
A New Efficient Algorithm for Determining All
Structurally Different Realizations

of Kinetic Systems

Bernadett Ács1, Gábor Szederkényi1,2, Dávid Csercsik1

1Pázmány Péter Catholic University, Faculty of Information Technology and Bionics,
Práter u. 50/a, H-1083 Budapest, Hungary

2Systems and Control Laboratory, Institute for Computer Science and Control (MTA
SZTAKI) of the Hungarian Academy of Sciences, Kende u. 13-17, H-1111 Budapest,

Hungary

acs.bernadett@itk.ppke.hu, szederkenyi@itk.ppke.hu, csercsik@itk.ppke.hu

(Received August 15, 2016)

Abstract

In this paper we present a novel algorithm for computing all possible reaction
graph structures representing linearly conjugate realizations of a polynomial kinetic
system assuming a fixed set of complexes. The computation is based on the repeated
application of linear programming steps. The correctness of the method is formally
proved. The approach is compared to the only solution known from the literature
using two examples, and it is shown that the number of optimization steps and the
overall execution time are significantly lower in the case of the proposed new method.

1 Introduction

Kinetic systems form a general class of nonlinear models with a wide range of application

possibilities, such as the quantitative description of complex processes in (bio)chemistry,

pharmacokinetics, compartmental systems, population and disease dynamics, economic

or transportation problems [5, 41]. Therefore, as it was already suggested in [14], we

consider the theory of kinetic systems as a general modelling framework for nonlinear

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 77 (2017) 299-320

 ISSN 0340 - 6253

and especially for nonnegative dynamics. Thus, thermodynamically realizable chemical

reaction networks (CRNs) become the special case of general kinetic models. Using the

abstraction of chemical complexes and reactions, a weighted directed graph called the

reaction graph can be assigned to any realization of a kinetic dynamics showing the

‘transformation’ of complexes into each other [19].

Graph theory is a versatile tool for capturing and understanding the interactions

between building blocks of natural or technical systems [2,15]. The emergence of chemical

graph theory was primarily motivated by the study of the connections between molecular

structure and chemical properties [16]. In this context, several connectivity indices have

been proposed and analysed (see, e.g. [23, 33]) which have also inspired the solution of

numerous interesting and deep mathematical problems. It has been clearly shown in the

literature that different graph constructions corresponding to dynamical models often

play a key role in the analysis of fundamental system properties or even in design tasks

[28,29,38].

One of the most important aims of chemical reaction network theory (CRNT) is to

establish relations between the reaction graph structure and the qualitative dynamical

behaviour of kinetic systems, preferably without precisely knowing the rate coefficients

(i.e. the edge weights of the reaction graph) [19]. This research line has brought numerous

significant results such as the Deficiency Zero and Deficiency One Theorems [4,14]. In [6]

algebraic and graph-structure-based conditions were given for the stability analysis of

kinetic systems. A directed multigraph obtained from the Jacobian matrix of the kinetic

ODE model was used for establishing conditions on the qualitative network dynamics

in [27]. The so-called species-reaction graph was introduced and applied for the analysis of

multiple equilibria in [8]. From a general systems theoretic point of view, it is important to

mention recent fundamental results on the proof of the Global Attractor Conjecture saying

that any complex balanced reaction network is globally stable [1, 7] . This advantageous

property is also strongly related to the network structure, since complex balance implies

weak reversibility [18, 19]. A procedure is given in [31] for the systematic reduction of

reaction networks which is based on a special directed graph relating the species to be

eliminated. By applying suitable model transformations, a wide class of dynamical systems

can be written in kinetic form [11,32], therefore we might be able to study their properties

through CRN representation.

However, as it was already shown through an example in [19], the solution of the

-300-

inverse problem is generally non-unique in the sense that several different network struc-

tures and parametrizations may give rise to exactly the same kinetic differential equations.

This phenomenon is called macro-equivalence, confoundability or dynamical equivalence

in the literature, and it was first analysed theoretically in [9]. In [20], a procedure was

described to symbolically compute a possible network structure (called the canonical net-

work) for any kinetic system given in the form of polynomial differential equations. The

notion of dynamical equivalence was extended by the introduction of linear conjugacy

in [21] by allowing a positive diagonal transformation between the solutions of linearly

conjugate networks. Using the computationally advantageous structure of polynomial ki-

netic models, optimization-based numerical methods were proposed for the computation

of dynamically equivalent or linearly conjugate reaction networks with preferred proper-

ties in e.g. [22, 24, 30, 34, 36, 39]. Besides the proposed numerical methods, the previously

mentioned publications also illustrate through the presented examples that important

properties such as weak reversibility, deficiency, complex or detailed balance may vary

among the different linearly conjugate structures, even if the set of complexes is fixed.

The first provably correct solution known by the authors for the complete generation

of reaction graph structures linearly conjugate to a given dynamics was published in [40].

Due to the possible large number of network structures, it is of interest to construct new

solutions for this problem preferably with more advantageous computational properties.

The purpose of this paper is to propose such a novel algorithm.

2 Notations and computational background

In this section we summarize the definitions of kinetic systems and their models. These

are all standard notations, therefore they are similar to other works in this topic such

as [13, 41], or the related work [40]. We apply the following general notations in this

paper:
R the set of real numbers,
R+ the set of nonnegative real numbers,
N the set of natural numbers including 0,
Hn×m the set of matrices having entries from a set H with n rows

and m columns,
[M]ij the entry of a matrix M with row index i and column index j.

