube Qn. 

 The case of relation (6) is found in the “spongy-hypercube” (see Section 4): since here 

k1+k2=kmax, then RSi=Combin(Deg,2)/2, in words, RSi equals the half of the upper bound 

value. Data in Table 1 and in the following ones support the above theorem. 
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Table 1. Ring signature index RSI in some cells and nets. 

Structure v vi q Deg Ring signature RSI 
2

Deg 
 
 

 

D 20 20 1 3 5^3 3 3 

I 12 12 1 5 3^5 5 10 

C 8 8 1 3 4^3 3 3 

O 6 6 1 4 3^4 4 6 

T 4 4 1 3 3^3 3 3 

I_net 12 12 1 5 3^5.5^5 5 10 

O_net 6 6 1 4 3^4.4^2 2.857 6 

16-Cell 8 8 1 6 3^12 12 15 

16-Cell_net 8 8 1 6 3^12.4^3 6.857 15 

24-Cell 24 24 1 8 3^12 12 28 

24_Cell_net 24 24 1 8 3^12.4^12 12 28 

C60 60 60 1 3 5^1.6^2 1.546 3 

 

3 Ring signature in a translational network 

Structure elucidation in Chemistry in general, and particularly in Crystallography, makes 

appeal of instrumental techniques but also of theoretical tools. In this respect, RSI would be 

of real interest in classification of networks, both radial and translational and in an accurate 

description of complex molecular/ionic structures. 

 The network focused on hereafter was built starting from the Octahedron by stellation 

st, followed by truncation t, operations resulted in the cluster C72A= 24@TT.222.72, of 

which shapes are detailed as TO@(8TT;6HCO).72 (see Figure 1). (For map operations, the 

reader is invited to consult refs. [22–27]. The name of clusters is written in a “shell-by-shell” 

manner [28,29], starting with the core (symbolized either by the shortened names of the 

consisting shape: TT = truncated Tetrahedron; TO = truncated Octahedron; CO = 

Cuboctahedron, or by the number of atoms of that shape) endohedrallly @ included into the 

next (outer) shell(s), while is suffixed by the number of atoms in the whole structure. The net 

is made by self-assembly of TT (by “face-to-face” gluing/ identification), which is reflected in 

the name we give to this net: C72@TT, delimited as a cubic domain, e.g., C72@TT.222.72, 

where “222” means 2×TT along the directions of translation; the name is suffixed by the 

global number of points/atoms in the considered domain. According to the map operations 

that provided this network, it is named as t(st(O))72@TT. The letter “A” in the name specifies 

the “net” while “B” denotes the “co-net”, net/co-net being interchangeable; the letter “H” in 

the front of shape symbols means “half”, used to avoid fractional numbers in the name of 

clusters.  
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 The network C72@TT (synonyms: UB12, sqc7309, 5/3/c4; Tiling: 2TT+CO+TO; 

Space Group: Fm–3m [30]; uninodal, of degree 5, with the topology (ring signature): 

3^2.4^2.6^6; the value of RSI corresponding to this vertex symbol is 3.846 (Table 2), that 

reflects its high topological symmetry (e.g., a single vertex/atom equivalence class – see also 

refs. [31,32]). The ring signature was obtained by selecting the C72@TT.333.216 (that 

contains the three shapes of the net: TT, TO and CO) within a larger domain, e.g., 

C216@TT.555.900. The ref. [30] assumes E2 for the two classes of edges and no 

specification about the faces/rings classes. 

 To verify this result, we applied to C72@TT the “medial” m operation [33] (also 

known as ”rectification” or “ambo” [34]) thus resulting the net m(C72)132@mTT (Figure 2, 

left). A ”spongy” version m(C72)132X@mTTX (Figure 2, right) was obtained by the “Open” 

Op map operation applied to the initial medial. The both nets show two classes of vertices, 

corresponding to the parent edges. 

Next, the face-dual operation applied to C72@TT resulted in d(C72)70@dTT net (Figure 3). 

This new net consists in three classes of vertices with the population: {36}; {108} and {108}, 

in the selection dC216.252@ dTT.555.1240, as were the faces in the parent cluster C216 

(squares, triangles and hexagons, respectively). 

