Some Observations on Harary Index and Traceable Graphs*

Ruifang Liu ${ }^{a}$, Xue Du^{a}, Huicai Jia ${ }^{b}$

${ }^{a}$ School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450001, China.
${ }^{b}$ College of Science, Henan Institute of Engineering, Zhengzhou, Henan 451191, China.
(Received April 14, 2016)

Abstract

A molecular graph matrix, Harary matrix, was defined in honor of Professor Frank Harary. Harary index is a graph invariant based on it. In this paper, we give sufficient conditions for a graph being traceable and Hamiltonian in terms of the Harary index of a graph and the complement of a graph, which correct and extend the result of Wang and Hua (2013) [5]. Furthermore, we also present sufficient conditions for a bipartite graph being traceable and Hamiltonian in terms of the Harary index of a bipartite graph and its quasi-complement. Finally, we give some sufficient Harary spectral conditions for a graph or a bipartite graph being traceable and Hamiltonian in terms of the Harary spectral radius of its complement or quasi-complement.

1 Introduction

All graphs considered here are finite undirected graphs without loops and multiple edges. Let G be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. For a graph, we use d_{i} or $d_{G}\left(v_{i}\right)$ to denote the degree of a vertex v_{i} in G and use $d_{G}\left(v_{i}, v_{j}\right)$ or $d_{i j}$ to denote the distance between two vertices v_{i} and v_{j} in G. The union of simple graphs G and H is the graph $G \cup H$ with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. If G and H are disjoint, we refer to their union as a disjoint union, and generally denote it by $G+H$. The disjoint union of k copies of a graph G is denoted by $k G$. The join of G and

[^0]H, denoted by $G \vee H$, is the graph obtained from disjoint union of G and H by adding all possible edges between them. Let \bar{G} denote the complement of G.

A path in a graph is called a Hamiltonian path if it visits every vertex precisely once. A graph containing a Hamiltonian path is said to be traceable. A cycle in a graph is called a Hamiltonian cycle if it contains all the vertices of a graph. A graph containing a Hamiltonian cycle is called a Hamiltonian graph.

The Harary index of a graph G, denoted by $H(G)$, has been introduced independently by Ivanciuc et.al. [6] and Plavšić et.al. [10] in 1993 for the characterization of molecular graphs. It has been named in honor of Professor Frank Harary on the occasion of his 70th birthday. The Harary index $H(G)$ is defined as the sum of reciprocals of distances between all pairs of vertices of the graph G, i.e.

$$
H(G)=\sum_{u, v \in V(G)} \frac{1}{d_{G}(u, v)}
$$

Note that in any disconnected graph G, the distance is infinite between any two vertices from two distinct components. Therefore its reciprocal can be viewed as 0 . Thus, we can define validly the Harary index of disconnected graph G as follows:

$$
H(G)=\sum_{i=1}^{m} H\left(G_{i}\right)
$$

where $G_{1}, G_{2}, \ldots, G_{k}$ are the components of G. We often use $\hat{D}_{i}(G)$ or $\hat{D}_{v_{i}}(G)$ to denote $\sum_{v_{j} \in V(G)} \frac{1}{d_{G}\left(v_{i}, v_{j}\right)}$, then

$$
H(G)=\frac{1}{2} \sum_{v_{i} \in V(G)} \hat{D}_{v_{i}}(G)=\frac{1}{2} \sum_{i=1}^{n} \hat{D}_{i}(G)
$$

The Harary matrix $R D(G)$ of G, which is initially called the reciprocal distance matrix and introduced by [6], is an $n \times n$ matrix whose (i, j)-entry is equal to $\frac{1}{d_{i j}}$ if $i \neq j$ and 0 otherwise. The Harary spectral radius of G is the largest eigenvalue of $R D(G)$, denoted by $\rho(G)$.

Up to now, there are many established results dealing with bounds and extremal properties of Harary index, published both in mathematical and in mathematicl chemistry literature, see $[4,8,12-14]$. In $[3,5]$, they presented some sufficient conditions for a graph to be traceable by using Harary index. But there is an error in its proof in [5]. Li [7] presented sufficient conditions in terms of the Harary index for a graph to be Hamiltonian
or Hamilton-connected using some proof ideas in [5]. Zeng [15] give a sufficient condition, in terms of Harary index, for a connected bipartite graph to be Hamiltonian.

In this paper, we give sufficient conditions for a graph being traceable and Hamiltonian in terms of the Harary index of a graph and the complement of a graph, which correct and extend the result of Wang and Hua (2013) [5]. Furthermore, we also present sufficient conditions for a bipartite graph being traceable and Hamiltonian in terms of the Harary index of a bipartite graph and its quasi-complement. Finally, we give some sufficient Harary spectral conditions for a graph or a bipartite graph being traceable and Hamiltonian in terms of its Harary spectral radius of the complement or its quasi-complement. Our results extend and improve the results in [3, 5, 7, 15].

Note that $\delta \geq 1$ and $\delta \geq 2$ are trivial necessary conditions for a graph to be traceable and Hamiltonian, respectively. Hence we always make the assumption while finding spectral conditions for traceable and Hamiltonian graphs or bipartite graphs throughout this paper.

2 Corrigendum to Theorem 2.2 in [5]

Let $\mathbb{N P}=\left\{K_{1} \vee\left(K_{n-3}+2 K_{1}\right), K_{1} \vee\left(K_{1,3}+K_{1}\right), K_{2,4}, K_{2} \vee 4 K_{1}, K_{2} \vee\left(3 K_{1}+K_{2}\right), K_{1} \vee\right.$ $\left.K_{2,5}, K_{3} \vee 5 K_{1}, K_{2} \vee\left(K_{1,4}+K_{1}\right), K_{4} \vee 6 K_{1}\right\}$.

Lemma 2.1. ([1]) Let G be a nontrivial graph of order n with degree sequence $\left(d_{1}, d_{2}, \ldots\right.$, d_{n}), where $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$ and $n \geq 4$. Suppose that there is no integer $k<\frac{n+1}{2}$ such that $d_{k} \leq k-1$ and $d_{n-k+1} \leq n-k-1$. Then G is traceable.