-301-

2.1 Algebraic and dynamical description

Nonnegative polynomial systems can be defined in the following general form:

ẋ =M · ϕ(x), (1)

where x : R → Rn
+ represents a nonnegative function, the entries of matrix M ∈ Rn×p are

the coefficients of the monomials defined by the mapping ϕ : Rn
+ → Rp

+, and the coordinate

functions are of the form ϕi(x) =
∑n

j=1 x
βij

j with βij ∈ N for all i ∈ {1, . . . , p} and

j ∈ {1, . . . , n}. We remark that it is very easy to check the invariance of the nonnegative

orthant with respect to the dynamics (1) using the signs of the entries of matrix M [17].

We define chemical reaction networks in the following form as it is common in the

literature [41].

Definition 2.1. Chemical reaction networks can be defined by three sets (see, e.g. [13,14]).
species: S = {Xi | i ∈ {1, . . . , n}}
complexes: C = {Cj =

n∑
i=1

αjiXi | αji ∈ N, j ∈ {1, . . . ,m}, i ∈ {1, . . . , n}}

reactions: R ⊆ {(Ci, Cj) | Ci, Cj ∈ C}
The ordered pair (Ci, Cj) for i, j ∈ {1, . . .m}, i 6= j represents the reaction Ci → Cj,

which corresponds to a reaction rate coefficient kij ∈ R+. The reaction is present in

the reaction network if and only if kij is strictly positive.

The nonnegative integer stoichiometric coefficients αij are contained by the complex

composition matrix Y ∈ Nn×m as follows

[Y]ij = αji i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}.

The reactions are represented through the reaction rate coefficients by the Kirchhoff

matrix Ak ∈ Rm×m of the CRN, which is a Metzler-matrix with column conservation

property.

[Ak]ij =

kji if i 6= j

−
m∑

l=1,l 6=i

kil if i = j

The state vector x : R → Rn
+ represents the time varying concentrations of the species,

i.e. xi(t) = [Xi](t) for i = 1, . . . , n and t ≥ 0. From now on, the argument t of x will be

suppressed. Assuming mass-action kinetics, the ODEs of kinetic models take the form [13]:

ẋ = Y · Ak · ψY (x) (2)

where ψY : Rn
+ → Rm

+ is the monomial function of the CRN defined by the complex

composition matrix. Its coordinate functions are ψY
j (x) =

n∏
i=1

x
Yij

i for all j ∈ {1, . . . ,m}.

-302-

It can be seen that the structural and dynamical properties of a CRN are uniquely

defined by the matrices Y and Ak, therefore we refer to a reaction network by the cor-

responding matrix pair (Y,Ak). The equations characterizing the dynamics of a reaction

network are in the form of a polynomial system, but naturally, not every polynomial

system is kinetic.

Definition 2.2. A polynomial system of the form (1) defined by a function x : R → Rn
+,

a coefficient matrix M ∈ Rn×p and a monomial function ϕ : Rn
+ → Rp

+ is called kinetic if

and only if there exists a chemical reaction network (Y,Ak) so that the following equation

holds:

M · ϕ(x) = Y · Ak · ψY (x). (3)

For the kinetic property of a general polynomial system, necessary and sufficient condi-

tions were first given in [20]. If the polynomial system (1) is kinetic and the CRN (Y,Ak)

fulfills Equation (3), then this CRN is called a dynamically equivalent realization

of the kinetic system (1). In general, a kinetic system has several dynamically equiva-

lent realizations, reaction networks with different sets of reactions and complexes can be

governed by the same dynamics [9, 19,34].

The notion of dynamical equivalence can be extended to the case when the state

variables are subject to a positive definite diagonal linear transformation [21]. In such a

case the kinetic property of the system is preserved [12]. The transformation is given by

the positive definite diagonal matrix T ∈ Rn×n, and x̄ = T−1 · x denotes the transformed

state vector (i.e. x = T · x̄). By applying the diagonal transformation to the polynomial

system (1) we get

˙̄x = T−1 · ẋ = T−1 ·M · ϕ(x) = T−1 ·M · ϕ(T · x̄) = T−1 ·M · ΦT · ϕ(x̄), (4)

where ΦT ∈ Rn×n is a positive definite diagonal matrix, the diagonal entries of which

are [ΦT]ii = ϕi(T · 1) for i ∈ {1, . . . , n}. The vector 1 ∈ Rn is a column vector with all

coordinates equal to 1. Using Equation (4) we can define linear conjugacy.

Definition 2.3. A reaction network (Y,Ak) is called a linearly conjugate realization

of the kinetic system (1) if there exists a positive definite diagonal matrix T ∈ Rn×n so

that

Y · Ak · ψY (x) = T−1 ·M · ΦT · ϕ(x). (5)

It can be seen that dynamical equivalence is a special case of linear conjugacy, where

the matrix T , and consequently the matrices T−1 and ΦT as well are identity matrices. It

-303-

is also visible that the monomial functions ϕ and ψY in Equations (3) and (5) might be

different. A suitable set of complexes for a kinetic system can be determined by applying

the method described in [20], and the description of the polynomial system (1) can be

modified so that the monomial functions ϕ and ψY are equivalent, and p is equal to m [39].

Assuming this (i.e. ψY = ϕ), Equation (5) can be written as

Y · Ak · ψY (x) = T−1 ·M · ΦT · ψY (x). (6)

It follows from the property of polynomials that for Equation (6) to hold, the correspond-

ing monomial coefficients must be equal. Using this fact and the notation

Ab = Ak · ΦT
−1, (7)

we can rewrite Equation (5) as:

Y · Ab = T−1 ·M (8)

The matrix Ab ∈ Rm×m is obtained by scaling the columns of Ak by positive scalars,

therefore it has the Kirchhoff property, too, and the two matrices represent the same set

of reactions in the CRN.

