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Abstract

A molecular graph matrix, Harary matrix, was defined in honor of Professor Frank Harary.

Harary index is a graph invariant based on it. In this paper, we give sufficient conditions

for a graph being traceable and Hamiltonian in terms of the Harary index of a graph and

the complement of a graph, which correct and extend the result of Wang and Hua (2013) [5].

Furthermore, we also present sufficient conditions for a bipartite graph being traceable and

Hamiltonian in terms of the Harary index of a bipartite graph and its quasi-complement. Finally,

we give some sufficient Harary spectral conditions for a graph or a bipartite graph being traceable

and Hamiltonian in terms of the Harary spectral radius of its complement or quasi-complement.

1 Introduction

All graphs considered here are finite undirected graphs without loops and multiple edges.

Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). For a graph,

we use di or dG(vi) to denote the degree of a vertex vi in G and use dG(vi, vj) or dij to

denote the distance between two vertices vi and vj in G. The union of simple graphs G

and H is the graph G∪H with vertex set V (G)∪ V (H) and edge set E(G)∪E(H). If G

and H are disjoint, we refer to their union as a disjoint union, and generally denote it by

G+H. The disjoint union of k copies of a graph G is denoted by kG. The join of G and

∗This research is supported by NSFC (Nos. 11201432 and 11571323) and Outstanding Young
Talent Research Fund of Zhengzhou University (No. 1521315002). Corresponding author: R. Liu
(rfliu@zzu.edu.cn).

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 77 (2017) 195-208
                         

                                          ISSN 0340 - 6253 



H, denoted by G ∨H, is the graph obtained from disjoint union of G and H by adding

all possible edges between them. Let G denote the complement of G.

A path in a graph is called a Hamiltonian path if it visits every vertex precisely once.

A graph containing a Hamiltonian path is said to be traceable. A cycle in a graph is

called a Hamiltonian cycle if it contains all the vertices of a graph. A graph containing a

Hamiltonian cycle is called a Hamiltonian graph.

The Harary index of a graph G, denoted by H(G), has been introduced independently

by Ivanciuc et.al. [6] and Plavšić et.al. [10] in 1993 for the characterization of molecular

graphs. It has been named in honor of Professor Frank Harary on the occasion of his

70th birthday. The Harary index H(G) is defined as the sum of reciprocals of distances

between all pairs of vertices of the graph G, i.e.

H(G) =
∑

u,v∈V (G)

1

dG(u, v)
.

Note that in any disconnected graph G, the distance is infinite between any two vertices

from two distinct components. Therefore its reciprocal can be viewed as 0. Thus, we can

define validly the Harary index of disconnected graph G as follows:

H(G) =
m∑
i=1

H(Gi),

where G1, G2, . . . , Gk are the components of G. We often use D̂i(G) or D̂vi(G) to denote∑
vj∈V (G)

1
dG(vi,vj)

, then

H(G) =
1

2

∑
vi∈V (G)

D̂vi(G) =
1

2

n∑
i=1

D̂i(G).

The Harary matrix RD(G) of G, which is initially called the reciprocal distance matrix

and introduced by [6], is an n× n matrix whose (i, j)-entry is equal to 1
dij

if i 6= j and 0

otherwise. The Harary spectral radius of G is the largest eigenvalue of RD(G), denoted

by ρ(G).

Up to now, there are many established results dealing with bounds and extremal

properties of Harary index, published both in mathematical and in mathematicl chemistry

literature, see [4,8,12–14]. In [3, 5], they presented some sufficient conditions for a graph

to be traceable by using Harary index. But there is an error in its proof in [5]. Li [7]

presented sufficient conditions in terms of the Harary index for a graph to be Hamiltonian
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or Hamilton-connected using some proof ideas in [5]. Zeng [15] give a sufficient condition,

in terms of Harary index, for a connected bipartite graph to be Hamiltonian.

In this paper, we give sufficient conditions for a graph being traceable and Hamiltonian

in terms of the Harary index of a graph and the complement of a graph, which correct

and extend the result of Wang and Hua (2013) [5]. Furthermore, we also present sufficient

conditions for a bipartite graph being traceable and Hamiltonian in terms of the Harary

index of a bipartite graph and its quasi-complement. Finally, we give some sufficient

Harary spectral conditions for a graph or a bipartite graph being traceable and Hamilto-

nian in terms of its Harary spectral radius of the complement or its quasi-complement.

