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Abstract

In this paper, we will extend our work in [1] on a system of two coupled nonlinear Lane-
Emden differential equations, that governs the concentrations of oxygen and the carbon
substrate. This mathematical model describes substrate removal, oxygen utilization and
excess sludge production within a microbial floc particle as surrounded by a biodegradable
substrate [1–5]. We had previously applied the Adomian decomposition method (ADM)
combined with the Duan-Rach modified recursion scheme in [1], and for a comparative
study, we will apply the variational iteration method (VIM) for analytical approxima-
tions of the concentrations of oxygen and the carbon substrate. The variational iteration
method, as the Adomian decomposition method, yields a rapidly convergent, easily com-
putable and readily verifiable sequence of analytic approximations that are convenient for
parametric simulations.

1 Introduction

The disposal of excess sludge from waste water treatment plants represents a rising chal-

lenge in designing activated sludge processes [1–5]. Sludge comes as semi-solid material
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left from waste water treatment plants, or sometimes sludge comes as solids removed from

the raw water [1–5]. The sludge will become putrescent in a short time once anaerobic

bacteria take over, and must be removed from the sedimentation tank before this can

happen. Tyagi et al. [5] discussed the dynamic behavior of activated sludge. Abbassi

et al. [2] developed a mathematical model that describes substrate removal, oxygen uti-

lization and excess sludge production within a microbial floc particle as surrounded by a

biodegradable substrate [4].

In [4], a mathematical model that relates the concentration of the carbon substrate

and the concentration of oxygen was established as a system of two coupled Lane-Emden

type equations

d2u

dρ2
+
k

ρ

du

dρ
= −α2 + F1 (u(ρ), v(ρ)) , (1)

d2v

dρ2
+
k

ρ

dv

dρ
= F2 (u(ρ), v(ρ)) . (2)

The solution of the aforementioned system of equations requires appropriate boundary

conditions. These are based on the assumption of symmetry about the floc center and

neglecting the boundary layer around the floc, so that the concentration on the floc

surface is equal to the concentration in the surroundings [2]. These assumptions give the

two mixed sets of Neumann and Dirichlet boundary conditions

u′(0) = 0, u(1) = 1, v′(0) = 0, v(1) = 1, (3)

where the functions u(ρ) and v(ρ) are the concentration of the carbon substrate and the

concentration of oxygen, respectively, ρ is the radius of an idealized spherical floc particle,

and the system nonlinearities are

F1 (u (ρ) , v (ρ)) = α1f1 (u (ρ) , v (ρ)) + α3f2 (u (ρ) , v (ρ)) , (4)

F2 (u (ρ) , v (ρ)) = α4f1 (u (ρ) , v (ρ)) + α5f2 (u (ρ) , v (ρ)) , (5)

where

f1 (u (ρ) , v (ρ)) =
u (ρ) v (ρ)

(l1 + u (ρ)) (m1 + v (ρ))
, (6)

f2 (u (ρ) , v (ρ)) =
u (ρ) v (ρ)

(l2 + u (ρ)) (m2 + v (ρ))
, (7)

which are products of the respective Michaelis-Menten nonlinearities [1-5], i.e.

fj (u (ρ) , v (ρ)) = Mj (u (ρ))×Mj (v (ρ)) =
u (ρ)

lj + u (ρ)
× v (ρ)

mj + v (ρ)
, (8)
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for j = 1, 2, where Mj is the respective Michaelis-Menten nonlinear operator. Note that

in [1-5], the shape factor k was used for the specific value k = 2.

In our work [1], we applied the Adomian decomposition method [6–38] combined

with the Duan-Rach modified recursion scheme [15–17], and we systematically obtained

a rapidly convergent analytic approximate solution that is convenient for numerical sim-

ulations.

In this work, we shall apply the variational iteration method [10-12] to systematically

obtain a series of successive approximations. This method mainly depends on using the

correction functional scheme, where the Lagrange multipliers are necessarily needed to

perform the computational work. For comparison reasons, and to enable the reader to

follow our analysis, we first give a brief summary of the work in [1] which used the ADM.

2 Brief summary of the work in [1]

We rewrite Eqs. (1) and (2) in Adomian’s operator-theoretic form as

Lu = −α2 + F1 (u(ρ), v(ρ)) , (9)

Lv = F2 (u(ρ), v(ρ)) , (10)

where the linear differential operator L is defined as

Lw(ρ) =
d2

dρ2
w(ρ) +

2

ρ

d

dρ
w(ρ). (11)

Defining the corresponding inverse operator L−1 [28, 29] as

L−1w(ρ) =

∫ ρ

0

(
r − r2

ρ

)
w(r)dr, (12)

we have [28,29]

L−1Lu = u (ρ)− u (0) , L−1Lv = v (ρ)− v (0) , (13)

for du
dρ

(0) = 0, and dv
dρ

(0) = 0.

