Inequalities for the Number of Walks in Subdivision Graphs

Hanjo Täubig
Computer Science Dept., TU München, D-85748 Garching, Germany, taeubig@in.tum.de

(Received September 18, 2015)

Abstract

We consider an undirected graph G with n vertices and m edges that is modified by introducing an intermediate vertex on every edge. It has been shown by Ilić and Stevanović that this subdivision graph S_{G} satisfies the Zagreb indices inequality $M_{1}\left(S_{G}\right) /(m+n) \leq M_{2}\left(S_{G}\right) /(2 m)$. This inequality can also be expressed in the form $w_{1}\left(S_{G}\right) \cdot w_{2}\left(S_{G}\right) \leq w_{0}\left(S_{G}\right) \cdot w_{3}\left(S_{G}\right)$, where $w_{k}(G)$ denotes the number of k step walks in G. Besides trees, this is another class of bipartite graphs where the inequality holds true.

In this paper, we prove the inequalities $w_{1}\left(S_{G}\right) \cdot w_{4}\left(S_{G}\right) \leq w_{0}\left(S_{G}\right) \cdot w_{5}\left(S_{G}\right)$ and $w_{2}\left(S_{G}\right) \cdot w_{3}\left(S_{G}\right) \leq w_{0}\left(S_{G}\right) \cdot w_{5}\left(S_{G}\right)$. This raises the question whether the generalization $w_{a}\left(S_{G}\right) \cdot w_{b}\left(S_{G}\right) \leq w_{0}\left(S_{G}\right) \cdot w_{a+b}\left(S_{G}\right)$ is satisfied for subdivision graphs.

1 Introduction

We consider an undirected (multi-)graph $G=(V, E)$ with $n:=|V|$ vertices and $m:=|E|$ edges. The degree of a vertex $v \in V$ is denoted by d_{v}. A walk in a multigraph $G=(V, E)$ is an alternating sequence $\left(v_{0}, e_{1}, v_{1}, \ldots, v_{k-1}, e_{k}, v_{k}\right)$ of vertices $v_{i} \in V$ and edges $e_{i} \in E$ where each edge e_{i} of the walk must connect vertex v_{i-1} to vertex v_{i} in G, that is, $e_{i}=\left\{v_{i-1}, v_{i}\right\}$ for all $i \in\{1, \ldots, k\}$. Vertices and edges can be used repeatedly in the same walk. If the multigraph has no parallel edges, then the walks could also be specified by the sequence of vertices $\left(v_{0}, v_{1}, \ldots, v_{k-1}, v_{k}\right)$ without the edges. The length of a walk
is the number of edge traversals. That means, the walk $\left(v_{0}, \ldots, v_{k}\right)$ consisting of $k+1$ vertices and k edges is a walk of length k. Mostly, we will call it a k-step walk. Our main concern will be the investigation of the number of walks of a specified length. Let $w_{k}(v)$ denote the number of k-step walks starting at vertex $v \in V$. Since G is undirected, this is the same as the number of k-step walks ending at v. The total number of k-step walks is denoted by w_{k}. For walks of length 0 , we have $w_{0}(v)=1$ for each vertex v and $w_{0}=n$. For walks of length 1 , we have $w_{1}(v)=d_{v}$ and $w_{1}=\sum_{v \in V} d_{v}=2 m$ by the handshake lemma. The total number of walks can be decomposed as

$$
w_{a+b}=\sum_{v \in V} w_{a}(v) \cdot w_{b}(v) \quad \text { and } \quad w_{a+b+1}=2 \sum_{\{x, y\} \in E} w_{a}(x) \cdot w_{b}(y)
$$

where the total number of walks is divided into summands representing the walks with fixed vertex v or fixed edge traversals (x, y) and (y, x) after a steps. That means, partial walks of length a and b are attached to a certain vertex or edge traversal. In particular, we will use the special cases $w_{2}(G)=\sum_{v \in V} d_{v}^{2}, w_{3}(G)=2 \sum_{\{x, y\} \in E} d_{x} \cdot d_{y}, w_{4}(G)=$ $\sum_{v \in V} w_{2}(v)^{2}$, and $w_{5}(G)=2 \sum_{\{x, y\} \in E} w_{2}(x) \cdot w_{2}(y)$.