 

Table 2. Ring signature index RSI in C72A=24@TT.222.72  

and C72B=12@TT.222.72 clusters 

 Structure v vi q Deg Ring signature RSI 

1 TOsel@TT.444.480 24 24 1 5 3^2.4^2.6^6 3.846 

2 C72Asel@TT.444.480 72 72 1 5 3^2.4^2.6^6 3.846 

3 C72A  72 
24 
48 

2 
5 
3 

3^2.4.6^4 
3.6^2 

0.992 

4 C72A@TT.480 480 

24 
168 
96 
192 

4 

5 
5 
5 
3 

3^2.6^4 
3^2.4^2.6^6 
3^2.4.6^4 

3.6^2 

0.676 

5 COsel@TT.444.480 12 12 1 5 3^2.4^2.6^6 3.846 

6 C72Bsel@TT.444.480 72 72 1 5 3^2.4^2.6^6 3.846 

7 C72B 72 
12 
12 
48 

3 
5 
5 
3 

3^2.6^4 
3^2.4^2.6^6 

3.6^2 
0.769 

8 C72B@TT.480 480 

12 
156 
120 
192 

4 

5 
5 
5 
3 

3^2.6^4 
3^2.4^2.6^6 
3^2.4.6^4 

3.6^2 

0.664 
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C216@TT.555.900 

1. 3^2.4^2.6^6; | {216} | deg = 5 |; RSI=3.84615 (uninodal) 
(Selection 216/900) 

 
 
 

 
  

24@8TT.72 
t(st(O)).72 

C72A=24@TT.222.72 
TO@(8TT+6HCO).72 

C72B=12@TT.222.72 
CO@(8TT+6HTO).72 

   

TT@4TO.84 TT@4CO.48 
C216=C72@TT.333.216 

TT@(4TO+4CO+6TT)@(8TT+
12TT).216 

 

Figure 1. Network C72@TT with a selection C216@TT.555.900 and its substructures (bottom). Its 
three shapes are: TT (truncated Tetrahedron) =[3^4.6^4]; TO (truncated Octahedron)=[4^6.6^8] and 

CO (Cuboctahedron)= [3^8.4^6]; “H” means “half”. Tiling signature: TT@(4TO+4CO+6TT); 
TO@(6CO+8TT); CO@(6TO+8TT). 
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Figure count (see Sect. 4) in the clusters C216 and C432 (and their substructures) confirmed 

their assigned structures and the rank 4 (Tables 3 and 4). Interestingly, the cluster C432X 

accounts for the rank 5, being bound by its 8 subunits of rank 4 (Table 5). We found a similar 

behavior in spongy hypercubes [35].  The trend of RSI is far from being completely 

understood; in this respect more examples are needed. 

 
Table 3. Figure count in C216 and its relatives. 

Structure v e 3(2) 4(2) 6(2) 2 3 χ Rank 

C216 216 432 108 36 108 252 36 0 4 

C72A 72 132 32 6 32 70 10 0 4 

C72B 72 132 32 6 32 70 10 0 4 

 

Table 4. Figure count in mC216=C432 and its relatives. 

Structure v e 3(2) 4(2) 6(2) 2 3 χ Rank 

mC216 432 1188 648 144 108 900 144 0 4 

C132A 132 336 176 30 32 238 34 0 4 

C132B 132 336 176 30 32 238 34 0 4 

 

Table 5. Figure count in mC216X and its spongy relatives. 

Structure v e 3(2) 6(2) 2 3 4 χ g Rank 

mC216X 432 972 432 108 540 28 8 -20 11 5 

C132A 132 288 128 32 160 8 0 -4 3 4 

C132B 132 288 128 32 160 8 0 -4 3 4 

 
 

4 Spongy structures of higher rank 

Generalization of a polyhedron to n-dimensions is called a polytope [36–38]. The n-

dimensional spaces (in the geometrical sense) may be avoided if one refers to abstract 

polytopes [39]; properties like angles, edge lengths, etc. are disregarded (as in the Graph 

Theory) and only the combinatorial properties of structures are considered. The notion of 

“dimension” is substituted with that of “rank” [3,4,40]. No space, such as Euclidean space, is 

required to contain an abstract polytope; its combinatorial properties may be expressed as a 

partially ordered set or a poset [3,4,41]. 