Our results extend and improve the results in [3, 5, 7, 15].

Note that δ ≥ 1 and δ ≥ 2 are trivial necessary conditions for a graph to be traceable

and Hamiltonian, respectively. Hence we always make the assumption while finding spec-

tral conditions for traceable and Hamiltonian graphs or bipartite graphs throughout this

paper.

2 Corrigendum to Theorem 2.2 in [5]

Let NP = {K1 ∨ (Kn−3 + 2K1), K1 ∨ (K1,3 +K1), K2,4, K2 ∨ 4K1, K2 ∨ (3K1 +K2), K1 ∨

K2,5, K3 ∨ 5K1, K2 ∨ (K1,4 +K1), K4 ∨ 6K1}.

Lemma 2.1. ( [1]) Let G be a nontrivial graph of order n with degree sequence (d1, d2, . . . ,

dn), where d1 ≤ d2 ≤ · · · ≤ dn and n ≥ 4. Suppose that there is no integer k < n+1
2

such

that dk ≤ k − 1 and dn−k+1 ≤ n− k − 1. Then G is traceable.

Theorem 2.2. ( [5]) Let G be a connected graph of order n ≥ 4. If H(G) ≥ n2−3n+5
2

,

then G is traceable unless G ∈ {K1 ∨ (Kn−3 + 2K1), K2 ∨ (3K1 +K2), K4 ∨ 6K1}.

Theorem 2.2 provided a sufficient condition in terms of Harary index of a graph to be

traceable. But there is an error in its proof. It should be:

Theorem 2.3. Let G be a connected graph of order n ≥ 4. If

H(G) ≥ n2 − 3n+ 5

2
,

then G is traceable unless G ∈ NP.

Proof. Assume first that G is nontraceable connected graph with degree sequence (d1, d2,

. . . , dn) such that d1 ≤ d2 ≤ · · · ≤ dn and n ≥ 4. By Lemma 2.1, there exists an integer
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k < n+1
2

such that dk ≤ k − 1 and dn−k+1 ≤ n − k − 1. Note that G is connected graph

and dk ≤ k − 1, we have k ≥ 2. Thus

H(G) = 1
2

∑n
i=1 D̂i(G) ≤ 1

2

∑n
i=1[di + 1

2
(n− 1− di)]

= n(n−1)
4

+ 1
4

∑n
i=1 di

≤ n(n−1)
4

+ 1
4
[k(k−1)+(n−2k+1)(n−k−1)+(k−1)(n−1)]

= n2−3n+5
2

− (k−2)(2n−3k−5)
4

.

Since H(G) ≥ n2−3n+5
2

, we obtain that (k−2)(2n−3k−5)
4

≤ 0.

Case 1 : (k−2)(2n−3k−5)
4

= 0, i.e. k = 2 or 2n − 3k − 5 = 0. If k = 2, then G is a

graph with d1 = d2 = 1, d3 = d4 = · · · = dn−1 = n − 3 and dn = n − 1, which implies

G = K1 ∨ (Kn−3 + 2K1). If 2n = 3k + 5, then n < 13 since k < n+1
2

. Hence n = 7, k = 3

or n = 10, k = 5. The corresponding permissible graphic sequences are (2,2,2,3,3,6,6) and

(4,4,4,4,4,4,9,9,9,9), which implies G = K2 ∨ (3K1 +K2) or G = K4 ∨ 6K1, respectively.

Case 2 : (k−2)(2n−3k−5)
4

< 0, i.e. k ≥ 3 and 2n− 3k − 5 < 0. In this case, n ≥ 2k ≥ 6.

If n ≥ 10, then 2n − 3k − 5 ≥ 2n − 3n
2
− 5 = n−10

2
≥ 0. If n = 9, then k ≤ 4 and

2n− 3k − 5 ≥ 1. If n = 7, then k ≤ 3, and hence, 2n− 3k − 5 ≥ 0. In each case, we get

a contradiction.