For a given graph $G=(V, E)$, the subdivision graph S_{G} is obtained from G by introducing for each edge $e \in E$ a new vertex v_{e} that splits the old edge $e=\left\{v_{1}, v_{2}\right\}$ and replaces it by two new edges $e_{1}=\left\{v_{1}, v_{e}\right\}$ and $e_{2}=\left\{v_{e}, v_{2}\right\}$.

2 Related Work

2.1 General graphs and chemical graphs

Lagarias, Mazo, Shepp, and McKay [6] posed the following question: what are the numbers $a, b \in N$ such that $w_{a}(G) \cdot w_{b}(G) \leq n \cdot w_{a+b}(G)$ is satisfied for all graphs G ? Later, they proved the inequality for the case of an even sum $a+b[7]$. Hence, it could be stated in the following way.

Theorem 1 (Lagarias et al.). For all $a, b \in N$, every graph G on n vertices satisfies the inequality

$$
w_{2 a+b}(G) \cdot w_{b}(G) \leq n \cdot w_{2(a+b)}(G)
$$

More general forms of these inequalities were proposed in $[10,11]$.
Lagarias et al. presented counterexamples showing $w_{a}(G) \cdot w_{b}(G) \not \leq n \cdot w_{a+b}(G)$ whenever $a+b$ is odd and $a, b \geq 1$. This means that the inequalities $w_{1}(G) \cdot w_{2}(G) \leq$
$w_{0}(G) \cdot w_{3}(G)$ and $w_{1}(G) \cdot w_{4}(G) \leq w_{0}(G) \cdot w_{5}(G)$ are not satisfied in general (not even for bipartite graphs, see [11]). Recently, these counterexamples were generalized by Täubig [8] to the more general form

$$
w_{2 a+c}(G) \cdot w_{2 a+2 b+c+1}(G) \not \leq w_{2 a}(G) \cdot w_{2 a+2 b+2 c+1}(G)
$$

for $a, b, c \in N$.
Probably unaware of the work by Lagarias et al., an inequality that is equivalent to $w_{0}(G) \cdot w_{3}(G) \geq w_{1}(G) \cdot w_{2}(G)$ was investigated again by Hansen and Vukičević [4]. The AutoGraphiX system [2] had been used to make a conjecture in the slightly different form $M_{1}(G) / n \leq M_{2}(G) / m$ using the Zagreb indices

$$
M_{1}(G):=\sum_{v \in V} d_{v}^{2}=w_{2}(G) \quad \text { and } \quad M_{2}(G):=\sum_{\{x, y\} \in E} d_{x} d_{y}=w_{3}(G) / 2
$$

Hansen and Vukičević again found counterexamples for the case of general graphs, but they also proved the inequality for graphs with maximum degree not exceeding 4 . That includes most of the graphs that are interesting from the perspective of chemical structures. An undirected graph is called a chemical graph if its maximum degree Δ is bounded by $\Delta \leq 4$.

Theorem 2 (Hansen and Vukičević). Every chemical graph G satisfies the inequality

$$
\frac{M_{1}(G)}{n} \leq \frac{M_{2}(G)}{m}
$$

2.2 Trees

Vukičević and Graovac [12] proved the same inequality for all trees. (Later, another proof appeared in the paper of Andova, Cohen, and Škrekovski [1].)

Theorem 3 (Vukičević and Graovac). Let T be a tree with $n \geq 2$ vertices and m edges. Then,

$$
\frac{M_{1}(T)}{n} \leq \frac{M_{2}(T)}{m}
$$

The equality holds if and only if T is a star.

Unaware of this result, the following equivalent form of the inequality that uses the number of walks was proved in [11].

Corollary 4. Every tree T satisfies the inequality

$$
w_{1}(T) \cdot w_{2}(T) \leq w_{0}(T) \cdot w_{3}(T) \quad \text { or, equivalently, } \quad \bar{d} \cdot w_{2}(T) \leq w_{3}(T)
$$

where $\bar{d}=2 m / n$ denotes the average degree.
In the same paper, a similar inequality for walks of length 4 and 5 is shown.