In an abstract n–polytope the “vertex figure” at a given vertex is an (n–1)-polytope. In 

polyhedra the vertex figure can be represented by the “vertex configuration” which lists 

“sequence of faces” around that vertex. In crystallography this is called the “face symbol” 

[18]. 
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C432@ mTT.555.1950 

mC216.432@mTT.555.1950 

1. 3^8.6^4; |{108} | deg = 8 | 
2. 3^5.4^3.6; |{324} | deg = 6 | 

RSI=1.61859 (Sel. 432/1950) 

C432X@mTTX.555.1950 

mC216.432X@mTTX.555.1950 

1. 3^4.6^4; |{108}| deg = 8 | 
2. 3^3.6; |{324}| deg = 4 | 

RSI=1.12500 (Sel. 432/1950) 

C132A=mtO@mtT.222.132 C132B=mmC@mtT.222.132 C432  
m(C72)132@mTT.333.432 

C132XA (C4) 
Op(mTO)@mTT.222.132 

C132XB (C4) 
Op(mCO)@mTT.222.132 

C432X (C2) 
m(C72)132X@mTTX.333.432 

Tiling signature: 

(filled)    mtT@(4mtO+4mmC+6mtT); mtO@(6mmC+8mtT); mmC@(6mtO+8mtT) 

(spongy)   mtT@(4Op(mtO)+4Op(mmC)+6mtT); Op(mtO)@(6Op(mmC)+8mtT); 
  Op(mmC)@(6Op(mtO)+8mtT) 

Figure 2. Medial derivatized nets m(C72)132@mTT of the parent C72@TT net, with their selections 
C432X@mTTT.555.1950 (X=Op, for the spongy medial net) and their substructures (bottom). 
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dC216.252@ dTT.555.1240 

1. 3^8.4^4; |{36} (squares) | deg = 8 | 
2. 3^6.4^3; |{108} (triangles) | deg = 6 | 

3. 3^18.4^6; |{108} (hexagons) | deg = 12 | 

RSI=2.47619 (Selection 252/1240) 

C70A 
dC72A=dTO@dTT.222.70 

C70B 
dC72B=dCO@dTT.222.70 

C252 
dC216.252=dTT.333.252 

TT.12  
[12(3.6^2)] 

mTT.18  
[12(3^3.6)+6(3^2.6^2)] 

dTT.8 = stT.8 
[4(3^3)+4(3^9)] 

Figure 3. Network d(C72)70@dTT with a selection C252@dTT.555.1240  

and its substructures (bottom). 

The alternating sum [42,43] of k–faces contained in an n–ranked polytope gives 2 and zero for 

n odd and even, respectively. 
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1

0

( 1) 1 ( 1)
n

k n

k

k

f
−

=

− = − −∑        (7) 

For polyhedra (of rank 3) on orientable surfaces of genus g, one obtains the classical Euler 

(1758) relation (8) [42]:  

 2(1 )v e f gχ− + = = −        (8) 

The Euler characteristic χ, calculated by (8), is a dimensionless quantity associated with an 

object; it is, in fact, a generalization of the cardinality [44]. Positive/negative χ values indicate 

positive /negative curvature of a polyhedral structure [25]. Genus g is the number of tori 

contained in an orientable surface on which the polyhedral graph is embedded [20]. 

 Hypercube Qn is an n–dimensional analogue of the Cube (n=3), also called an n–cube. 

It is a regular graph of degree n, according to Balinsky`s theorem [45]. The graph of 

Hypercube may be drawn by the Cartesian product of n edges: 2( ) n

nP Q=□

. The n-cube is 

written by the Schläfli symbols [43] as {4,3n−2}; the number of k–faces contained in an n-cube 

Qn(k) comes from the coefficients of (2k+1)n in the binomial expansion. 

 ( ) 2 ; 0, .., 1n k

n

n
Q k k n

k

−  
= = − 

 
     (9) 

Hypercube may be embedded in surfaces other than the sphere [35]. 

 Let now take a polyhedral graph G(v) of a 3–connected polyhedron on v-vertices and 

make n-times the Cartesian product with an edge; the operation results in a “spongy 

hypercube” 
2( , ) ( ) n

nG v Q G v P= □ .On each edge of the original polyhedral graph, a local 

hypercube Qn will evolve; it means that, in a spongy hypercube, the original 2-faces will not 

be counted. Figure 4 illustrates such spongy hypercubes, embedded in the Cube and 

Dodecahedron, respectively. 