Theorem 2.2. ([5]) Let G be a connected graph of order $n \geq 4$. If $H(G) \geq \frac{n^{2}-3 n+5}{2}$, then G is traceable unless $G \in\left\{K_{1} \vee\left(K_{n-3}+2 K_{1}\right), K_{2} \vee\left(3 K_{1}+K_{2}\right), K_{4} \vee 6 K_{1}\right\}$.

Theorem 2.2 provided a sufficient condition in terms of Harary index of a graph to be traceable. But there is an error in its proof. It should be:

Theorem 2.3. Let G be a connected graph of order $n \geq 4$. If

$$
H(G) \geq \frac{n^{2}-3 n+5}{2}
$$

then G is traceable unless $G \in \mathbb{N} \mathbb{P}$.
Proof. Assume first that G is nontraceable connected graph with degree sequence (d_{1}, d_{2}, $\left.\ldots, d_{n}\right)$ such that $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$ and $n \geq 4$. By Lemma 2.1, there exists an integer
$k<\frac{n+1}{2}$ such that $d_{k} \leq k-1$ and $d_{n-k+1} \leq n-k-1$. Note that G is connected graph and $d_{k} \leq k-1$, we have $k \geq 2$. Thus

$$
\begin{aligned}
H(G)=\frac{1}{2} \sum_{i=1}^{n} \hat{D}_{i}(G) & \leq \frac{1}{2} \sum_{i=1}^{n}\left[d_{i}+\frac{1}{2}\left(n-1-d_{i}\right)\right] \\
& =\frac{n(n-1)}{4}+\frac{1}{4} \sum_{i=1}^{n} d_{i} \\
& \leq \frac{n(n-1)}{4}+\frac{1}{4}[k(k-1)+(n-2 k+1)(n-k-1)+(k-1)(n-1)] \\
& =\frac{n^{2}-3 n+5}{2}-\frac{(k-2)(2 n-3 k-5)}{4} .
\end{aligned}
$$

Since $H(G) \geq \frac{n^{2}-3 n+5}{2}$, we obtain that $\frac{(k-2)(2 n-3 k-5)}{4} \leq 0$.
Case 1: $\frac{(k-2)(2 n-3 k-5)}{4}=0$, i.e. $k=2$ or $2 n-3 k-5=0$. If $k=2$, then G is a graph with $d_{1}=d_{2}=1, d_{3}=d_{4}=\cdots=d_{n-1}=n-3$ and $d_{n}=n-1$, which implies $G=K_{1} \vee\left(K_{n-3}+2 K_{1}\right)$. If $2 n=3 k+5$, then $n<13$ since $k<\frac{n+1}{2}$. Hence $n=7, k=3$ or $n=10, k=5$. The corresponding permissible graphic sequences are $(2,2,2,3,3,6,6)$ and $(4,4,4,4,4,4,9,9,9,9)$, which implies $G=K_{2} \vee\left(3 K_{1}+K_{2}\right)$ or $G=K_{4} \vee 6 K_{1}$, respectively.

Case 2: $\frac{(k-2)(2 n-3 k-5)}{4}<0$, i.e. $k \geq 3$ and $2 n-3 k-5<0$. In this case, $n \geq 2 k \geq 6$. If $n \geq 10$, then $2 n-3 k-5 \geq 2 n-\frac{3 n}{2}-5=\frac{n-10}{2} \geq 0$. If $n=9$, then $k \leq 4$ and $2 n-3 k-5 \geq 1$. If $n=7$, then $k \leq 3$, and hence, $2 n-3 k-5 \geq 0$. In each case, we get a contradiction.

If $n=8$, then $k \leq 4$. If $k \leq 3$, then $2 n-3 k-5 \geq 2$, a contradiction. Now assume that $k=4$. Then,$d_{5} \leq 3$ and $17 \leq m \leq 18$. From the inequality $d_{6}+d_{7}+d_{8}=$ $2 m-\sum_{1 \leq i \leq 5} d_{i} \geq 19$, we obtain $d_{8}=7$. Also note that $\sum d_{i}=2 m \geq 34$ and $\sum d_{i}$ is even. If $d_{6}=d_{7}=6$ and $d_{8}=7$, then the permissible graphic sequence is ($3,3,3,3,3,6,6,7$), hence $G=K_{1} \vee K_{2,5}$. If $d_{6}=5$ and $d_{7}=d_{8}=7$, then the permissible graphic sequence is $(3,3,3,3,3,5,7,7)$, hence $G=K_{2} \vee\left(K_{1,3}+K_{2}\right)$. If $d_{6}=6$ and $d_{7}=d_{8}=7$, then the permissible graphic sequence is $(2,3,3,3,3,6,7,7)$, hence $G=K_{2} \vee\left(K_{1,4}+K_{1}\right)$. If $d_{6}=d_{7}=$ $d_{8}=7$, then the permissible graphic sequence is (3,3,3,3,3,7,7,7), hence $G=K_{3} \vee 5 K_{1}$.

If $n=6$, then $k \leq 3$. If $k \leq 2$, then $2 n-3 k-5 \geq 1$, a contradiction. If $k=3$, then $d_{4} \leq 2$ and $8 \leq m \leq 9$. From the inequality $d_{5}+d_{6}=2 m-\sum_{1 \leq i \leq 4} d_{i} \geq 8$, we obtain $4 \leq d_{6} \leq 5$. Also note that $\sum d_{i}=2 m \geq 16$ and $\sum d_{i}$ is even. If $d_{5}=d_{6}=4$, then the permissible graphic sequence is $(2,2,2,2,4,4)$, hence $G=K_{2,4}$. If $d_{5}=4$ and $d_{6}=5$, then the permissible graphic sequence is $(1,2,2,2,4,5)$, hence $G=K_{1} \vee\left(K_{1,3}+K_{1}\right)$. If $d_{5}=d_{6}=5$, then the permissible graphic sequence is ($2,2,2,2,5,5$), hence $G=K_{2} \vee 4 K_{1}$.

Note that $G=K_{2} \vee\left(K_{1,3}+K_{2}\right)$ is traceable and the other obtained graphs contain no Hamiltonian path. Hence $G \in \mathbb{N} P$.