Theorem 5. Every tree T satisfies the inequality

$$
w_{1}(T) \cdot w_{4}(T) \leq w_{0}(T) \cdot w_{5}(T) \quad \text { or, equivalently, } \quad \bar{d} \cdot w_{4}(T) \leq w_{5}(T)
$$

2.3 Subdivision graphs

Ilić and Stevanović [5] proved the following theorem for subdivision graphs.
Theorem 6 (Ilić and Stevanović). For every graph G on n vertices and m edges, the corresponding subdivision graph S_{G} obeys the inequality

$$
\frac{M_{1}\left(S_{G}\right)}{n+m} \leq \frac{M_{2}\left(S_{G}\right)}{2 m} .
$$

If we translate this to walk numbers, the statement corresponds to the following.

Corollary 7. For every graph G, the corresponding subdivision graph S_{G} obeys the inequality

$$
w_{1}\left(S_{G}\right) \cdot w_{2}\left(S_{G}\right) \leq w_{0}\left(S_{G}\right) \cdot w_{3}\left(S_{G}\right)
$$

Proof. We give a short alternative proof. We have

$$
\begin{aligned}
& w_{0}\left(S_{G}\right)=n+m=w_{0}(G)+w_{1}(G) / 2 \quad \text { (There are } m \text { new vertices.) } \\
& w_{1}\left(S_{G}\right)=4 m=2 w_{1}(G) \quad \text { (Every edge is split into two parts.) } \\
& w_{2}\left(S_{G}\right)=\left(\sum_{v \in V} d_{v}^{2}\right)+m \cdot 2^{2}=w_{2}(G)+4 m=w_{2}(G)+2 w_{1}(G) \\
& w_{3}\left(S_{G}\right)=2 \sum_{\{x, y\} \in E\left(S_{G}\right), x \in V} 2 d_{x}=4 \sum_{x \in V} d_{x}^{2}=4 w_{2}(G)
\end{aligned}
$$

The formulas for $w_{2}\left(S_{G}\right)$ and $w_{3}\left(S_{G}\right)$ use the fact that old vertices have the same degree in G and in S_{G} while new vertices have always degree 2 . Then the inequality corresponds to

$$
\begin{aligned}
2 w_{1}(G) \cdot\left[w_{2}(G)+2 w_{1}(G)\right] & \leq\left[w_{0}(G)+w_{1}(G) / 2\right] \cdot 4 w_{2}(G) \\
w_{1}(G)^{2} & \leq w_{0}(G) \cdot w_{2}(G) .
\end{aligned}
$$

Thus the inequality is valid by Theorem 1. In principle, this inequality can also be found (without reference to walks) in the slightly different form $1+c_{v}^{2}=\frac{n}{4 m^{2}} \sum_{i=1}^{n} d_{i}^{2}$ within the paper of Edwards [3].

3 Main Results

Now, it would be interesting to know whether similar inequalities hold for longer walks in subdivision graphs, e.g., for the number of 5 -step walks. For the next step towards a proof of the general inequality, we will use the following lemma.

Lemma 8. Given n nonnegative numbers a_{k} and an exponent $p \in R$, the following inequality holds:

$$
\left(\sum_{k=1}^{n} a_{k}\right)^{p} \leq n^{p-1} \cdot \sum_{k=1}^{n} a_{k}^{p} \quad \text { for } p \leq 0 \text { or } p \geq 1
$$

The inequality is reversed for $0 \leq p \leq 1$.
Proof. For $p \leq 0$ or $p \geq 1$, the inequality is equivalent to $\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)^{p} \leq \frac{1}{n} \sum_{k=1}^{n} a_{k}^{p}$. The basic form of Jensen's inequality states that $f\left(\frac{1}{n} \sum_{i \in[n]} x_{i}\right) \leq \frac{1}{n} \sum_{i \in[n]} f\left(x_{i}\right)$ for any real convex function f and all $x \in R^{n}$. The inequality is reversed if f is concave. The lemma is correct for $a_{k} \geq 0$ since the function $f(x)=x^{p}$ (with $x \geq 0$) is convex for $p \leq 0$ or $p \geq 1$ and it is concave for $0 \leq p \leq 1$.