 

Conjecture. The k-faces of a spongy hypercube ( , )nG v Q , built on a 3-connected polyhedron 

of v-vertices, are combinatorially counted from the previous rank faces; their alternating 

summation accounts for the genus of the surface where Hypercube Qn is embedded [33]. 

 

 [ ] ( 1)( , , ) ( / ) 3 2( ) 2 ; 1; 0,1,..n k

n

n
G v Q k v n n n k n k n

k

− −  
= − − ⋅ ⋅ > = 

 
  (10) 

 
0

( 1) ( ) 2(1 ); 1; 0,1,..
n

k

k

k

f M g n k nχ
=

− = = − > =∑     (11) 
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Formula (10) represents the “embedding” of the hypercube on any 3-connected polyhedral 

graph (see the factor in the front of the almost classical hypercube counting (9)), that 

transforms the embedding polyhedron in a multi-toroidal hypercube [33]. More precisely, the 

“spongy hypercube” is the union of the original polyhedron and the hypercubes developed on 

each edge of the parent polyhedral graph G(v). 
 
 

  

C(Q6).64 D(Q6).160 

Figure 4. Spongy hypercubes: cubic C(Q6) (top, left); dodecahedral D(Q6) (top right) 
 and their parents (bottom) 

 

 

Table 6. Ring signature index RSI in Hypercube Qn and its spongy view C(Qn). 

v Deg n 

Qn C(Qn) 

Ring signature RSI 
2

Deg 
 
 

 Ring signature RSI 
2

Deg 
 
 

 

8 3 3 4^3 3 3 4^3 3 3 

16 4 4 4^6 6 6 4^3.4^3 3 6 

32 5 5 4^10 10 10 4^7.4^3 5 10 

64 6 6 4^15 15 15 4^12.4^3 7.5 15 

128 7 7 4^21 21 21 4^18.4^3 10.5 21 

256 8 8 4^28 28 28 4^25.4^3 14 28 
 

 

Table 7. Ring signature RSI in Dodecahedral and Tetrahedral spongy hypercube D(Qn). 

Structure v Deg Ring signature RSI 
2

Deg 
 
 

 

D(Qn) 20 3 5^3 3 3 
 40 4 4^3.5^3 3 6 
 80 5 4^7.5^3 4.77778 10 
 160 6 4^12.5^3 7 15 
 320 7 4^18.5^3 9.66666 21 

T(Qn) 4 3 3^3 3 3 
 8 4 3^3.4^3 3 6 
 16 5 3^3.4^7 5.28571 10 
 32 6 3^3.4^12 8.14286 15 
 64 7 3^3.4^18 11.57143 21 
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 Compare the formula (11) with the previous formulas (7) and (8): it expresses the 

“spongy” character [28] of these structures by the genus [20] g of the hypersurface. Genus 

also means the number of connections of a surface; it equals, as Diudea conjectured in [33], 

the half sum of “window”- faces fw, coming from the parent polyhedron: g=fw(G(v))/2. Note 

that (11) ignores the (hyper-) prisms evolving on each parent face of the original polyhedron 

[33]. However, counting the substructures of “spongy” hypercubes precisely follows the 

combinatorial rules and the presence of “genus” in (11) represents the essence of this novel 

approach, not yet described in the literature, excepting the case n=3. In this respect, the case 

of full-hypercube is compared with the case of spongy-hypercube in the calculus of ring 

signature index (Table 6). For the dodecahedral and tetrahedral spongy hypercube, as 

rotational networks, the values of this index are given in Table 7. 

 

5 Conclusions 

Topology of nanostructures, both of translational and rotational networks, may be described 

by the newly proposed Ring Signature Index RSI, as was herein illustrated. The index shows 

the upper bound in highly symmetric isohedral structures and in hypercubes of rank 3 and 

higher. RSI is a promising tool in the quick exploring and classification of databases, by the 

inclusion of topological equivalence classes. Further studies will provide more evidence of 

RSI properties and usefulness. Spongy hypercubes were used for the evaluation of 

discriminating ability of RSI. Their substructure counting was achieved by combinatorial 

formulas, reported here for the first time in the literature.  
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