3 Harary index on traceable and Hamiltonian graphs

Lemma 3.1. ([9]) Let G be a graph on $n \geq 4$ vertices and m edges with $\delta \geq 1$. If $m \geq\binom{ n-2}{2}+2$, then G is traceable unless $G \in \mathbb{N} \mathbb{P}$.

According to Lemma 3.1, we present a simple proof of Theorem 2.3.
Proof. Suppose that G is nontraceable. Then

$$
\begin{aligned}
H(G)=\frac{1}{2} \sum_{i=1}^{n} \hat{D}_{i}(G) & \leq \frac{1}{2} \sum_{i=1}^{n}\left[d_{i}+\frac{1}{2}\left(n-1-d_{i}\right)\right] \\
& =\frac{n(n-1)}{4}+\frac{1}{4} \sum_{i=1}^{n} d_{i} \\
& =\frac{n(n-1)}{4}+\frac{1}{2} m .
\end{aligned}
$$

Note that $H(G) \geq \frac{n^{2}-3 n+5}{2}$, we have

$$
m \geq n^{2}-3 n+5-\frac{n(n-1)}{2}=\binom{n-2}{2}+2 .
$$

By Lemma 3.1, we obtain that $G \in \mathbb{N} \mathbb{P}$. By a direct computation, for all $G \in \mathbb{N} \mathbb{P}$, $H(G) \geq \frac{n^{2}-3 n+5}{2}$. This completes the proof of Theorem 2.3.

Theorem 3.2. Let G be a connected graph of order $n \geq 4$. If

$$
H(\bar{G}) \leq \frac{5 n^{2}-19 n+20}{2(n-1)}
$$

then G is traceable unless $G \in\left\{K_{1,3}, K_{1} \vee\left(K_{2}+2 K_{1}\right), K_{1} \vee\left(K_{3}+2 K_{1}\right), K_{1} \vee\left(K_{1,3}+\right.\right.$ $\left.\left.K_{1}\right), K_{2,4}, K_{2} \vee 4 K_{1}, K_{2} \vee\left(3 K_{1}+K_{2}\right), K_{1} \vee K_{2,5}, K_{3} \vee 5 K_{1}, K_{2} \vee\left(K_{1,4}+K_{1}\right), K_{4} \vee 6 K_{1}\right\}$. Proof. Suppose that G is nontraceable. Then

$$
\begin{aligned}
H(\bar{G})=\frac{1}{2} \sum_{i=1}^{n} \hat{D}_{i}(\bar{G}) & \geq \frac{1}{2} \sum_{v \in V(G)}\left[d_{\bar{G}}(v)+\frac{1}{n-1}\left(n-1-d_{\bar{G}}(v)\right)\right] \\
& =\frac{1}{2} \sum_{v \in V(G)}\left[1+\frac{n-2}{n-1} d_{\bar{G}}(v)\right] \\
& =\frac{n}{2}+\frac{n-2}{2(n-1)} \sum_{v \in V(G)}\left(n-1-d_{G}(v)\right) \\
& =\frac{n(n-1)}{2}-\frac{n-2}{2(n-1)} \sum_{v \in V(G)} d_{G}(v) \\
& =\frac{n(n-1)}{2}-\frac{n-2}{n-1} m .
\end{aligned}
$$

Note that $H(\bar{G}) \leq \frac{5 n^{2}-19 n+20}{2(n-1)}$, we have

$$
m \geq \frac{n(n-1)^{2}}{2(n-2)}-\frac{5 n^{2}-19 n+20}{2(n-1)}=\binom{n-2}{2}+2 .
$$

By Lemma 3.1, we obtain that $G \in \mathbb{N} \mathbb{P}$. Note that $n \geq 7$,

$$
H\left(\overline{K_{1} \vee\left(K_{n-3}+2 K_{1}\right)}\right) \geq \frac{n^{2}+n-8}{4}>\frac{5 n^{2}-19 n+20}{2(n-1)}
$$

So we obtain this result.

Let $\mathbb{N C}=\left\{K_{2} \vee\left(K_{n-4}+2 K_{1}\right), K_{3} \vee 4 K_{1}, K_{2} \vee\left(K_{1,3}+K_{1}\right), K_{1} \vee K_{2,4}, K_{3} \vee\left(K_{2}+\right.\right.$ $\left.\left.3 K_{1}\right), K_{4} \vee 5 K_{1}, K_{3} \vee\left(K_{1,4}+K_{1}\right), K_{2} \vee K_{2,5}, K_{5} \vee 6 K_{1}\right\}$.

Lemma 3.3. ([9]) Let G be a graph on $n \geq 5$ vertices and m edges with $\delta \geq 2$. If $m \geq\binom{ n-2}{2}+4$, then G contains a Hamiltonian cycle unless $G \in \mathbb{N C}$.

Theorem 3.4. Let G be a graph on $n \geq 5$ vertices and m edges with $\delta \geq 2$. If

$$
H(G) \geq \frac{n^{2}+7-3 n}{2}
$$

then G is Hamiltonian unless $G \in \mathbb{N} \mathbb{C}$.
Proof. Suppose that G is non-Hamiltonian. Then

$$
\begin{aligned}
H(G)=\frac{1}{2} \sum_{i=1}^{n} \hat{D}_{i}(G) & \leq \frac{1}{2} \sum_{i=1}^{n}\left[d_{i}+\frac{1}{2}\left(n-1-d_{i}\right)\right] \\
& =\frac{n(n-1)}{4}+\frac{1}{4} \sum_{i=1}^{n} d_{i} \\
& =\frac{n(n-1)}{4}+\frac{1}{2} m .
\end{aligned}
$$

Note that $H(G) \geq \frac{n^{2}-3 n+7}{2}$, we have

$$
m \geq n^{2}-3 n+7-\frac{n(n-1)}{2}=\binom{n-2}{2}+4 .
$$

By Lemma 3.3, we have $G \in \mathbb{N} \mathbb{C}$. By a direct computation, for all $G \in \mathbb{N} \mathbb{C}, H(G) \geq$ $\frac{n^{2}+7-3 n}{2}$. This completes the proof.