Applying the corresponding inverse linear operator L−1 (·) to both sides of Eqs. (9)

and (10) leads to

u (ρ) = u (0)− α2

6
ρ2 + L−1F1 (u (ρ) , v (ρ)) , (14)

v (ρ) = v (0) + L−1F2 (u (ρ) , v (ρ)) , (15)
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which is a system of coupled nonlinear Volterra integral equations with two – as yet

undetermined – constants of integration u (0) and v (0) as an intermediate step.

Denote

L−11 w(ρ) := [L−1w(ρ)]ρ=1 =

∫ 1

0

(
r − r2

)
w(r)dr. (16)

Substituting the boundary conditions u (1) = 1 and v (1) = 1 into Eqs. (14) and (15), we

have

u (0) = 1 +
α2

6
− L−11 F1 (u (ρ) , v (ρ)) , (17)

v (0) = 1− L−11 F2 (u (ρ) , v (ρ)) . (18)

Substituting Eqs. (17) and (18) into Eqs. (14) and (15), we obtain the equivalent sys-

tem of coupled nonlinear Fredholm-Volterra integral equations without any undetermined

constants of integration as

u (ρ) = 1 +
α2

6
− α2

6
ρ2 − L−11 F1 (u (ρ) , v (ρ)) + L−1F1 (u (ρ) , v (ρ)) , (19)

v (ρ) = 1− L−11 F2 (u (ρ) , v (ρ)) + L−1F2 (u (ρ) , v (ρ)) . (20)

Next we shall use the respective Adomian decomposition series

u (ρ) =
∞∑
n=0

un (ρ), v (ρ) =
∞∑
n=0

vn (ρ). (21)

Upon substitution of the decompositions (21) into Eqs. (19) and (20), we obtain

∞∑
n=0

un (ρ) = 1 +
α2

6
− α2

6
ρ2 − L−11

∞∑
n=0

A 1, n (ρ) + L−1
∞∑
n=0

A 1, n (ρ), (22)

∞∑
n=0

vn (ρ) = 1− L−11

∞∑
n=0

A 2, n (ρ) + L−1
∞∑
n=0

A 2, n (ρ). (23)

This in turn gives

u0 (ρ) = 1 + α2

6
,

u1 (ρ) = α2+6
6

(
α1

(m1+1)(α2+6l1+6)
+ α3

(m2+1)(α2+6l2+6)

)
(ρ2 − 1)− α2ρ2

6
,

(24)

and
v0 (ρ) = 1,

v1 (ρ) = α2+6
6

(
α4

(m1+1)(α2+6l1+6)
+ α5

(m2+1)(α2+6l2+6)

)
(ρ2 − 1).

The second-stage approximate solutions are therefore given as

φ2 (ρ) = u0(ρ) + u1(ρ),

= 1 + α2

6
+ α2+6

6

(
α1

(m1+1)(α2+6l1+6)
+ α3

(m2+1)(α2+6l2+6)

)
(ρ2 − 1)− α2ρ2

6
,

(25)
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and
ψ2 (ρ) = v0(ρ) + v1(ρ),

= 1 + α2+6
6

(
α4

(m1+1)(α2+6l1+6)
+ α5

(m2+1)(α2+6l2+6)

)
(ρ2 − 1),

(26)

and so on.

3 The VIM and the Lagrange multipliers

As stated before, our concern in this work is to apply the variational iteration method to

handle the system of the coupled Lane-Emden equations (1) and (2). The VIM is well

documented in the literature. However, we will summarize the necessary steps of this

method to allow the reader to follow our discussion in the sequel.

In this section, we will present the essential steps for using the variational iteration

method and the determination of the Lagrange multipliers for various values of the shape

factor k. For the differential equation

Lu+Nu = g(x), (27)

where L and N are linear and nonlinear operators respectively, and g(t) is the source

term, a correction functional for equation (27) should be used in the form [1]

un+1(x) = un(x) +

∫ x

0

λ(x, t) (Lun(t) +N ũn(t)) dt, (28)

where λ(x, t) is a general Lagrange multiplier, which can be a constant or a function, and

can be identified optimally via the variational theory, and ũn is a restricted variation,

which means that δũn = 0.

For Eq. (1), the correction functional reads

un+1(x) = un(x) +

∫ x

0

λ(t)

(
(un(t))tt +

k

t
(un(t))t + g̃(un(t))

)
dt, (29)

where δ(g̃(un(t))) = 0.