Since, according to our assumptions the complex composition matrix Y is fixed, lin-

early conjugate realizations can be characterized by the corresponding matrices T and

Ak. However, in Equation (8) the matrices T−1 and Ab describe the CRN. The two pairs

of matrices can uniquely be transformed into each other, therefore, with some abuse of

notation we also refer to linearly conjugate realizations as the matrix pair (T−1, Ab).

2.2 Graph representation

Chemical reaction networks can be represented as edge-weighted directed graphs [13].

Definition 2.4. The graph G(V,E,w) describing the CRN with weight function w :

E(G) → R+ is called Feinberg-Horn-Jackson graph, or weighted reaction graph if

V (G) = C the vertices correspond to the complexes,
E(G) = R the directed edges represent the reactions,
w((Ci, Cj)) = kij the weights are the reaction rate coefficients.

There is a directed edge from vertex Ci to vertex Cj if and only if the reaction Ci → Cj

takes place in the CRN. No loops or multiple edges (with identical directions) are allowed

in the graph.

-304-

It is possible that there are two realizations of a kinetic system, where the sets of

reactions are the same, but the reaction rates are different. We call such realizations

structurally identical, since the reaction graphs representing them have identical sets

of edges, consequently they have the same structure. Our aim is to determine all the

possible reaction graph structures, therefore in this paper we simply refer to unweighted

reaction graphs as reaction graphs. During the computations we calculate the matrix Ab

in each step, but the values of its entries need not to be stored. It is enough to record the

presence or lack of reactions indicated by the non-zero or zero entries of Ab, respectively.

This allows us to represent reaction graphs in the form of binary strings. Of course, if the

available storage space allows, Ab (or Ak) and the transformation parameter T may also

be recorded during the computation.

The correctness of the algorithm presented in this paper relies on a special property

of the so called dense realizations which is summarized below, based on [39].

Definition 2.5. A realization of a CRN is called a dense realization if the maximum

number of reactions take place.

Dense realizations can be defined in case of dynamically equivalent and linearly con-

jugate realizations, even if certain constraints need to be fulfilled by all the considered

reaction networks.

Let G be a set of directed graphs with labelled vertices. A directed graph is called

the super-structure with respect to the set G if it contains every graph in the set

as a subgraph and it is minimal under inclusion. If there are two graphs that contain

every graph in G, then the intersection of these graphs also contains all graphs in G.

Consequently, in case of any set G the super-structure is unique, since it is the intersection

of all graphs that contain every graph in G.

Proposition 2.6. [39] Among all the realizations linearly conjugate to a given kinetic

system on a fixed set of complexes and fulfilling a finite set of additional linear constraints,

the dense realization with the prescribed properties determines a super-structure.

2.3 Linear programming based computational model

Linearly conjugate realizations of a kinetic system with a fixed set of complexes can be

computed using a linear optimization model. It was described in Section 2.1 that in case

of linearly conjugate realizations the linear constraint in Equation (8) must be fulfilled,

-305-

where the known parameters are the matrices Y and M , and the decision variables are

the off-diagonal entries of Ab and the diagonal entries of T−1. The zero column-sums of

Ab can be given as the following linear constraint

[Ab]ii = −
m∑
j=1
j 6=i

[Ab]ji i ∈ {1, . . . ,m}. (9)

While the sign constraints for the decision variables are

[Ab]ij ≥ 0 i, j ∈ {1, . . . ,m}, i 6= j (10)

[T−1]ii > 0 i ∈ {1, . . . , n}. (11)

In summary, Equation (8) ensures linear conjugacy, and Equations (9), (10) and (11)

guarantee that the matrices Ab and T−1 meet their definitions. In our method, additional

linear constraints are applied only for the exclusion of some set H ⊂ R of reactions, so

they can be written as

[Ab]ji = 0 (Ci, Cj) ∈ H (12)

It is important to mention that the boundedness property of the optimization variables

can be ensured so that the set of possible reaction graphs remains the same as in the

original problem, as it was proven in [39]. For convenience, we recall this result.

Proposition 2.7. [39] For any linearly conjugate realization (T−1, Ab) of a kinetic system

there is another linearly conjugate realization ((T ′)−1, A′
b) with all variables smaller than

the given upper bound(s) so that the two realizations are structurally identical.

During the computation, we need to determine constrained dense linearly conjugate

realizations repeatedly. For this, we use a reliable and numerically stable polynomial-time

method presented in [39], which applies linear programming steps.

3 Description of the proposed algorithm

In this section we introduce an algorithm for determining all possible reaction graph

structures representing linearly conjugate realizations of a kinetic system with a fixed set

of complexes.

The inputs of the algorithm are the matrices Y and M , which determine the set of

complexes and the dynamics of the kinetic system, respectively. As outputs we compute

the structures of linearly conjugate realizations, represented as binary sequences. During

-306-

the computation the matrices T−1 and Ab encoding the properties of the realizations are

calculated, as it was described in Section 2.3, but the algorithm stores only the sequences.

For simplicity, we refer both to a realization and the corresponding binary sequence

as R, and R[i] indicates the ith coordinate of the sequence. The reaction graph represent-

ing the realization R and the corresponding set of edges is denoted by GR and E(GR),

respectively. Since the dense realization has a special role, it has a particular notation as

D.

According to the superstructure property, described in Proposition 2.6, during the bi-

nary sequence representation we need to consider only the set E(GD) of edges in the dense

realization. It can be computed using a polynomial-time method, as it was mentioned in

Section 2.3. This is the first step of our method.

It is possible that there are so-called core reactions, which are present in every real-

ization of the kinetic system (see [3]), therefore these also do not require representation.