Theorem 3.5. Let G be a graph on $n \geq 5$ vertices and m edges with $\delta \geq 2$. If

$$
H(\bar{G}) \leq \frac{5 n^{2}-23 n+28}{2(n-1)}
$$

then G is Hamiltonian unless $G \in\left\{K_{2} \vee 3 K_{1}, K_{2} \vee\left(K_{2}+2 K_{1}\right), K_{2} \vee\left(K_{3}+2 K_{1}\right), K_{3} \vee\right.$ $4 K_{1}, K_{2} \vee\left(K_{1,3}+K_{1}\right), K_{1} \vee K_{2,4}, K_{3} \vee\left(K_{2}+3 K_{1}\right), K_{4} \vee 5 K_{1}, K_{3} \vee\left(K_{1,4}+K_{1}\right), K_{2} \vee K_{2,5}, K_{5} \vee$ $\left.6 K_{1}\right\}$.

Proof. Suppose that G is non-Hamiltonian. Then

$$
\begin{aligned}
H(\bar{G})=\frac{1}{2} \sum_{v \in V(G)} D_{i}(\bar{G}) & \geq \frac{1}{2} \sum_{v \in V(G)}\left[d_{\bar{G}}(v)+\frac{1}{n-1}\left(n-1-d_{\bar{G}}(v)\right)\right] \\
& =\frac{1}{2} \sum_{v \in V(G)}\left[1+\frac{n-2}{n-1} d_{\bar{G}}(v)\right] \\
& =\frac{n}{2}+\frac{n-2}{2(n-1)} \sum_{v \in V(G)}\left(n-1-d_{G}(v)\right) \\
& =\frac{n(n-1)}{2}-\frac{n-2}{2(n-1)} \sum_{v \in V(G)} d_{G}(v) \\
& =\frac{n(n-1)}{2}-\frac{n-2}{n-1} m .
\end{aligned}
$$

Since $H(\bar{G}) \leq \frac{5 n^{2}-23 n+28}{2(n-1)}$, we have

$$
m \geq \frac{n(n-1)^{2}}{2(n-2)}-\frac{5 n^{2}-23 n+28}{2(n-2)}=\binom{n-2}{2}+4
$$

By Lemma 3.3, we obtain that $G \in \mathbb{N} \mathbb{C}$. Note that $n \geq 8$,

$$
H\left(\overline{K_{2} \vee\left(K_{n-4}+2 K_{1}\right)}\right) \geq \frac{n^{2}-n-8}{4}>\frac{5 n^{2}-23 n+28}{2(n-1)}
$$

So we obtain this theorem.

4 Harary index on traceable and Hamiltonian bipartite graphs

Let $G=G[X, Y]$ be a bipartite graph, where $|X|=|Y|=n \geq 2$. The bipartite graph $G^{*}=G^{*}[X, Y]$ is called the quasi-complement of G, which is constructed as follows: $V\left(G^{*}\right)=V(G)$ and $x y \in E\left(G^{*}\right)$ if and only if $x y \notin E(G)$ for $x \in X, y \in Y$.

Let $G[X, Y]$ be a traceable bipartite graph. Then $|X|=|Y|$ or $|X|=|Y|+1$. These two types will be discussed separately.

Lemma 4.1. ([11]) Let $G=G[X, Y]$ be a bipartite graph with $\delta \geq 1$ and m edges, where $|X|=|Y|=n \geq 3$. If $m \geq n^{2}-2 n+3$, then G is traceable.

Theorem 4.2. Let $G=G[X, Y]$ be a bipartite graph with $\delta \geq 1$ and m edges, where $|X|=|Y|=n \geq 3$. If

$$
H(G) \geq \frac{9 n^{2}-11 n+12}{6}
$$

then G is traceable.
Proof. Let G be a graph satisfying the condition in Theorem 4.2. Then

$$
\begin{aligned}
H(G)=\frac{1}{2} \sum_{i=1}^{2 n} \hat{D}_{i}(G) & \leq \frac{1}{2} \sum_{i=1}^{2 n}\left[d_{i}+\frac{1}{3}\left(n-d_{i}\right)+\frac{1}{2}(n-1)\right] \\
& =\frac{1}{2} \sum_{i=1}^{2 n}\left(\frac{5 n-3}{6}+\frac{2}{3} d_{i}\right) \\
& =\frac{5 n^{2}-3 n}{6}+\frac{1}{3} \sum_{i=1}^{2 n} d_{i} \\
& =\frac{5 n^{2}-3 n}{6}+\frac{2}{3} m .
\end{aligned}
$$

Since $H(G) \geq \frac{9 n^{2}-11 n+12}{6}$, we have

$$
m \geq \frac{9 n^{2}-11 n+12-5 n^{2}+3 n}{6} \times \frac{3}{2}=n^{2}-2 n+3
$$

According to Lemma 4.1, then G is traceable.
Theorem 4.3. Let $G=G[X, Y]$ be a bipartite graph with $\delta \geq 1$ and m edges, where $|X|=|Y|=n \geq 3$. If

$$
H\left(G^{*}\right) \leq \frac{12 n^{2}-21 n+12}{4 n-2}
$$

then G is traceable.

Proof. Let G^{*} be the quasi-complement of G. Then

$$
\begin{aligned}
H\left(G^{*}\right)=\frac{1}{2} \sum_{i=1}^{2 n} \hat{D}_{i}\left(G^{*}\right) & \geq \frac{1}{2} \sum_{i=1}^{2 n}\left[d_{G^{*}}\left(v_{i}\right)+\frac{1}{2 n-1}\left(n-d_{G^{*}}\left(v_{i}\right)\right)+\frac{n-1}{2 n-2}\right] \\
& =\frac{1}{2} \sum_{i=1}^{2 n}\left[\frac{2(n-1)}{2 n-1} d_{G^{*}}\left(v_{i}\right)+\frac{n}{2 n-1}+\frac{1}{2}\right] \\
& =\frac{1}{2} \sum_{i=1}^{2 n}\left[\frac{2(n-1)}{2 n-1} d_{G^{*}}\left(v_{i}\right)+\frac{4 n-1}{2(2 n-1)}\right] \\
& =\frac{n(4 n-1)}{2(2 n-1)}+\frac{2(n-1)}{2(2 n-1)} \sum_{i=1}^{2 n}\left(n-d_{G}\left(v_{i}\right)\right) \\
& =\frac{4 n^{3}-n}{2(2 n-1)}-\frac{2(n-1)}{2 n-1} m .
\end{aligned}
$$

Since $H\left(G^{*}\right) \leq \frac{12 n^{2}-21 n+12}{4 n-2}$, we have $m \geq n^{2}-2 n+3$. ¿From Lemma 4.1, then G is traceable.