3.1 General graphs

Lemma 9. Every graph $G=(V, E)$ satisfies the inequality

$$
w_{2}(G)^{2} \leq m \sum_{\{x, y\} \in E}\left(d_{x}+d_{y}\right)^{2}
$$

Proof. By application of Lemma 8, we have

$$
\left(\sum_{\{x, y\} \in E}\left(d_{x}+d_{y}\right)\right)^{2} \leq m \sum_{\{x, y\} \in E}\left(d_{x}+d_{y}\right)^{2}
$$

The proof is complete by observing $w_{2}(G)=\sum_{v \in V} d_{v}^{2}=\sum_{\{x, y \in E\}}\left(d_{x}+d_{y}\right)$.
Now we show our main results. For convenience, we use the abbreviation $w_{k}=w_{k}(G)$.
Theorem 10. Every graph $G=(V, E)$ satisfies the inequality

$$
2 w_{1} w_{2} \leq w_{0} \sum_{\{x, y\} \in E}\left(d_{x}+d_{y}\right)^{2}=w_{0}\left(w_{3}+\sum_{v \in V} d_{v}^{3}\right)
$$

Proof. For the proof, we use the equivalent form

$$
2 \frac{w_{1}}{w_{0}} \leq \frac{1}{w_{2}} \sum_{\{x, y\} \in E}\left(d_{x}+d_{y}\right)^{2}
$$

We prove the inequality by separating both sides using the term w_{2} / m. First, we have $2 w_{1} / w_{0} \leq w_{2} / m$. This is obviously true since $w_{1}=2 m$ and $w_{1}^{2} \leq w_{0} w_{2}$ by Theorem 1. It remains to show that

$$
\frac{w_{2}}{m} \leq \frac{1}{w_{2}} \sum_{\{x, y\} \in E}\left(d_{x}+d_{y}\right)^{2}
$$

which is true by Lemma 9 .
It is interesting to see that the inequality

$$
w_{1} w_{2} \leq w_{0} \frac{w_{3}+\sum_{v \in V} d_{v}^{3}}{2}
$$

holds true although there are graphs with $w_{1} w_{2} \not \leq w_{0} w_{3}$ and there are (other) graphs satisfying $w_{3}=\sum_{v \in V} d_{v}^{3}$. Another interesting equivalent form uses arithmetic means:

$$
\frac{1}{n} \sum_{x \in V} d_{x}^{2} \leq \frac{1}{m} \sum_{\{x, y\} \in E}\left(\frac{d_{x}+d_{y}}{2}\right)^{2}
$$

While arithmetic means appear on the left side (per vertex) and on the right side (per edge), there is also the squared mean of d_{x} and d_{y} on the right handside. Replacing this arithmetic mean $\left(d_{x}+d_{y}\right) / 2$ by the smaller geometric mean $\sqrt{d_{x} d_{y}}$ would lead to the inequality $w_{1} w_{2} \leq w_{0} w_{3}$, which is not valid for general graphs (as discussed earlier).

3.2 Subdivision graphs

The following theorem has been obtained in [9]. ${ }^{1}$
Theorem 11. For every graph G, the corresponding subdivision graph S_{G} obeys the inequality

$$
w_{1}\left(S_{G}\right) \cdot w_{4}\left(S_{G}\right) \leq w_{0}\left(S_{G}\right) \cdot w_{5}\left(S_{G}\right)
$$

Proof. The calculation starts by applying the formula $w_{4}\left(S_{G}\right)=\sum_{v \in V\left(S_{G}\right)} w_{2}(v)^{2}$. We need to distinguish two kinds of vertices: old vertices (corresponding to the vertices in the original graph G) and new vertices (corresponding to the edges of G). For each old vertex $v \in V$, the number of 2-step walks in S_{G} is $w_{2}^{S_{G}}(v)=2 d_{v}$. For every new vertex v_{e} corresponding to an edge $e=\{x, y\}$ in G, the number of 2-step walks in S_{G} is

[^0]$w_{2}^{S_{G}}\left(v_{e}\right)=d_{x}+d_{y}$. Hence we obtain the following walk numbers in terms of the degrees and walks of the original graph G :
\[

$$
\begin{aligned}
& w_{4}\left(S_{G}\right)=\sum_{v \in V}\left(2 d_{v}\right)^{2}+\sum_{\{x, y\} \in E}\left(d_{x}+d_{y}\right)^{2}=4 w_{2}+\sum_{\{x, y\} \in E}\left(d_{x}+d_{y}\right)^{2} \\
& w_{5}\left(S_{G}\right)=2 \sum_{\{x, y\} \in E} 2 d_{x} \cdot\left(d_{x}+d_{y}\right)+2 d_{y} \cdot\left(d_{x}+d_{y}\right)=4 \sum_{\{x, y\} \in E}\left(d_{x}+d_{y}\right)^{2}
\end{aligned}
$$
\]