The set Ec of edges corresponding to the core reactions can also be determined in poly-

nomial time, see e.g. [35, 37]. It is not absolutely necessary doing this computation step,

however it might save some computation time and space by reducing the length of binary

sequences.

It is clear that the reaction graph of any realization can be uniquely characterized by

a binary sequence of length

q = |E(GD) \ Ec|. (13)

Next we need to define an ordering of the non-core edges of the dense realization. The

ordering can be chosen arbitrarily, it has no effect on the working of the algorithm. Let

ei denote the ith edge, then the sequence R can be defined as follows:

e ∈ E(GR) ⇐⇒


∃i e = ei, R[i] = 1

or
e ∈ Ec

(14)

Since the initial substrings of the sequences have an essential role in our method,

we define special equivalence relations according to them. For all k ∈ {1, . . . , q} we say

R =k R
′ if and only if for all i ∈ {1, . . . , k} R[i] = R′[i] holds. The equivalence class of

the relation =k containing the sequence R is denoted by Ck(R). (We have to note that in

general there are several possible representing elements of the equivalence classes.)

During the algorithm, as predefined data structures, we apply q + 2 pieces of stacks,

indexed from 0 to q + 1. The stack with index k is referred to as S(k). Graph structures

-307-

represented by their sequences are stored in these stacks, following the rule: The sequence

R may be in stack S(k) only if R represents the dense realization in Ck(R). However, it

is not true that for a given k and R there is a point during the running of the algorithm,

when the dense realization in Ck(R) is stored in S(k).

According to the above description the stacks S(0), S(q) and S(q + 1) have no im-

mediate use, but actually these have a technical role in the algorithm. We start the

computation at stack S(0), process the stacks in increasing order of indices, and stop at

stack S(q) or S(q + 1). After completing the computation, every sequence R is stored in

these two stacks. If the coordinate R[q] is 1 then R is in S(q), otherwise it is in S(q + 1).

At the beginning all stacks are empty, but during the running of the algorithm we put

in and pop out sequences from them. The command ‘push R into S(k)’ puts the sequence

R into the stack S(k), and the command ‘pop S(k)’ removes a sequence out from S(k)

and returns it. The number of sequences in S(k) is denoted by size.S(k).

Let R1 and R2 be sets of reactions part of the dense realization so that R1 ∩R2 = ∅.

The property that all reactions of R1 take place in the reaction network but none of the

elements of R2 is present can be represented by linear constraints. It can be added to

the computation model as constraints that the entries of the matrix Ak corresponding to

R1 and R2 should be strictly positive and zero, respectively. The non-strict inequalities

cannot be added directly the LP model, however, the proof of Proposition 2.6 can be

applied without modifications, since it was not supposed there that all the halfplanes

should be closed. Therefore, a sequence R ∈ S(k) defines a superstructure among the

sequences in Ck(R). More formally,

[R ∈ S(k), W ∈ Ck(R)] =⇒ [∀j ∈ {1, . . . , q} W [j] ≤ R[j]]. (15)

In the algorithm we also use a binary array of size 2q called Exist, where the returned

sequences get stored. The indices of the fields are the sequences as binary numbers. At

the beginning of the algorithm the value of each field is zero, and after the computation

the value of the field Exist[R] is one if and only if there is a linearly conjugate realization

represented by the sequence R. The application of this array is not essential for the running

of the algorithm, since according to Proposition 3.2 no realization is returned twice, and

the sequences are collected in S(q) and S(q + 1) at the end of the run. However, we can

store the results for convenience in such an array.

Within the algorithm we repeatedly apply the following two subroutines:

-308-

FindLinConjWithZeros(R, k, i) computes the dense linearly conjugate realization

where the reactions corresponding to the set J of indices is forbidden (i.e., the correspond-

ing elements of matrix Ab are constrained to be zero in the computations). The inputs of

the procedure define the set J as the union of two sets: J = J1 ∪ J2, J1 = {j | R[j] =

0, j ≤ k}, J2 = {j | k + 1 ≤ j ≤ i}.

If there is no such realization of the kinetic system, then the procedure returns -1, other-

wise it generates the sequence W describing the computed realization. Then the sequences

W and R get compared to each other, and the procedure returns W only if W =k R holds,

otherwise it returns -1. (The comparison step is necessary since there might be more zero

coordinates corresponding to the indices 1 to k of W than required.)

FindNextOne(R, k) returns the smallest index i for which i > k and R[i] = 1 hold.

If there is no such index, i.e. R[j] is zero for all j > k, then it returns q + 1.

Based on the above description, we can now give the pseudocode of the algorithm.

Algorithm 1 Compute all linearly conjugate graph structures
Inputs: Y,M,D, q
Output: Exist
1: push D into S(0)
2: Exist[D] := 1
3: for k = 0 to q − 1 do
4: while size.S(k) > 0 do
5: R := pop S(k)
6: i := FindNextOne(R, k)
7: push R into S(i)
8: while i ≤ q do
9: W := FindLinConjWithZeros(R, k, i)

10: if W < 0 then
11: BREAK
12: else
13: i := FindNextOne(W, i)
14: push W into S(i)
15: Exist[W] := 1
16: end if
17: end while
18: end while
19: end for

In the following paragraphs we give a brief explanation on the operation of the method.

At the beginning of the computation we put the only known realization D in stack S(0)

-309-

and also save it in array Exist. Then by applying a for loop we pass through the stacks
in increasing order of indices. For each stack we pop out sequences as long as it is not

empty. In the general step sequence R is popped out from the actual stack S(k).