Let $G=K_{p, n-2}+4 e$ be a bipartite graph obtained from $K_{p, n-2}$ by adding two vertices which are adjacent to two common vertices with degree $n-2$ in $K_{p, n-2}$, respectively, where $p \geq n-1$.

Lemma 4.4. ([11]) Let $G=G[X, Y]$ be a bipartite graph with $\delta \geq 2$ and m edges, where $|X|=|Y|=n \geq 4$. If $m \geq n^{2}-2 n+4$, then G is Hamiltonian unless $G=K_{n, n-2}+4 e$.

Next, we consider the other type $|X|=|Y|+1$. Let $G[X, Y]$ be a bipartite graph, where $|X|=n+1$, and $|Y|=n \geq 2$. Denote by δ_{X} and δ_{Y} the minimum degrees of vertices in X and Y, respectively. Note that $\delta_{X} \geq 1$ and $\delta_{Y} \geq 2$ are the trivial necessary conditions for G to be traceable. Let $G[X, Y+v]$ be the bipartite graph obtained from $G[X, Y]$ by adding a vertex v which is adjacent to every vertex in X. It is easy to see that $G[X, Y]$ is traceable if and only if $G[X, Y+v]$ is Hamiltonian.

Let $K_{n, n-1}+2 e$ be a graph obtained from $K_{n, n-1}$ by adding two vertices which are adjacent to a common vertex with degree $n-1$, respectively.

Theorem 4.5. Let $G=G[X, Y]$ be a bipartite graph with $\delta_{X} \geq 1$ and $\delta_{Y} \geq 1$, where $|X|=n+1$ and $|Y|=n \geq 3$. If

$$
H(G) \geq \frac{9 n^{2}-2 n+8}{6}
$$

then G is traceable unless $G \in\left\{K_{n, n-1}+2 e, K_{n+1, n-2}+4 e\right\}$.
Proof. Let G be a bipartite satisfying the conditions in Theorem 4.5.

$$
\begin{aligned}
H(G)= & \frac{1}{2} \sum_{v \in V(G)} \hat{D}_{v}(G) \\
\leq & \frac{1}{2} \sum_{i=1}^{n+1}\left[d_{i}+\frac{1}{3}\left(n-d_{i}\right)+\frac{n}{2}\right] \\
& +\frac{1}{2} \sum_{j=1}^{n}\left[d_{j}+\frac{1}{3}\left(n+1-d_{j}\right)+\frac{n-1}{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{5 n(n+1)}{6}+\sum_{i=1}^{n+1} \frac{2 d_{i}}{3}+\frac{n(5 n-1)}{6}+\sum_{j+1}^{n} \frac{2 d_{j}}{3}\right] \\
& =\frac{5 n^{2}+2 n}{6}+\frac{1}{3}\left(\sum_{i=1}^{n+1} d_{i}+\sum_{j=1}^{n} d_{j}\right) \\
& =\frac{5 n^{2}+2 n}{6}+\frac{2}{3} m .
\end{aligned}
$$

Since $H(G) \geq \frac{9 n^{2}-2 n+8}{6}$, we have $m \geq n^{2}-n+2$. Note that $d(v)=n+1$ in $G[X, Y+v]$, hence

$$
m(G[X, Y+v])=m+(n+1) \geq n^{2}+3=(n+1)^{2}-2(n+1)+4
$$

From Lemma 4.4, we obtain that $G[X, Y+v]$ is Hamiltonian or $G[X, Y+v]=K_{n+1, n-1}+4 e$. Hence $G[X, Y]$ is traceable or $G \in\left\{K_{n, n-1}+2 e, K_{n+1, n-2}+4 e\right\}$.

Theorem 4.6. Let $G=G[X, Y]$ be a bipartite graph with $\delta_{X} \geq 1$ and $\delta_{Y} \geq 2$, where $|X|=n+1$ and $|Y|=n \geq 3$. If

$$
H\left(G^{*}\right) \leq \frac{24 n^{2}-28 n+15}{4(2 n-1)}
$$

then G is traceable unless $G \in\left\{K_{3,2}+2 e, K_{4,1}+4 e, K_{4,3}+2 e, K_{5,2}+4 e, K_{5,4}+2 e, K_{6,3}+\right.$ $\left.4 e, K_{6,5}+2 e, K_{7,4}+4 e\right\}$.

Proof. Let G^{*} be the quasi-complement of G. Then

$$
\begin{aligned}
H\left(G^{*}\right)=\frac{1}{2} \sum_{v \in V(G)} \hat{D}_{v}\left(G^{*}\right) \geq & \frac{1}{2} \sum_{i=1}^{n+1}\left[d_{G^{*}}\left(v_{i}\right)+\frac{1}{2 n-1}\left(n-d_{G^{*}}\left(v_{i}\right)\right)+\frac{n}{2 n}\right] \\
& +\frac{1}{2} \sum_{j=1}^{n}\left[d_{G^{*}}\left(u_{j}\right)+\frac{1}{2 n-1}\left(n+1-d_{G^{*}}\left(u_{j}\right)\right)+\frac{n-1}{2 n-2}\right] \\
= & \frac{1}{2}\left[\frac{4 n-1)(n+1)}{2(2 n-1)}-\frac{2-2 n}{2 n-1} \sum_{i=1}^{n+1} d_{G^{*}}\left(v_{i}\right)\right] \\
& +\frac{1}{2}\left[\frac{(4 n+1) n}{2(2 n-1)}-\frac{2-2 n}{2 n-1} \sum_{j=1}^{n} d_{G^{*}}\left(u_{j}\right)\right] \\
= & \frac{8 n^{3}+8 n^{2}-4 n-1}{4(2 n-1)}-\frac{2 n-2}{2(2 n-1)} \sum_{i=1}^{n+1} d_{G}\left(v_{i}\right) \\
& \left.-\frac{2 n-2}{2(2 n-1)} \sum_{j=1}^{n} d_{G}\left(u_{j}\right)\right] \\
= & \frac{8 n^{3}+8 n^{2}-4 n-1}{4(2 n-1)}-\frac{2 n-2}{2 n-1} m .
\end{aligned}
$$