If n = 8, then k ≤ 4. If k ≤ 3, then 2n − 3k − 5 ≥ 2, a contradiction. Now assume

that k = 4. Then ,d5 ≤ 3 and 17 ≤ m ≤ 18. From the inequality d6 + d7 + d8 =

2m −
∑

1≤i≤5 di ≥ 19, we obtain d8 = 7. Also note that
∑
di = 2m ≥ 34 and

∑
di is

even. If d6 = d7 = 6 and d8 = 7, then the permissible graphic sequence is (3,3,3,3,3,6,6,7),

hence G = K1 ∨K2,5. If d6 = 5 and d7 = d8 = 7, then the permissible graphic sequence

is (3,3,3,3,3,5,7,7), hence G = K2 ∨ (K1,3 + K2). If d6 = 6 and d7 = d8 = 7, then the

permissible graphic sequence is (2,3,3,3,3,6,7,7), hence G = K2∨(K1,4 +K1). If d6 = d7 =

d8 = 7, then the permissible graphic sequence is (3,3,3,3,3,7,7,7), hence G = K3 ∨ 5K1.

If n = 6, then k ≤ 3. If k ≤ 2, then 2n− 3k − 5 ≥ 1, a contradiction. If k = 3, then

d4 ≤ 2 and 8 ≤ m ≤ 9. From the inequality d5 + d6 = 2m −
∑

1≤i≤4 di ≥ 8, we obtain

4 ≤ d6 ≤ 5. Also note that
∑
di = 2m ≥ 16 and

∑
di is even. If d5 = d6 = 4, then

the permissible graphic sequence is (2,2,2,2,4,4), hence G = K2,4. If d5 = 4 and d6 = 5,

then the permissible graphic sequence is (1,2,2,2,4,5), hence G = K1 ∨ (K1,3 + K1). If

d5 = d6 = 5, then the permissible graphic sequence is (2,2,2,2,5,5), hence G = K2 ∨ 4K1.

Note that G = K2 ∨ (K1,3 + K2) is traceable and the other obtained graphs contain

no Hamiltonian path. Hence G ∈ NP.
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3 Harary index on traceable and Hamiltonian graphs

Lemma 3.1. ( [9]) Let G be a graph on n ≥ 4 vertices and m edges with δ ≥ 1. If

m ≥
(
n−2
2

)
+ 2, then G is traceable unless G ∈ NP.

According to Lemma 3.1, we present a simple proof of Theorem 2.3.

Proof. Suppose that G is nontraceable. Then

H(G) = 1
2

∑n
i=1 D̂i(G) ≤ 1

2

∑n
i=1[di + 1

2
(n− 1− di)]

= n(n−1)
4

+ 1
4

∑n
i=1 di

= n(n−1)
4

+ 1
2
m.

Note that H(G) ≥ n2−3n+5
2

, we have

m ≥ n2 − 3n+ 5− n(n− 1)

2
=

(
n− 2

2

)
+ 2.

By Lemma 3.1, we obtain that G ∈ NP. By a direct computation, for all G ∈ NP,

H(G) ≥ n2−3n+5
2

. This completes the proof of Theorem 2.3.

Theorem 3.2. Let G be a connected graph of order n ≥ 4. If

H(G) ≤ 5n2 − 19n+ 20

2(n− 1)
,

then G is traceable unless G ∈ {K1,3, K1 ∨ (K2 + 2K1), K1 ∨ (K3 + 2K1), K1 ∨ (K1,3 +

K1), K2,4, K2 ∨ 4K1, K2 ∨ (3K1 +K2), K1 ∨K2,5, K3 ∨ 5K1, K2 ∨ (K1,4 +K1), K4 ∨ 6K1}.

Proof. Suppose that G is nontraceable. Then

H(G) = 1
2

∑n
i=1 D̂i(G) ≥ 1

2

∑
v∈V (G)[dG(v) + 1

n−1(n− 1− dG(v))]

= 1
2

∑
v∈V (G)[1 + n−2

n−1dG(v)]

= n
2

+ n−2
2(n−1)

∑
v∈V (G)(n− 1− dG(v))

= n(n−1)
2
− n−2

2(n−1)
∑

v∈V (G) dG(v)

= n(n−1)
2
− n−2

n−1m.

Note that H(G) ≤ 5n2−19n+20
2(n−1) , we have

m ≥ n(n− 1)2

2(n− 2)
− 5n2 − 19n+ 20

2(n− 1)
=

(
n− 2

2

)
+ 2.

By Lemma 3.1, we obtain that G ∈ NP. Note that n ≥ 7,

H(K1 ∨ (Kn−3 + 2K1)) ≥
n2 + n− 8

4
>

5n2 − 19n+ 20

2(n− 1)
.