If the index i = FindNextOne(R, k) is smaller than q + 1, then by the definitions it

follows that R defines a superstructure not only in Ck(R) but in Ci(R) as well. Therefore

we put R into stack S(i) in order to save it for further examination. If there is no index

i greater than k for which R[i] = 1 holds, then i computed by FindNextOne(R, k) equals

q + 1. In this case R defines a superstructure in Cq(R), but for the sake of simplicity we

put it into S[i] = S[q + 1] and finish the examination of sequence R. This step is the

reason why all the sequences with last coordinate equal to zero are all stored in stack

S(q + 1) after the computation.

If i is smaller than q + 1, by applying the loop in line 8 we examine the possible zero

gaps starting from index k + 1 in the sequences of Ck(R). Since the values corresponding

to the indices between k and i are all known to be zero, at the first attempt the largest

index of the gap should be i.

If there is no suitable realization, i.e. the procedure FindLinConjWithZeros(R, k, i) returns

−1, then there cannot be any realization with i − k or more consecutive zeros following

the coordinate k in Ck(R). In this case we stop the examination of R and take another

sequence (if there is any).

If a real sequence W is returned by the procedure, the index i = FindNextOne(W,k) is

computed (which is equal to FindNextOne(W, i) in the case of the actual value of the

index i). Since W is a dense realization in Ci(W), we put it in S(i) and save it in array

Exist as well. Then, if i is smaller than q+1, we start looking for a realization having at

least one more consecutive zeros following the coordinate k than W has.

The computation stops when there are no more sequences in stacks with indices smaller

than q.

Using the previous description of the algorithm, we can now give formal results about its

main properties.

Proposition 3.1. For any kinetic system all the possible reaction graph structures rep-

resenting linearly conjugate realizations can be computed by Algorithm 1 after finitely

many steps.

Proof. Let us assume by contradiction that there is a linearly conjugate realization rep-

resented by the sequence V which is not returned by the algorithm. Let us take another

-310-

sequence R, which was returned by the algorithm, it was in stack S(p) at some point

during the computation, V =p R holds and p is the greatest such number. There must be

such a sequence, since the dense realization D and p = 0 meet the conditions. If p = q

or q + 1, then V is equal to R, consequently it is returned by the algorithm, so we can

assume that p ≤ q − 1 holds.

There is a point during the computation when sequence R is popped out from stack

S(p). By applying the notations of the algorithm let us assume, that FindNextOne(R, p)

is i and FindNextOne(V, p) is j. It follows from the super-structure property of R that

i ≤ j holds.

If j is equal to i then V =i R holds. But at some point of the computation sequence

R is in stack S[i], therefore p is not maximal, which is a contradiction.

If i < j holds then the procedure FindLinConjWithZeros(R, p, i) is applied first at the

examination of sequence R. Since the realization V fulfils the constraints, the procedure

must return a sequenceW1.W1 represents the dense realization in Ci(W1), but V ∈ Ci(W1)

and V [j] = 1 hold, therefore W1[j] is also 1 and FindNextOne(W1, p) = j1 ≤ j must be

true.

If j1 = j holds, thenW1 =j V andW1 is in stack S(j) at some point of the computation.

This means that p is not maximal, which is a contradiction.

If j1 < j holds, then we apply the procedure FindLinConjWithZeros(R, p, j1). Since

the realization represented by sequence V fulfils the constraints, it returns a sequence

W2 for which FindNextOne(W2, p) = j2 ≤ j holds. If j2 is equal to j, then we have a

contradiction as before, otherwise we can continue the computation similarly. As a result

we either get a contradiction for p not being maximal or get an infinite increasing sequence

of integers which has an upper bound, and it is again a contradiction. This means that

there cannot be any sequence V which represents a linearly conjugate realization of the

kinetic system but is not returned by the algorithm.

The total computation time can be well characterized by the number of the calls of

the subroutine FindLinConjWithZeros(). We do such an optimization step concerning a

realization only when it is in a stack, at most as many times as the number of not fixed
coordinates. In stack S(k) there might be at most 2k different sequences, therefore a very

rough upper bound on the number of optimization steps is
q∑

k=0

(q − k)2k.

Proposition 3.2. Within the computation described by Algorithm 1 no realization is

returned twice by the procedure FindLinConjWithZeros.

-311-

Proof. Assume by contradiction that there is a sequence W which is computed twice

during the algorithm, i.e. there are sequences R1 and R2, and integers k1, k2, i1 and i2 so

that the objects in similar positions are not all identical, and the following holds:

W = FindLinConjWithZeros(R1, k1, i1) = FindLinConjWithZeros(R2, k2, i2) (16)

It can be assumed that k1 ≤ k2 holds, and according to this value we distinguish two

cases.

First let us assume that k1 and k2 are equal. It comes from the working of the algo-

rithm that R1 =k1 W and since R1 is in stack S(k1) at some point of the computation,

it defines a super-structure in Ck1(W). Similarly follows that R2 defines a superstruc-

ture in Ck2(W) = Ck1(W), and on account of the uniqueness of the super-structure the

sequences R1 and R2 must be identical. There must be some difference among the in-

puts, therefore we can assume that i1 < i2 holds. Both computation steps are done when

sequence R1 is popped out from stack S(k1), but the smaller index is applied first. We

get W = FindLinConjWithZeros(R1, k1, i1) and j = FindNextOne(W,k1). If j is q or

q + 1 then we finish the examination of sequence R1 from the coordinate k1, and the

procedure FindLinConjWithZeros(R1, k1, i2) is not applied. For a smaller j the procedure

FindLinConjWithZeros(R1, k1, j) returns either -1 or a proper sequence V . In the first

case the examination is finished, otherwise the sequence V cannot be equal to W , since

W [j] = 1 holds but V [j] is zero. This property is fulfilled in case of every larger value

of the index j, therefore i1 < i2 < j must hold, however in this case during the com-

putation the procedure FindLinConjWithZeros(R1, k1, i2) is not applied. Consequently, if

k1 = k2 holds, then R1 is identical to R2 and assuming i1 < i2 in all cases the procedure

FindLinConjWithZeros(R1, k1, i2) is not called.