In [11], the optimal value of λ(x, t) was evaluated by taking the variation for both

sides with respect to un(x) to obtain

δun+1(x) = δun(x) + δ

∫ x

0

λ(t)

(
(un(t))tt +

k

t
(un(t))t + g̃(un(t))

)
dt, (30)

or equivalently

δun+1(x) = δun(x) + δ

∫ x

0

λ(t)

(
(un(t))tt +

k

t
(un(t))t

)
dt, (31)
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where we used δ(g̃(un(t))) = 0.

Integrating the integral on the right side by parts yields

δun+1(x) = δun(x)
(
1− λ′

(x) + k
x
λ(x)

)
+ δλ(x)(un)t(x)

+ δ
∫ x
0
un

(
λ

′′
(t)− k tλ

′
(t)−λ(t)
t2

)
dt.

(32)

This in turn determines the stationary conditions

λ(t = x) = 0,

λ
′|t=x = 1,

λ
′′ − k tλ

′−λ
x2

= 0.

(33)

Solving (33) leads to the following two cases:

(i) For cylindrical problems, where k = 1, we find

λ(x, t) = t ln

(
t

x

)
. (34)

(ii) For the general case, where k > 1, solving (33) yields

λ(x, t) =
t(tk−1 − xk−1)
(k − 1)xk−1

. (35)

Recall that the shape factor k = 2 was used in [1-6] which describes spherical problems.

The successive approximations un+1, for n ≥ 0, of the solution u(x) will be readily

obtained upon using any selective function u0(x). Consequently, the exact solution, if it

exists, will be given by

y(x) = lim
n→∞

un(x). (36)

3.1 Analysis of the problem

Our goal is to apply the variational iteration method to the model

d2u

dρ2
+
k

ρ

du

dρ
= −α2 + F1 (u(ρ), v(ρ)) , (37)

d2v

dρ2
+
k

ρ

dv

dρ
= F2 (u(ρ), v(ρ)) , (38)

subject to the two mixed sets of Neumann and Dirichlet boundary conditions

u′(0) = 0, u(1) = 1, v′(0) = 0, v(1) = 1. (39)

To use the variational iteration method, we first determine the correction functionals

in the form

un+1(ρ) = un(ρ)
+
∫ ρ
0
λ(ρ, t)

(
u

′′
n(t) + k

t
u

′
n(t) + α2 − F1(un(t), vn(t))

)
dt,

vn+1(ρ) = vn(ρ)
+
∫ ρ
0
λ(ρ, t)

(
v

′′
n(t) + k

t
v

′
n(t)− F2(un(t), vn(t))

)
dt.

(40)
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Recall that the Lagrange multiplier λ depends on the shape factor k which was derived

earlier in (34) and (35).

It is interesting to point out that the best choice for the zeroth approximations u0(x)

and v0(x), that will accelerate the convergence of the successive approximations, is the

following selection
u0(ρ) = u(0) + ρu′(0) = α,
v0(ρ) = v(0) + ρv′(0) = β,

(41)

where the as yet undetermined constants α and β will be approximated by using the

boundary conditions u(1) and v(1). This kind of selections has proved to be effective

to achieve convergent successive approximations. Moreover, one significant feature of

the VIM is that it can be applied in a straightforward manner without any restrictive

assumptions such as linearity and perturbation. Also the VIM does not require the use

of the Adomian polynomials. The obtained solutions for u(x) and v(x) will be provided

in a convergent power series as proved in [10-12].

By selecting the zeroth approximation u0 = α, v0 = β, we obtain the following cal-

culated solution approximations for three specific values of the shape factors, namely

k = 1, k = 2, and k = 3, where other cases can be evaluated in a like manner.

Case I: k = 1

Recall that for k = 1, the Lagrange multiplier is given in (34) as λ(x, t) = t ln
(
t
x

)
.

Using (40) we obtain the following approximations:

u0(ρ) = α,

v0(ρ) = β,

u1(ρ) = α +

(
αβα1

(l1 + α)(m1 + β)
+

αβα3

(l2 + α)(m2 + β)

)
ρ2

4
− ρ2

4
, (42)

v1(ρ) = β +

(
αβα4

(l1 + α)(m1 + β)
+

αβα5

(l2 + α)(m2 + β)

)
ρ2

4
,

. . . .

Substituting the boundary conditions u(1) = 1 and v(1) = 1 into (42) and solving the

resulting equation, we can obtain the numerical values for α and β.