So we obtain this result.
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Let NC = {K2 ∨ (Kn−4 + 2K1), K3 ∨ 4K1, K2 ∨ (K1,3 + K1), K1 ∨ K2,4, K3 ∨ (K2 +

3K1), K4 ∨ 5K1, K3 ∨ (K1,4 +K1), K2 ∨K2,5, K5 ∨ 6K1}.

Lemma 3.3. ( [9]) Let G be a graph on n ≥ 5 vertices and m edges with δ ≥ 2. If

m ≥
(
n−2
2

)
+ 4, then G contains a Hamiltonian cycle unless G ∈ NC.

Theorem 3.4. Let G be a graph on n ≥ 5 vertices and m edges with δ ≥ 2. If

H(G) ≥ n2 + 7− 3n

2
,

then G is Hamiltonian unless G ∈ NC.

Proof. Suppose that G is non-Hamiltonian. Then

H(G) = 1
2

∑n
i=1 D̂i(G) ≤ 1

2

∑n
i=1[di + 1

2
(n− 1− di)]

= n(n−1)
4

+ 1
4

∑n
i=1 di

= n(n−1)
4

+ 1
2
m.

Note that H(G) ≥ n2−3n+7
2

, we have

m ≥ n2 − 3n+ 7− n(n− 1)

2
=

(
n− 2

2

)
+ 4.

By Lemma 3.3, we have G ∈ NC. By a direct computation, for all G ∈ NC, H(G) ≥
n2+7−3n

2
. This completes the proof.

Theorem 3.5. Let G be a graph on n ≥ 5 vertices and m edges with δ ≥ 2. If

H(G) ≤ 5n2 − 23n+ 28

2(n− 1)
,

then G is Hamiltonian unless G ∈ {K2 ∨ 3K1, K2 ∨ (K2 + 2K1), K2 ∨ (K3 + 2K1), K3 ∨

4K1, K2∨(K1,3+K1), K1∨K2,4, K3∨(K2+3K1), K4∨5K1, K3∨(K1,4+K1), K2∨K2,5, K5∨

6K1}.

Proof. Suppose that G is non-Hamiltonian. Then

H(G) = 1
2

∑
v∈V (G)Di(G) ≥ 1

2

∑
v∈V (G)[dG(v) + 1

n−1(n− 1− dG(v))]

= 1
2

∑
v∈V (G)[1 + n−2

n−1dG(v)]

= n
2

+ n−2
2(n−1)

∑
v∈V (G)(n− 1− dG(v))

= n(n−1)
2
− n−2

2(n−1)
∑

v∈V (G) dG(v)

= n(n−1)
2
− n−2

n−1m.

Since H(G) ≤ 5n2−23n+28
2(n−1) , we have

m ≥ n(n− 1)2

2(n− 2)
− 5n2 − 23n+ 28

2(n− 2)
=

(
n− 2

2

)
+ 4.
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By Lemma 3.3, we obtain that G ∈ NC. Note that n ≥ 8,

H(K2 ∨ (Kn−4 + 2K1)) ≥
n2 − n− 8

4
>

5n2 − 23n+ 28

2(n− 1)
.

So we obtain this theorem.

4 Harary index on traceable and Hamiltonian bipar-

tite graphs

Let G = G[X, Y ] be a bipartite graph, where |X| = |Y | = n ≥ 2. The bipartite graph

G∗ = G∗[X, Y ] is called the quasi-complement of G, which is constructed as follows:

V (G∗) = V (G) and xy ∈ E(G∗) if and only if xy 6∈ E(G) for x ∈ X, y ∈ Y .

Let G[X, Y ] be a traceable bipartite graph. Then |X| = |Y | or |X| = |Y | + 1. These

two types will be discussed separately.

Lemma 4.1. ( [11]) Let G = G[X, Y ] be a bipartite graph with δ ≥ 1 and m edges, where

|X| = |Y | = n ≥ 3. If m ≥ n2 − 2n+ 3, then G is traceable.

Theorem 4.2. Let G = G[X, Y ] be a bipartite graph with δ ≥ 1 and m edges, where

|X| = |Y | = n ≥ 3. If

H(G) ≥ 9n2 − 11n+ 12

6
,

then G is traceable.

Proof. Let G be a graph satisfying the condition in Theorem 4.2. Then

H(G) = 1
2

∑2n
i=1 D̂i(G) ≤ 1

2

∑2n
i=1[di + 1

3
(n− di) + 1

2
(n− 1)]

= 1
2

∑2n
i=1(

5n−3
6

+ 2
3
di)

= 5n2−3n
6

+ 1
3

∑2n
i=1 di

= 5n2−3n
6

+ 2
3
m.