Now we assume that k1 is smaller than k2. From the definitions we get that R1 =k1 W

holds, at some point of the computation R1 is in S(k1) and therefore R1[k1] is 1. We

get similarly that R2 =k2 W and R2[k2] = 1 hold. Consequently, R1 and R2 are in the

equivalence class Ck1(R1) = Ck1(W), where R1 represents the dense realization. From this

it follows that R1[k1] = R2[k1] = R1[k2] = R2[k2] = 1 holds, and then W [k1] = W [k2] = 1

is also true.

As we assumed procedure FindLinConjWithZeros(R1, k1, i1) returns W . But since

there are consecutive zero coordinates from index k1 + 1 to i1 in W and W [k2] = 1,

for i1 the inequality k1 < i1 < k2 must hold and j = FindNextOne(W,k1) can be at

most k2. Since W =k2 R2 holds, then W =j R2 is also true. According to the algo-

-312-

rithm W is in S(j) at some point of the computation, therefore the reaction graph GR2

must be a subgraph of graph GW . It leads to contradiction, since as results the pro-

cedure returns a realization with less coordinates equal to 1, therefore from the result

FindLinConjWithZeros(R2, k2, i2) = W should follow that GW is a subgraph of GR2 .

Remark 3.3. It is possible that a realization of the given kinetic system is computed

multiple times by the procedure FindLinConjWithZeros(). However it is returned only

once, when it is in the required equivalence class. In all other cases the procedure returns

-1. Basically, this is the property stated and proved as Proposition 3.2.

4 Computation results and efficiency analysis

In this section we illustrate the operation of our algorithm on two examples taken from

the literature. The obtained results are compared to the features of the single thread

implementation of the solution published in [40]. All the computations were performed on a

Lenovo D60 workstation with two 2.60GHz Xeon (E5-2650 v2) processors and 32 Gb RAM

(DDR3 1600 MHz, 0.6ns). The algorithms were implemented in MATLAB [26] using the

YALMIP modelling language [25]. It was checked and confirmed that the two compared

algorithms computed exactly the same reaction graph structures both for Example 1 and

Example 2.

4.1 Example 1

The kinetic system (17) examined in this section was originally published in [19], where

it was represented by Equations (7-3) and (7-4) characterizing a dynamically equivalent

realization (Y,Ak) of it.

ẋ1 = x21x2 − 2εx31 − x1x
2
2 + 2εx32

ẋ2 = −x21x2 + 2εx31 + x1x
2
2 − 2εx32

(17)

The complexes in set C are built from two species X1 and X2 as follows: C1 = 2X1 +

X2, C2 = 3X1, C3 = X1+2X2, C4 = 3X2. The structures of the complexes and the reaction

rates are stored in the stoichiometric matrix Y and the Kirchhoff matrix Ak of the CRN

as follows.

Y =

[
2 3 1 0
1 0 2 3

]
Ak =


−1 0 0 ε
1 −ε 0 0
0 ε −1 0
0 0 1 −ε


The reaction graph complemented with the edge weights can be seen in Figure 1.

-313-

C1

C4 C3

C2

ε

1

1

ε

Figure 1. Reaction graph representing the CRN.

The coefficient matrix M = Y · Ak is given by

M =

[
1 −2ε −1 2ε
−1 2ε 1 −2ε

]
.

In the case of the parameter value ε = 1/7 our algorithms found 784 different reaction

graph structures representing linearly conjugate realizations of this simple kinetic system.

The distribution of possible different graph structures with given numbers of reactions is

depicted in Fig. 2. As it is visible, the number of sparse structures, that have 4 directed

edges is 9 in this case.

Figure 2. Number of different reaction graph structures with given numbers of di-
rected edges in the case of Example 1

We obtained that the dense realization (Ad
b , (T

d)−1) contains all the possible reactions,

-314-

i.e. it can be represented by the complete directed graph. The matrices characterizing the

dense realization are the following:

Ad
b =


−50002500 714.29 12498750 0.00036
29170416.67 −952.38 8333333.33 238.0955
12498750 0.00036 −50002500.0025 714.29
8333333.33 238.095 29170416.67 −952.39

 (T d)−1 =

[
5000.005 0

0 5000.005

]

It is interesting to mention that there is only one realization where the reaction graph

is not connected. In this case there are two linkage classes (i.e. connected components)

and the realization is a sparse one at the same time. It is described by the matrices As
b

and (T s)−1:

As
b =


−5000.005 1428.573 0 0
5000.005 −1428.573 0 0

0 0 −5000.005 1428.573
0 0 5000.005 −1428.573

 (T s)−1 =

[
5000.005 0

0 5000.005

]

Table 1 shows the comparison results for the applied two algorithms. The explanation

of the compared features in Tables 1 and 2 is the following:

1. The total running time of the algorithm from start to end in seconds.

2. The computation time spent for solving optimization (i.e. linear programming) prob-

lems in seconds, including the setup of constraints.

3. The number of different reaction graph structures corresponding to linearly conju-

gate realizations of the studied kinetic system found by the applied methods.

4. The total number of function calls for computing constrained dense realizations

(FindLinConj-WithZeros() in the proposed algorithm, and FindLinConjWithout-

Edge() in [40]).

5. The number of infeasible function calls for computing constrained dense realizations

(see, item 4, too).

6. The number of valid reaction graph structures found that had already been com-

puted previously.

7. The average time in seconds that is elapsed between displaying/storing two distinct

consecutive reaction graph structures.