Case II: k = 2

For k = 2, the Lagrange multiplier is given in (35) as λ(x, t) = t(t−x)
x

. Using (40), we

obtain the following approximations:
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u0(ρ) = α,

v0(ρ) = β,

u1(ρ) = α +

(
αβα1

(l1 + α)(m1 + β)
+

αβα3

(l2 + α)(m2 + β)

)
ρ2

6
− ρ2

6
, (43)

v1(ρ) = β +

(
αβα4

(l1 + α)(m1 + β)
+

αβα5

(l2 + α)(m2 + β)

)
ρ2

6
,

. . . , .

Substituting the boundary conditions u(1) = 1 and v(1) = 1 into (43) and solving the

resulting equation we can obtain the numerical values for α and β.

Case III: k = 3

For k = 3, the Lagrange multiplier from (35) is given as λ(x, t) = t(t2−x2)
(2x2

. Using (40)

we obtain the following approximations:

u0(ρ) = α,

v0(ρ) = β,

u1(ρ) = α +

(
αβα1

(l1 + α)(m1 + β)
+

αβα3

(l2 + α)(m2 + β)

)
ρ2

8
− ρ2

8
, (44)

v1(ρ) = β +

(
αβα4

(l1 + α)(m1 + β)
+

αβα5

(l2 + α)(m2 + β)

)
ρ2

8
,

. . . .

and this can be generalized to any k, where we obtain

u0(ρ) = α,

v0(ρ) = β,

u1(ρ) = α +

(
αβα1

(l1 + α)(m1 + β)
+

αβα3

(l2 + α)(m2 + β)

)
ρ2

2k + 2
− ρ2

2k + 2
, k ≥ 1, (45)

v1(ρ) = β +

(
αβα4

(l1 + α)(m1 + β)
+

αβα5

(l2 + α)(m2 + β)

)
ρ2

2k + 2
, k ≥ 1,

. . . .

Substituting the boundary conditions u(1) = 1 and v(1) = 1 into (44) and solving the

resulting equations, we can obtain the numerical values for α and β.
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4 Numerical simulations

First, we assign m1 = l1 = m2 = l2 = 0.0001 as in [4]. We further specify α1=5, α2=1,

α3 =0.1, α4=0.1, α5=0.05 to determine the approximations for u(ρ) and v(ρ) for the

aforementioned cases of k = 1, 2 and 3.

Case I: k = 1

Substituting the boundary conditions u(1) = 1, v(1) = 1 into (42) and solving the

resulting equations, we find

α = 0.004274630305,
β = 0.9633610185.

(46)

Substituting this result in (42) gives the approximations

u1(ρ) = 0.004274630305 + 0.9957253702ρ2,
v1(ρ) = 0.9633610185 + .03663898146ρ2.

(47)

Case II: k = 2

Substituting the boundary conditions u(1) = 1, v(1) = 1 into (43) and solving the

resulting equations, we find
α = 0.3170218446,
β = 0.9750104464.

(48)

Substituting this result in (43) gives the approximations

u1(ρ) = 0.3170218446 + 0.682978155ρ2,
v1(ρ) = 0.9750104464 + 0.02498955359ρ2.

(49)

It is worth noting that this approximation is consistent with our results that we obtained

in [1].

Case III: k = 3

Substituting the boundary conditions u(1) = 1, v(1) = 1 into (44) and solving the

resulting equations, we find
α = 0.8626388463,
β = 0.9812540837.

(50)

Substituting this result in (44) gives the approximations

u1(ρ) = 0.8626388463 + 0.1373611537ρ2,
v1(ρ) = 0.9812540837 + 0.01874591629ρ2.

(51)

In Figs. 1 and 2 below, we plot the curves of the approximate solutions u1(ρ) and v1(ρ)

for the cases k = 1, k = 2, and k = 3. Note that because the coefficient of ρ2 is small for

the three cases of v1(ρ), we observe that ρ from 0 to 1 shows that the three parabolas are

almost the same for 0 ≤ x ≤ 1.
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Fig. 1: Curves of the approximations u1(ρ)
versus ρ for k = 1, 2, 3

.

Fig. 2: Curves of the approximation v1(ρ)
versus ρ for k = 1, 2, 3

5 Conclusions

In this work, we have extended our results in [1] on microbial floc particles immersed

in a system of the carbon substrate and oxygen. The system models the excess sludge

production from waste water treatment plants. The proposed approach depends mainly

on combining the variational iteration method where Lagrange multipliers are necessarily

used. The work resulted in an approximation of the concentrations of carbon and the

concentration of oxygen with a high level of accuracy. The evaluated approximations show

consistency with respect to our previous results in [1] where the Adomian decomposition

method was employed.

Acknowledgment : This work of the third author was supported by the Natural Science
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