Since H(G) ≥ 9n2−11n+12
6

, we have

m ≥ 9n2 − 11n+ 12− 5n2 + 3n

6
× 3

2
= n2 − 2n+ 3.

According to Lemma 4.1, then G is traceable.

Theorem 4.3. Let G = G[X, Y ] be a bipartite graph with δ ≥ 1 and m edges, where

|X| = |Y | = n ≥ 3. If

H(G∗) ≤ 12n2 − 21n+ 12

4n− 2
,

then G is traceable.
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Proof. Let G∗ be the quasi-complement of G. Then

H(G∗) = 1
2

∑2n
i=1 D̂i(G

∗) ≥ 1
2

∑2n
i=1[dG∗(vi) + 1

2n−1(n− dG∗(vi)) + n−1
2n−2 ]

= 1
2

∑2n
i=1[

2(n−1)
2n−1 dG∗(vi) + n

2n−1 + 1
2
]

= 1
2

∑2n
i=1[

2(n−1)
2n−1 dG∗(vi) + 4n−1

2(2n−1) ]

= n(4n−1)
2(2n−1) + 2(n−1)

2(2n−1)
∑2n

i=1(n− dG(vi))

= 4n3−n
2(2n−1) −

2(n−1)
2n−1 m.

Since H(G∗) ≤ 12n2−21n+12
4n−2 , we have m ≥ n2 − 2n + 3. ¿From Lemma 4.1, then G is

traceable.

Let G = Kp,n−2 + 4e be a bipartite graph obtained from Kp,n−2 by adding two vertices

which are adjacent to two common vertices with degree n − 2 in Kp,n−2, respectively,

where p ≥ n− 1.

Lemma 4.4. ( [11]) Let G = G[X, Y ] be a bipartite graph with δ ≥ 2 and m edges, where

|X| = |Y | = n ≥ 4. If m ≥ n2 − 2n+ 4, then G is Hamiltonian unless G = Kn,n−2 + 4e.

Next, we consider the other type |X| = |Y | + 1. Let G[X, Y ] be a bipartite graph,

where |X| = n + 1, and |Y | = n ≥ 2. Denote by δX and δY the minimum degrees of

vertices in X and Y , respectively. Note that δX ≥ 1 and δY ≥ 2 are the trivial necessary

conditions for G to be traceable. Let G[X, Y + v] be the bipartite graph obtained from

G[X, Y ] by adding a vertex v which is adjacent to every vertex in X. It is easy to see

that G[X, Y ] is traceable if and only if G[X, Y + v] is Hamiltonian.

Let Kn,n−1 + 2e be a graph obtained from Kn,n−1 by adding two vertices which are

adjacent to a common vertex with degree n− 1, respectively.

Theorem 4.5. Let G = G[X, Y ] be a bipartite graph with δX ≥ 1 and δY ≥ 1, where

|X| = n+ 1 and |Y | = n ≥ 3. If

H(G) ≥ 9n2 − 2n+ 8

6
,

then G is traceable unless G ∈ {Kn,n−1 + 2e,Kn+1,n−2 + 4e}.

Proof. Let G be a bipartite satisfying the conditions in Theorem 4.5.

H(G) = 1
2

∑
v∈V (G) D̂v(G)

≤ 1
2

∑n+1
i=1 [di + 1

3
(n− di) + n

2
]

+1
2

∑n
j=1[dj + 1

3
(n+ 1− dj) + n−1

2
]
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= 1
2
[5n(n+1)

6
+
∑n+1

i=1
2di
3

+ n(5n−1)
6

+
∑n

j+1
2dj
3

]

= 5n2+2n
6

+ 1
3
(
∑n+1

i=1 di +
∑n

j=1 dj)

= 5n2+2n
6

+ 2
3
m.

Since H(G) ≥ 9n2−2n+8
6

, we have m ≥ n2−n+2. Note that d(v) = n+1 in G[X, Y +v],

hence

m(G[X, Y + v]) = m+ (n+ 1) ≥ n2 + 3 = (n+ 1)2 − 2(n+ 1) + 4.

From Lemma 4.4, we obtain thatG[X, Y+v] is Hamiltonian orG[X, Y+v] = Kn+1,n−1+4e.