Since $H\left(G^{*}\right) \leq \frac{24 n^{2}-28 n+15}{4(2 n-1)}$, we have that $m \geq n^{2}-n+2$. Note that $d(v)=n+1$ in $G[X, Y+v]$, hence

$$
m(G[X, Y+v])=m+(n+1) \geq n^{2}+3=(n+1)^{2}-2(n+1)+4 .
$$

¿From Lemma 4.4, we obtain that $G[X, Y+v]$ is Hamiltonian or $G=K_{n+1, n-1}+4 e$. Hence $G[X, Y]$ is traceable or $G \in\left\{K_{n, n-1}+2 e, K_{n+1, n-2}+4 e\right\}$. But

$$
H\left(\left(K_{n, n-1}+4 e\right)^{*}\right)=H\left(\left(K_{n+1, n-2}+4 e\right)^{*}\right) \geq \frac{n^{2}+5 n-4}{4}>\frac{24 n^{2}-28 n+15}{4(2 n-1)}, n \geq 7
$$

So we have $G \in\left\{K_{3,2}+2 e, K_{4,1}+4 e, K_{4,3}+2 e, K_{5,2}+4 e, K_{5,4}+2 e, K_{6,3}+4 e, K_{6,5}+\right.$ $\left.2 e, K_{7,4}+4 e\right\}$.

Theorem 4.7. Let $G=G[X, Y]$ be a bipartite graph with $\delta \geq 2$ and m edges, where $|X|=|Y|=n \geq 4$. If

$$
H(G) \geq \frac{9 n^{2}-11 n+16}{6}
$$

then G is Hamiltonian unless $G=K_{n, n-2}+4 e$.
Proof. Assume that G is non-Hamiltonian.

$$
\begin{aligned}
H(G)=\frac{1}{2} \sum_{i=1}^{2 n} \hat{D}_{i}(G) & \leq \frac{1}{2} \sum_{i=1}^{2 n}\left[d_{i}+\frac{1}{3}\left(n-d_{i}\right)+\frac{1}{2}(n-1)\right] \\
& =\frac{1}{2} \sum_{i=1}^{2 n}\left(\frac{5 n-3}{6}+\frac{2}{3} d_{i}\right) \\
& =\frac{5 n^{2}-3 n}{6}+\frac{1}{3} \sum_{i=1}^{2 n} d_{i} \\
& =\frac{5 n^{2}-3 n}{6}+\frac{2}{3} m .
\end{aligned}
$$

Note that $H(G) \geq \frac{9 n^{2}-11 n+16}{6}$, we have $m \geq n^{2}-2 n+4$. From Lemma 4.4, we obtain that $G=K_{n, n-2}+4 e$.

Theorem 4.8. Let $G=G[X, Y]$ be a bipartite graph with $\delta \geq 2$ and m edges, where $|X|=|Y|=n \geq 4$. If

$$
H\left(G^{*}\right) \leq \frac{12 n^{2}-25 n+16}{4 n-2}
$$

then G is Hamiltonian unless $G \in\left\{K_{4,2}+4 e, K_{5,3}+4 e, K_{6,4}+4 e, K_{7,5}+4 e\right\}$.
Proof. Assume that G is non-Hamiltonian.

$$
\begin{aligned}
H\left(G^{*}\right)=\frac{1}{2} \sum_{i=1}^{2 n} \hat{D}_{i}\left(G^{*}\right) & \geq \frac{1}{2} \sum_{i=1}^{2 n}\left[d_{G^{*}}\left(v_{i}\right)+\frac{1}{2 n-1}\left(n-d_{G^{*}}\left(v_{i}\right)\right)+\frac{n-1}{2 n-2}\right] \\
& =\frac{1}{2} \sum_{i=1}^{2 n}\left[\frac{2(n-1)}{2 n-1} d_{G^{*}}\left(v_{i}\right)+\frac{n}{2 n-1}+\frac{1}{2}\right] \\
& =\frac{1}{2} \sum_{i=1}^{2 n}\left[\frac{2(n-1)}{2 n-1} d_{G^{*}}\left(v_{i}\right)+\frac{4 n-1}{2(2 n-1)}\right] \\
& =\frac{n(4 n-1)}{2(2 n-1)}+\frac{2(n-1)}{2(2 n-1)} \sum_{i=1}^{2 n}\left(n-d_{G}\left(v_{i}\right)\right) \\
& =\frac{4 n^{3}-n}{2(2 n-1)}-\frac{2(n-1)}{2 n-1} m .
\end{aligned}
$$

Note that $H\left(G^{*}\right) \leq \frac{12 n^{2}-25 n+16}{4 n-2}$, we have $m \geq n^{2}-2 n+4$. From Lemma 4.4, we obtain that $G=K_{n, n-2}+4 e$. Note that

$$
H\left(\left(K_{n, n-2}+4 e\right)^{*}\right) \geq \frac{n^{2}+3 n-8}{4}>\frac{12 n^{2}-25 n+16}{4 n-2}, n \geq 8
$$

So we have $G \in\left\{K_{4,2}+4 e, K_{5,3}+4 e, K_{6,4}+4 e, K_{7,5}+4 e\right\}$.

5 Harary spectral radius on traceable and Hamiltonian graphs

Lemma 5.1. Let G be a graph on n vertices. Then $\rho(G) \geq \frac{2 H(G)}{n}$, and the equality holds if and only if the row sums of $R D(G)$ are all equal.

Proof. Let $x=\frac{1}{\sqrt{n}}(1,1, \ldots, 1)$ be a unit n-vector. Then by Raleigh principle, applied to the Harary matrix $\mathrm{RD}(\mathrm{G})$ of G, we get

$$
\begin{aligned}
\rho(G) & \geq \frac{x R D(G) x^{t}}{x x^{t}} \\
& =\frac{\left.\frac{1}{\sqrt{n}} R D_{1}, R D_{2}, \ldots, R D_{n}\right] \frac{1}{\sqrt{n}}[1,1 \ldots, 1]^{t}}{1} \\
& =\frac{1}{n} \sum_{1 \leq i \leq n} R D_{i} \\
& =\frac{2 H(G)}{n} .
\end{aligned}
$$

Now suppose each row of $R D(G)$ sums to a constant, say k and $2 H(G)=n k$. Then by the Theorem of Frobenius [2], k is simple and greatest eigenvalue of $R D(G)$. Thus $\rho(G)=k=\frac{n k}{n}=\frac{2 H(G)}{n}$ and hence equality holds.