-315-

8. The maximal time interval in seconds that is elapsed between displaying/storing

two distinct consecutive reaction graph structures.

9. The variance of time intervals elapsed between displaying/storing two distinct con-

secutive reaction graph structures.

Table 1. Comparison of the properties of the proposed algorithm with the method
published in [40] for Example 1

feat. no. feature description current solution solution in [40]
1. total running time [s] 617.5386 2933.4868
2. total optimization time [s] 616.1069 2923.1713
3. no. of distinct valid structures found 784 784
4. no. of constrained dense real. comps. 1096 5825
5. no. of infeasible comp. steps 312 2240
6. no. of structures found again 0 2801
7. avg. computation interval [s] 0.788 3.7416
8. max. computation interval [s] 14.97 12.0999
9. variance of computation intervals [s2] 0.30339 2.3894

4.2 Example 2

In this subsection we study a slightly bigger example, which was first introduced in [10] as

example A1. The computation problem was investigated in [40], where the details on the

features of the computed reaction graph structures can be found. Here we are primarily

interested in the performance comparison of the approaches in the present paper and

in [40].

In the original article [10] the kinetic system is given by the following realization of it,

described by the matrices

Y =

[
0 1 0 2 2 3
0 0 1 0 1 0

]
Ak =


−k1 k2 0 0 0 0
0 −k2 k3 0 0 0
k1 0 −k3 k4 0 0
0 0 0 −k4 0 0
0 0 0 0 −k5 0
0 0 0 0 k5 0

 .

In the reaction network there are two species X1 and X2 and six complexes: C = {C1 =

0, C2 = X1, C3 = X2, C4 = 2X1, C5 = 2X1 +X2, C6 = 3X1}. According to the definitions,

the coefficient matrix M is given as

M =

[
0 −k2 k3 −2k4 k5 0
k1 0 −k3 k4 −k5 0

]
.

-316-

The reaction rate coefficients applied during the computations were the same as in [10],

namely: k1 = 1, k2 = 1, k3 = 0.05, k4 = 0.1, k5 = 0.1. With these parameter values the

dynamics of the system shows oscillatory behaviour. It is known from [40] that the dense

realization of this kinetic system contains 19 reactions.

Table 2 shows the comparison results with [40] for this example. It can be seen that

the advantage of our current solution over [40] increased slightly in the case of the stud-

ied larger example considering overall computation time. This fact mainly comes from

Proposition 3.2 that results in a significantly lower number of constrained dense realiza-

tion computation steps than [40]. However, as features 8 and 9 show, the solution in [40]

may guarantee a ‘more even’ run with smaller variance in the computation intervals. The

reason for this is the important property of the algorithm in [40] that polynomial time is

elapsed between displaying any two consecutive realizations.

Table 2. Comparison of the properties of the proposed algorithm with the method
published in [40] for Example 2

feat. no. feature description current solution solution in [40]
1. total running time [s] 23359.4359 139456.3050
2. total optimization time [s] 23126.6604 135217.6015
3. no. of distinct valid structures found 17160 17160
4. no. of constrained dense real. comps. 39662 211265
5. no. of infeasible comp. steps 22502 79304
6. no. of structures found again 3820 114801
7. avg. computation interval [s] 1.1698 8.1268
8. max. computation interval [s] 813.7367 22.2412
9. variance of computation intervals [s2] 38.6325 7.8097

5 Conclusion
A novel method was proposed in this paper for computing all distinct reaction graph

structures corresponding to linearly conjugate realizations of polynomial kinetic systems

assuming a fixed set of complexes. The inputs of the method are the kinetic differential

equations and the complexes, while the output is the set of computed reaction graphs.

The computation is started from the dense realization, and the subsequent reaction graphs

are computed using linear programming and are stored in a multi-level stack structure.

The correctness of the algorithm was formally proved. The proposed approach was com-

pared to the single-thread implementation of a previous solution published in [40] via two

illustrative examples, and it was shown that the number of optimization steps, and there-

-317-

fore the overall computation time and the average computation intervals are significantly

smaller in the case of the new algorithm. Future work will be focused on the parallel im-

plementation of the method, as well as on the further structural analysis of the obtained

large number of reaction graphs corresponding to the studied kinetic models.

Acknowledgments : This paper is dedicated to Prof. Árpád I. Csurgay on the occasion
of his 80th birthday. This project was developed within the PhD program of the Roska
Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology
and Bionics, Pázmány Péter Catholic University, Budapest. The authors acknowledge the
support of the National Research, Development and Innovation Office NKFIH through
grant no. NF104706. The first author acknowledges the support of the project PPKE
KAP-1.1-15/052. The authors thank the anonymous reviewers for the constructive com-
ments.

References

[1] D. F. Anderson, A proof of the global attractor conjecture in the single linkage class
case, SIAM J. Appl. Math. 71 (2011) 1487–1508.

[2] J. Bang–Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications , Springer,
Berlin, 2001.

[3] J. R. Banga, Optimization in computational systems biology, BMC Syst. Biol. 2
(2008) 47–54.

[4] B. Boros, On the existence of the positive steady states of weakly reversible
deficiency–one mass action systems, Math. Biosci. 245 (2013) 157–170.

[5] V. Chellaboina, S. P. Bhat, W. M. Haddad, D. S. Bernstein, Modelling and analysis
of mass-action kinetics – nonnegativity, realizability, reducibility and semistability,
IEEE Control Syst. Mag. 29 (2009) 60–78.

[6] B. L. Clarke, Stability of Complex Reaction Networks , Wiley, Hoboken, 1980.

[7] G. Craciun, Toric differential inclusions and a proof of the global attractor conjecture,
arXiv:1501.02860 [math.DS] (2015).