Hence G[X, Y ] is traceable or G ∈ {Kn,n−1 + 2e,Kn+1,n−2 + 4e}.

Theorem 4.6. Let G = G[X, Y ] be a bipartite graph with δX ≥ 1 and δY ≥ 2, where

|X| = n+ 1 and |Y | = n ≥ 3. If

H(G∗) ≤ 24n2 − 28n+ 15

4(2n− 1)
,

then G is traceable unless G ∈ {K3,2 + 2e,K4,1 + 4e,K4,3 + 2e,K5,2 + 4e,K5,4 + 2e,K6,3 +

4e,K6,5 + 2e,K7,4 + 4e}.

Proof. Let G∗ be the quasi-complement of G. Then

H(G∗) = 1
2

∑
v∈V (G) D̂v(G

∗) ≥ 1
2

∑n+1
i=1 [dG∗(vi) + 1

2n−1(n− dG∗(vi)) + n
2n

]

+1
2

∑n
j=1[dG∗(uj) + 1

2n−1(n+ 1− dG∗(uj)) + n−1
2n−2 ]

= 1
2
[ (4n−1)(n+1)

2(2n−1) − 2−2n
2n−1

∑n+1
i=1 dG∗(vi)]

+1
2
[ (4n+1)n
2(2n−1) −

2−2n
2n−1

∑n
j=1 dG∗(uj)]

= 8n3+8n2−4n−1
4(2n−1) − 2n−2

2(2n−1)
∑n+1

i=1 dG(vi)

− 2n−2
2(2n−1)

∑n
j=1 dG(uj)]

= 8n3+8n2−4n−1
4(2n−1) − 2n−2

2n−1m.

Since H(G∗) ≤ 24n2−28n+15
4(2n−1) , we have that m ≥ n2 − n + 2. Note that d(v) = n + 1 in

G[X, Y + v], hence

m(G[X, Y + v]) = m+ (n+ 1) ≥ n2 + 3 = (n+ 1)2 − 2(n+ 1) + 4.

¿From Lemma 4.4, we obtain that G[X, Y + v] is Hamiltonian or G = Kn+1,n−1 + 4e.

Hence G[X, Y ] is traceable or G ∈ {Kn,n−1 + 2e,Kn+1,n−2 + 4e}. But

H((Kn,n−1 + 4e)∗) = H((Kn+1,n−2 + 4e)∗) ≥ n2 + 5n− 4

4
>

24n2 − 28n+ 15

4(2n− 1)
, n ≥ 7.

So we have G ∈ {K3,2 + 2e,K4,1 + 4e,K4,3 + 2e,K5,2 + 4e,K5,4 + 2e,K6,3 + 4e,K6,5 +

2e,K7,4 + 4e}.
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Theorem 4.7. Let G = G[X, Y ] be a bipartite graph with δ ≥ 2 and m edges, where

|X| = |Y | = n ≥ 4. If

H(G) ≥ 9n2 − 11n+ 16

6
,

then G is Hamiltonian unless G = Kn,n−2 + 4e.

Proof. Assume that G is non-Hamiltonian.

H(G) = 1
2

∑2n
i=1 D̂i(G) ≤ 1

2

∑2n
i=1[di + 1

3
(n− di) + 1

2
(n− 1)]

= 1
2

∑2n
i=1(

5n−3
6

+ 2
3
di)

= 5n2−3n
6

+ 1
3

∑2n
i=1 di

= 5n2−3n
6

+ 2
3
m.

Note that H(G) ≥ 9n2−11n+16
6

, we have m ≥ n2− 2n+ 4. From Lemma 4.4, we obtain

that G = Kn,n−2 + 4e.

Theorem 4.8. Let G = G[X, Y ] be a bipartite graph with δ ≥ 2 and m edges, where

|X| = |Y | = n ≥ 4. If

H(G∗) ≤ 12n2 − 25n+ 16

4n− 2
,

then G is Hamiltonian unless G ∈ {K4,2 + 4e,K5,3 + 4e,K6,4 + 4e,K7,5 + 4e}.

Proof. Assume that G is non-Hamiltonian.

H(G∗) = 1
2

∑2n
i=1 D̂i(G

∗) ≥ 1
2

∑2n
i=1[dG∗(vi) + 1

2n−1(n− dG∗(vi)) + n−1
2n−2 ]

= 1
2

∑2n
i=1[

2(n−1)
2n−1 dG∗(vi) + n

2n−1 + 1
2
]

= 1
2

∑2n
i=1[

2(n−1)
2n−1 dG∗(vi) + 4n−1

2(2n−1) ]

= n(4n−1)
2(2n−1) + 2(n−1)

2(2n−1)
∑2n

i=1(n− dG(vi))

= 4n3−n
2(2n−1) −

2(n−1)
2n−1 m.