Conversely if equality holds, then x is the eigenvector corresponding to $\rho(G)$ and hence $x R D(G)=\rho(G) x$. So the row sums of $R D(G)$ are all equal. The proof is completed.

Theorem 5.2. Let G be a connected graph of order $n \geq 4$. If

$$
\rho(\bar{G}) \leq \frac{5 n^{2}-19 n+20}{n(n-1)}
$$

then G is traceable unless $G=K_{1,3}$.

G	\bar{G}	$\rho(\bar{G})$	$\frac{5 n^{2}-19 n+20}{n(n-1)}$
$K_{1,3}$	$K_{3} \cup K_{1}$	2	2
$K_{1} \vee\left(K_{n-3}+2 K_{1}\right)$	$\left(K_{2} \vee(n-3) K_{1}\right) \cup K_{1}$	$\frac{n-2+\sqrt{n^{2}+20 n-60}}{}$	$\frac{5 n^{2}-9 n+20}{n(n-1)}$
$K_{1} \vee\left(K_{1,3}+K_{1}\right)$	$\left(K_{1} \vee\left(K_{3}+K_{1}\right)\right) \cup K_{1}$	3.4575	2.8667
$K_{2,4}$	$K_{2} \cup K_{4}$	3	2.8667
$K_{2} \vee 4 K_{1}$	$K_{4} \cup 2 K_{1}$	3	2.8667
$K_{2} \vee\left(3 K_{1}+K_{2}\right)$	$\left(K_{3} \vee 2 K_{1}\right) \cup 2 K_{1}$	3.8117	3.1429
$K_{1} \vee K_{2,5}$	$K_{2} \cup K_{5} \cup K_{1}$	4	3.3571
$K_{3} \vee 5 K_{1}$	$K_{5} \vee 3 K_{1}$	4	3.3571
$K_{2} \vee\left(K_{1,4}+K_{1}\right)$	$\left(K_{1} \vee\left(K_{4}+K_{1}\right)\right) \cup 2 K_{1}$	4.4115	3.3571
$K_{4} \vee 6 K_{1}$	$K_{6} \cup 4 K_{1}$	5	3.6667

Table 1: The harary spectral radius of complements of graphs
Proof. Suppose that G is nontraceable. From Lemma 5.1, we have

$$
\rho(\bar{G}) \geq \frac{2 H(\bar{G})}{n} \geq(n-1)-\frac{2(n-2) m}{n(n-1)} .
$$

Since $\rho(\bar{G}) \leq \frac{5 n^{2}-19 n+20}{n(n-1)}$, we have $m \geq\binom{ n-2}{2}+2$. According to Lemma 3.1, we have $G \in \mathbb{N} \mathbb{P}$. By a direct computation, we have the above Table 1. ¿From Table 1, we obtain the result.

Theorem 5.3. Let G be a graph on $n \geq 5$ vertices and m edges with $\delta \geq 2$. If

$$
\rho(\bar{G}) \leq \frac{5 n^{2}-23 n+28}{n(n-1)}
$$

then G is Hamiltonian.

G	\bar{G}	$\rho(\bar{G})$	$\frac{5 n^{2}-23 n+28}{n(n-1)}$
$K_{2} \vee\left(K_{n-4}+2 K_{1}\right)$	$\left(K_{2} \vee(n-4) K_{1}\right) \cup 2 K_{1}$	$\frac{n-3+\sqrt{n^{2}+18 n-79}}{4}$	$\frac{5 n^{2}-23 n+28}{n(n-1)}$
$K_{3} \vee\left(4 K_{1}\right)$	$K_{4} \cup 3 K_{1}$	3	2.6667
$K_{2} \vee\left(K_{1,3}+K_{1}\right)$	$\left(K_{1} \vee\left(K_{3}+K_{1}\right)\right) \cup 2 K_{1}$	3.4575	2.6667
$K_{1} \vee K_{2,4}$	$K_{4} \cup K_{2} \cup K_{1}$	3	2.6667
$K_{3} \vee\left(K_{2}+3 K_{1}\right)$	$\left(K_{3} \vee 2 K_{1}\right) \cup 3 K_{1}$	3.8117	2.9286
$K_{4} \vee 5 K_{1}$	$K_{5} \cup 4 K_{1}$	4	3.1389
$K_{3} \vee\left(K_{1,4}+K_{1}\right)$	$\left(K_{1} \vee\left(K_{4}+K_{1}\right) \cup 3 K_{1}\right.$	4.4115	3.1389
$K_{2} \vee K_{2,5}$	$K_{5} \cup K_{2} \cup 2 K_{1}$	4	3.1389
$K_{5} \vee 6 K_{1}$	$K_{6} \cup 5 K_{1}$	5	3.4545

Table 2: The harary spectral radius of complements of graphs
Proof. Suppose that G is non-Hamiltonian. From Lemma 5.1, we have

$$
\rho(\bar{G}) \geq \frac{2 H(\bar{G})}{n} \geq(n-1)-\frac{2(n-2) m}{n(n-1)}
$$

Since $\rho(\bar{G}) \leq \frac{5 n^{2}-23 n+28}{n(n-1)}$, we have $m \geq\binom{ n-2}{2}+4$. According to Lemma 3.3, we obtain $G \in \mathbb{N C}$. By a direct computation, we have the following Table 2. From Table 2, we complete the proof.

6 Harary spectral radius on traceable and Hamiltonian biparatite graphs

Theorem 6.1. Let $G=G[X, Y]$ be a bipartite graph with $\delta \geq 1$ and m edges, where $|X|=|Y|=n \geq 3$. If

$$
\rho\left(G^{*}\right) \leq \frac{12 n^{2}-21 n+12}{4 n^{2}-2 n}
$$

then G is traceable.