We obtain the following equivalent inequalities:

$$
\begin{aligned}
\left(2 w_{1}\right)\left(4 w_{2}+\sum_{\{x, y\} \in E}\left(d_{x}+d_{y}\right)^{2}\right) & \leq\left(w_{0}+w_{1} / 2\right)\left(4 \sum_{\{x, y\} \in E}\left(d_{x}+d_{y}\right)^{2}\right) \\
8 w_{1} w_{2} & \leq 4 w_{0} \sum_{\{x, y\} \in E}\left(d_{x}+d_{y}\right)^{2} \\
2 \frac{w_{1}}{w_{0}} & \leq \frac{1}{w_{2}} \sum_{\{x, y\} \in E}\left(d_{x}+d_{y}\right)^{2}
\end{aligned}
$$

The last inequality follows from Theorem 10 .

Theorem 12. For every graph G, the corresponding subdivision graph S_{G} obeys the inequality

$$
w_{2}\left(S_{G}\right) \cdot w_{3}\left(S_{G}\right) \leq w_{0}\left(S_{G}\right) \cdot w_{5}\left(S_{G}\right)
$$

Proof. We have

$$
\begin{aligned}
\left(w_{2}+2 w_{1}\right)\left(4 w_{2}\right) & \leq\left(w_{0}+w_{1} / 2\right)\left(4 \sum_{\{x, y\} \in E}\left(d_{x}+d_{y}\right)^{2}\right) \\
w_{2}^{2}+2 w_{1} w_{2} & \leq\left(w_{0}+w_{1} / 2\right)\left(\sum_{\{x, y\} \in E}\left(d_{x}+d_{y}\right)^{2}\right)
\end{aligned}
$$

The inequality follows from Lemma 9 and Theorem 10 after observing that $w_{1} / 2=m$.

References

[1] V. Andova, N. Cohen, R. Škrekovski, A note on Zagreb indices inequality for trees and unicyclic graphs, Ars Math. Contemp. 5 (2012) 73-76.
[2] M. Aouchiche, J. M. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen, L. Hiesse, J. Lacheré, A. Monhait, Variable neighborhood search for extremal graphs 14: The AutoGraphiX 2 system, in: L. Liberti, N. Maculan (Eds.), Global Optimization From Theory to Implementation, Springer, 2006, pp. 281-310.
[3] C. S. Edwards, The largest vertex degree sum for a triangle in a graph, Bull. London Math. Soc. 9 (1977) 203-208.
[4] P. Hansen, D. Vukičević, Comparing the Zagreb indices, Croat. Chem. Acta 80 (2007) 165-168.
[5] A. Ilić, D. Stevanović, On comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 62 (2009) 681-687.
[6] J. C. Lagarias, J. E. Mazo, L. A. Shepp, B. D. McKay, An inequality for walks in a graph, SIAM Rev. 25 (1983) 403-403.
[7] J. C. Lagarias, J. E. Mazo, L. A. Shepp, B. D. McKay, An inequality for walks in a graph, SIAM Rev. 26 (1984) 580-582.
[8] H. Täubig, Further results on the number of walks in graphs and weighted entry sums of matrix powers, Tech. rep. TUM-I1412, Computer Science Dept., TU München, 2014.
[9] H. Täubig, Inequalities for matrix powers and the number of walks in graphs, Habilitation thesis, Computer Science Dept., TU München, 2015.
[10] H. Täubig, J. Weihmann, Matrix power inequalities and the number of walks in graphs, Discr. Appl. Math. 176 (2014) 122-129.
[11] H. Täubig, J. Weihmann, S. Kosub, R. Hemmecke, E. W. Mayr, Inequalities for the number of walks in graphs, Algorithmica 66 (2013) 804-828.
[12] D. Vukičević, A. Graovac, Comparing Zagreb M_{1} and M_{2} indices for acyclic molecules, MATCH Commun. Math. Comput. Chem. 57 (2007) 587-590.

[^0]: ${ }^{1}$ submitted to the faculty of computer science at TU München in April 2015