Note that H(G∗) ≤ 12n2−25n+16
4n−2 , we have m ≥ n2−2n+4. From Lemma 4.4, we obtain

that G = Kn,n−2 + 4e. Note that

H((Kn,n−2 + 4e)∗) ≥ n2 + 3n− 8

4
>

12n2 − 25n+ 16

4n− 2
, n ≥ 8.

So we have G ∈ {K4,2 + 4e,K5,3 + 4e,K6,4 + 4e,K7,5 + 4e}.

5 Harary spectral radius on traceable and Hamilto-

nian graphs

Lemma 5.1. Let G be a graph on n vertices. Then ρ(G) ≥ 2H(G)
n

, and the equality holds

if and only if the row sums of RD(G) are all equal.
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Proof. Let x = 1√
n
(1, 1, . . . , 1) be a unit n-vector. Then by Raleigh principle, applied to

the Harary matrix RD(G) of G, we get

ρ(G) ≥ xRD(G)xt

xxt

=
1√
n
[RD1,RD2,...,RDn]

1√
n
[1,1...,1]t

1

= 1
n

∑
1≤i≤nRDi

= 2H(G)
n

.

Now suppose each row of RD(G) sums to a constant, say k and 2H(G) = nk. Then

by the Theorem of Frobenius [2], k is simple and greatest eigenvalue of RD(G). Thus

ρ(G) = k = nk
n

= 2H(G)
n

and hence equality holds.

Conversely if equality holds, then x is the eigenvector corresponding to ρ(G) and hence

xRD(G) = ρ(G)x. So the row sums of RD(G) are all equal. The proof is completed.

Theorem 5.2. Let G be a connected graph of order n ≥ 4. If

ρ(G) ≤ 5n2 − 19n+ 20

n(n− 1)
,

then G is traceable unless G = K1,3.

G G ρ(G) 5n2−19n+20
n(n−1)

K1,3 K3 ∪K1 2 2

K1 ∨ (Kn−3 + 2K1) (K2 ∨ (n− 3)K1) ∪K1
n−2+

√
n2+20n−60
4

5n2−9n+20
n(n−1)

K1 ∨ (K1,3 +K1) (K1 ∨ (K3 +K1)) ∪K1 3.4575 2.8667
K2,4 K2 ∪K4 3 2.8667

K2 ∨ 4K1 K4 ∪ 2K1 3 2.8667
K2 ∨ (3K1 +K2) (K3 ∨ 2K1) ∪ 2K1 3.8117 3.1429

K1 ∨K2,5 K2 ∪K5 ∪K1 4 3.3571
K3 ∨ 5K1 K5 ∨ 3K1 4 3.3571

K2 ∨ (K1,4 +K1) (K1 ∨ (K4 +K1)) ∪ 2K1 4.4115 3.3571
K4 ∨ 6K1 K6 ∪ 4K1 5 3.6667

Table 1: The harary spectral radius of complements of graphs

Proof. Suppose that G is nontraceable. From Lemma 5.1, we have

ρ(G) ≥ 2H(G)

n
≥ (n− 1)− 2(n− 2)m

n(n− 1)
.

Since ρ(G) ≤ 5n2−19n+20
n(n−1) , we have m ≥

(
n−2
2

)
+ 2. According to Lemma 3.1, we have

G ∈ NP. By a direct computation, we have the above Table 1. ¿From Table 1, we obtain

the result.
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Theorem 5.3. Let G be a graph on n ≥ 5 vertices and m edges with δ ≥ 2. If

ρ(G) ≤ 5n2 − 23n+ 28

n(n− 1)
,

then G is Hamiltonian.