[8] G. Craciun, M. Feinberg, Multiple equilibria in complex chemical reaction networks:
II. The species–reaction graph, SIAM J. Appl. Math. 66 (2006) 1321–1338.

[9] G. Craciun, C. Pantea, Identifiability of chemical reaction networks, J. Math. Chem.
44 (2008) 244–259.

[10] A. Császár, L. Jicsinszky, T. Turányi, Generation of model reactions leading to limit
cycle behaviour, React. Kinet. Catal. L. 18 (1981) 65–71.

-318-

[11] R. Díaz–Sierra, B. Hernández–Bermejo, V. Fairén, Graph–theoretic description of the
interplay between non–linearity and connectivity in biological systems, Math. Biosci.
156 (1999) 229–253.

[12] G. Farkas, Kinetic lumping schemes, Chem. Eng. Sci. 54 (1999) 3909–3915.

[13] M. Feinberg, Lectures on chemical reaction networks, Notes of lectures given at the
Mathematics Research Center, Univ. Wisconsin, 1979.

[14] M. Feinberg, Chemical reaction network structure and the stability of complex
isothermal reactors – I. The deficiency zero and deficiency one theorems, Chem.
Eng. Sci. 42 (1987) 2229–2268.

[15] J. L. Gross, J. Yellen, Graph Theory and its Applications , CRC Press, 2006.

[16] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry , Springer,
1986.

[17] W. M. Haddad, V. Chellaboina, Q. Hui, Nonnegative and Compartmental Dynamical
Systems , Princeton Univ. Press, 2010.

[18] F. Horn, Necessary and sufficient conditions for complex balancing in chemical ki-
netics, Arch. Ration. Mech. An. 49 (1972) 172–186.

[19] F. Horn, R. Jackson, General mass action kinetics, Arch. Ration. Mech. An. 47 (1972)
81–116.

[20] V. Hárs, J. Tóth, On the inverse problem of reaction kinetics, Coll. Math. Soc. J. B.
30 (1981) 363–379.

[21] M. D. Johnston, D. Siegel, Linear conjugacy of chemical reaction networks, J. Math.
Chem. 49 (2011) 1263–1282.

[22] M. D. Johnston, D. Siegel, G. Szederkényi, Dynamical equivalence and linear con-
jugacy of chemical reaction networks: new results and methods, MATCH Commun.
Math. Comput. Chem. 68 (2012) 443–468.

[23] X. Li, Y. Shi, A survey on the Randić index. MATCH Commun. Math. Comput.
Chem. 59 (2008) 127–156.

[24] G. Lipták, G. Szederkényi, K. M. Hangos, Computing zero deficiency realizations of
kinetic systems. Syst. Control Lett. 81 (2015) 24–30.

[25] J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, Proc.
CACSD Conference, Taipei, Taiwan, 2004.

[26] The Math Works, Inc., Natick, MA. Matlab User’s Guide, 2000.

-319-

[27] M. Mincheva, G. Cracium, Multigraph conditions for multistability, oscillations
and pattern formation in biochemical reaction networks, Proc. IEEE 96 (2008)
1281–1291.

[28] K. Murota, Systems Analysis by Graphs and Matroids , Springer, 1987.

[29] G. Osipenko, Dynamical Systems, Graphs, and Algorithms , Springer, 2007.

[30] J. Rudan, G. Szederkényi, K. M. Hangos, Efficiently computing alternative structures
of large biochemical reaction networks using linear programming, MATCH Commun.
Math. Comput. Chem. 71 (2014) 71–92.

[31] M. Saez, C. Wiuf, E. Feliu, Graphical reduction of reaction networks by linear elim-
ination of species, J. Math. Biol., in press.

[32] N. Samardzija, L. D. Greller, E. Wassermann, Nonlinear chemical kinetic schemes
derived from mechanical and electrical dynamical systems, J. Chem. Phys. 90 (1989)
2296–2304.

[33] L. Shi, Chemical indices, mean distance, and radius, MATCH Commun. Math. Com-
put. Chem. 75 (2016) 57–70.

[34] G. Szederkényi, Computing sparse and dense realizations of reaction kinetic systems,
J. Math. Chem. 47 (2010) 551–568.

[35] G. Szederkényi, J. R. Banga, A. A. Alonso, Inference of complex biological networks:
distinguishability issues and optimization–based solutions, BMC Syst. Biol. 5 (2011)
#177 (15 pp.).

[36] G. Szederkényi, K. M. Hangos, Finding complex balanced and detailed balanced
realizations of chemical reaction networks, J. Math. Chem. 49 (2011) 1163–1179.

[37] Z. A. Tuza, G. Szederkényi, Computing core reactions of uncertain polynomial kinetic
systems, 23rd Mediterranean Conference on Control and Automation (MED), June
16-19, 2015. Torremolinos, Spain, 2015, pp. 1187–1194.

[38] A. I. Vol’pert, Differential equations on graphs, Math. USSR Sb+ 17 (1972) 571–582.

[39] B. Ács, G. Szederkényi, Z. A. Tuza, Zs. Tuza, Computing linearly conjugate weakly
reversible kinetic structures using optimization and graph theory, MATCH Commun.
Math. Comput. Chem. 74 (2015) 481–504.

[40] B. Ács, G. Szederkényi, Zs. Tuza, Z. A. Tuza, Computing all possible graph structures
describing linearly conjugate realizations of kinetic systems, Comput. Phys. Commun.
204 (2016) 11–20.

[41] P. Érdi, J. Tóth, Mathematical Models of Chemical Reactions: Theory and Applica-
tions of Deterministic and Stochastic Models , Manchester Univ. Press, 1989.

-320-