Proof. According to Lemma 5.1, we have

$$
\rho\left(G^{*}\right) \geq \frac{2 H\left(G^{*}\right)}{2 n} \geq \frac{1}{n}\left[\frac{4 n^{3}-n}{2(2 n-1)}-\frac{2(n-1)}{2 n-1} m\right]
$$

Note that $\rho\left(G^{*}\right) \leq \frac{12 n^{2}-21 n+12}{4 n^{2}-2 n}$, we have $m \geq n^{2}-2 n+3$. By Lemma 4.1, then G is traceable.

Theorem 6.2. Let $G=G[X, Y]$ be a bipartite graph with $\delta_{X} \geq 1$ and $\delta_{Y} \geq 2$, where $|X|=n+1$ and $|Y|=n \geq 3$. If

$$
\rho\left(G^{*}[X, Y]\right) \leq \frac{24 n^{2}-28 n+15}{8 n^{2}-2}
$$

then G is traceable.
Proof. According to Lemma 5.1, we have

$$
\rho\left(G^{*}\right) \geq \frac{2 H\left(G^{*}\right)}{2 n+1} \geq \frac{2}{2 n+1}\left[\frac{8 n^{3}+8 n^{2}-4 n-1}{4(2 n-1)}-\frac{2(n-1)}{2 n-1} m\right] .
$$

Note that $\rho\left(G^{*}[X, Y]\right) \leq \frac{24 n^{2}-28 n+15}{8 n^{2}-2}$, we have $m \geq n^{2}-n+2$. Note that $d(v)=n+1$ in $G[X, Y+v]$, hence

$$
m(G[X, Y+v])=m+(n+1) \geq n^{2}+3=(n+1)^{2}-2(n+1)+4 .
$$

From Lemma 4.4, $G=G[X, Y+v]$ is Hamiltonian unless $G=K_{n+1, n-1}+4 e$. Hence $G=G[X, Y]$ is traceable unless $G \in\left\{K_{n, n-1}+2 e, K_{n+1, n-2}+4 e\right\}$. Note that

$$
\begin{aligned}
& \rho\left(\left(K_{n, n-1}+2 e\right)^{*}\right)=\frac{n-1+\sqrt{n^{2}+26 n-23}}{4}>\frac{24 n^{2}-28 n+15}{8 n^{2}-2}, n \geq 3 . \\
& \rho\left(\left(K_{n+1, n-2}+4 e\right)^{*}\right)=\frac{n-1+\sqrt{n^{2}+26 n-23}}{4}>\frac{24 n^{2}-28 n+15}{8 n^{2}-2}, n \geq 3 .
\end{aligned}
$$

The proof is completed.
Theorem 6.3. Let $G=G[X, Y]$ be a bipartite graph with $\delta \geq 2$, where $|X|=|Y|=n \geq 4$. If

$$
\rho\left(G^{*}\right) \leq \frac{12 n^{2}-25 n+16}{4 n^{2}-2 n}
$$

then G is Hamiltonian.
Proof. According to Lemma 5.1, we have

$$
\rho\left(G^{*}\right) \geq \frac{2 H\left(G^{*}\right)}{2 n} \geq \frac{1}{n}\left[\frac{4 n^{3}-n}{2(2 n-1)}-\frac{2(n-1)}{2 n-1} m\right] .
$$

Note that $\rho\left(G^{*}\right) \leq \frac{12 n^{2}-25 n+16}{4 n^{2}-2 n}$, we have $m \geq n^{2}-2 n+4$. By Lemma 4.4, we obtain that $G=K_{n, n-2}+4 e$. Note that

$$
\rho\left(\left(K_{n, n-2}+4 e\right)^{*}\right)=\frac{n-2+\sqrt{n^{2}+24 n-48}}{4}>\frac{12 n^{2}-25 n+16}{4 n^{2}-2 n}, n \geq 4 .
$$

The proof is completed.

Acknowledgment: The authors would like to thank the anonymous referees very much for valuable suggestions and corrections which improve the original manuscript.

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008.
[2] D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Applications, Academic Press, New York, 1980.
[3] M. J. Kuang, G. H. Huang, H. Y. Deng, Some sufficient conditions for Hamiltonian property in terms of Wiener-type invariants, Proc. Math. Sci. (2016) 1-9.
[4] K. C. Das, B. Zhou, N. Trinajstić, Bounds on Harary index, J. Math. Chem. 46 (2009) 1369-1376.
[5] H. Hua, M. Wang, On Harary index and traceable graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 297-300.
[6] O. Ivanciuc, T. S. Balaban, A. T. Balaban, Reciprocal distance matrix, related local vertex invariants and topolgical indices, J. Math. Chem. 12 (1993) 309-318.
[7] R. Li, Harary index and some Hamilitonian properties of graphs, AKCE Int. J. Graphs Comb. 12 (2015) 64-69.
[8] B. Lučić, A. Miličevicć, N. Trinajstić, Harary index - twelve years later, Croat. Chem. Acta 75 (2002) 847-868.
[9] B. Ning, J. Ge, Spectral radius and Hamiltonian properties of graphs, Lin. Multilin. Algebra 63 (2014) 1520-1530.
[10] D. Plavšić, S. Nikolić, Z. Mihalić, On the Harary index for the characterization of chemical graphs, J. Math. Chem. 12 (1993) 235-250.
[11] R. F. Liu, W. C. Shiu, J. Xue, Sufficient spectral conditions on Hamiltonian and traceable graphs, Lin. Algebra Appl. 467 (2015) 254-266.
[12] K. Xu, N. Trinajstić, Hyper-Wiener indices and Harary indices of graphs with cut edges, Util. Math. 84 (2011) 153-163.
[13] G. Yu, L. Feng, On the maximal Harary index of a class of a bicyclic graphs, Util. Math. 82 (2010) 285-292.
[14] B. Zhou, X. Cai, N. Trinajstić, On the Harary index, J. Math. Chem. 44 (2008) 611-618.
[15] T. Zeng, Harary index and Hamiltonian property of graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 645-649.

[^0]: *This research is supported by NSFC (Nos. 11201432 and 11571323) and Outstanding Young Talent Research Fund of Zhengzhou University (No. 1521315002). Corresponding author: R. Liu (rfliu@zzu.edu.cn).