G G ρ(G) 5n2−23n+28
n(n−1)

K2 ∨ (Kn−4 + 2K1) (K2 ∨ (n− 4)K1) ∪ 2K1
n−3+

√
n2+18n−79
4

5n2−23n+28
n(n−1)

K3 ∨ (4K1) K4 ∪ 3K1 3 2.6667
K2 ∨ (K1,3 +K1) (K1 ∨ (K3 +K1)) ∪ 2K1 3.4575 2.6667

K1 ∨K2,4 K4 ∪K2 ∪K1 3 2.6667
K3 ∨ (K2 + 3K1) (K3 ∨ 2K1) ∪ 3K1 3.8117 2.9286

K4 ∨ 5K1 K5 ∪ 4K1 4 3.1389
K3 ∨ (K1,4 +K1) (K1 ∨ (K4 +K1)) ∪ 3K1 4.4115 3.1389

K2 ∨K2,5 K5 ∪K2 ∪ 2K1 4 3.1389
K5 ∨ 6K1 K6 ∪ 5K1 5 3.4545

Table 2: The harary spectral radius of complements of graphs

Proof. Suppose that G is non-Hamiltonian. From Lemma 5.1, we have

ρ(G) ≥ 2H(G)

n
≥ (n− 1)− 2(n− 2)m

n(n− 1)
.

Since ρ(G) ≤ 5n2−23n+28
n(n−1) , we have m ≥

(
n−2
2

)
+ 4. According to Lemma 3.3, we obtain

G ∈ NC. By a direct computation, we have the following Table 2. From Table 2, we

complete the proof.

6 Harary spectral radius on traceable and Hamilto-

nian biparatite graphs

Theorem 6.1. Let G = G[X, Y ] be a bipartite graph with δ ≥ 1 and m edges, where

|X| = |Y | = n ≥ 3. If

ρ(G∗) ≤ 12n2 − 21n+ 12

4n2 − 2n
,

then G is traceable.

Proof. According to Lemma 5.1, we have

ρ(G∗) ≥ 2H(G∗)

2n
≥ 1

n
[

4n3 − n
2(2n− 1)

− 2(n− 1)

2n− 1
m].

Note that ρ(G∗) ≤ 12n2−21n+12
4n2−2n , we have m ≥ n2 − 2n + 3. By Lemma 4.1, then G is

traceable.
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Theorem 6.2. Let G = G[X, Y ] be a bipartite graph with δX ≥ 1 and δY ≥ 2, where

|X| = n+ 1 and |Y | = n ≥ 3. If

ρ(G∗[X, Y ]) ≤ 24n2 − 28n+ 15

8n2 − 2
,

then G is traceable.

Proof. According to Lemma 5.1, we have

ρ(G∗) ≥ 2H(G∗)

2n+ 1
≥ 2

2n+ 1
[
8n3 + 8n2 − 4n− 1

4(2n− 1)
− 2(n− 1)

2n− 1
m].

Note that ρ(G∗[X, Y ]) ≤ 24n2−28n+15
8n2−2 , we have m ≥ n2 − n+ 2. Note that d(v) = n+ 1 in

G[X, Y + v], hence

m(G[X, Y + v]) = m+ (n+ 1) ≥ n2 + 3 = (n+ 1)2 − 2(n+ 1) + 4.

From Lemma 4.4, G = G[X, Y + v] is Hamiltonian unless G = Kn+1,n−1 + 4e. Hence

G = G[X, Y ] is traceable unless G ∈ {Kn,n−1 + 2e,Kn+1,n−2 + 4e}. Note that

ρ((Kn,n−1 + 2e)∗) = n−1+
√
n2+26n−23
4

> 24n2−28n+15
8n2−2 , n ≥ 3.

ρ((Kn+1,n−2 + 4e)∗) = n−1+
√
n2+26n−23
4

> 24n2−28n+15
8n2−2 , n ≥ 3.

The proof is completed.

Theorem 6.3. Let G = G[X, Y ] be a bipartite graph with δ ≥ 2, where |X| = |Y | = n ≥ 4.

If

ρ(G∗) ≤ 12n2 − 25n+ 16

4n2 − 2n
,

then G is Hamiltonian.

Proof. According to Lemma 5.1, we have

ρ(G∗) ≥ 2H(G∗)

2n
≥ 1

n
[

4n3 − n
2(2n− 1)

− 2(n− 1)

2n− 1
m].

Note that ρ(G∗) ≤ 12n2−25n+16
4n2−2n , we have m ≥ n2− 2n+ 4. By Lemma 4.4, we obtain that

G = Kn,n−2 + 4e. Note that

ρ((Kn,n−2 + 4e)∗) =
n− 2 +

√
n2 + 24n− 48

4
>

12n2 − 25n+ 16

4n2 − 2n
, n ≥ 4.

The proof is completed.
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