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Abstract

We consider an undirected graph G with n vertices and m edges that is modified
by introducing an intermediate vertex on every edge. It has been shown by Ilić and
Stevanović that this subdivision graph SG satisfies the Zagreb indices inequality
M1(SG)/(m + n) ≤ M2(SG)/(2m). This inequality can also be expressed in the
form w1(SG) · w2(SG) ≤ w0(SG) · w3(SG), where wk(G) denotes the number of k-
step walks in G. Besides trees, this is another class of bipartite graphs where the
inequality holds true.

In this paper, we prove the inequalities w1(SG) · w4(SG) ≤ w0(SG) · w5(SG)
and w2(SG) · w3(SG) ≤ w0(SG) · w5(SG). This raises the question whether the
generalization wa(SG) · wb(SG) ≤ w0(SG) · wa+b(SG) is satisfied for subdivision
graphs.

1 Introduction

We consider an undirected (multi-)graph G = (V,E) with n := |V | vertices and m := |E|

edges. The degree of a vertex v ∈ V is denoted by dv. A walk in a multigraph G = (V,E)

is an alternating sequence (v0, e1, v1, . . . , vk−1, ek, vk) of vertices vi ∈ V and edges ei ∈ E

where each edge ei of the walk must connect vertex vi−1 to vertex vi in G, that is,

ei = {vi−1, vi} for all i ∈ {1, . . . , k}. Vertices and edges can be used repeatedly in the

same walk. If the multigraph has no parallel edges, then the walks could also be specified

by the sequence of vertices (v0, v1, . . . , vk−1, vk) without the edges. The length of a walk
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is the number of edge traversals. That means, the walk (v0, . . . , vk) consisting of k + 1

vertices and k edges is a walk of length k. Mostly, we will call it a k-step walk. Our main

concern will be the investigation of the number of walks of a specified length. Let wk(v)

denote the number of k-step walks starting at vertex v ∈ V . Since G is undirected, this

is the same as the number of k-step walks ending at v. The total number of k-step walks

is denoted by wk. For walks of length 0, we have w0(v) = 1 for each vertex v and w0 = n.

For walks of length 1, we have w1(v) = dv and w1 =
∑

v∈V dv = 2m by the handshake

lemma. The total number of walks can be decomposed as

wa+b =
∑
v∈V

wa(v) · wb(v) and wa+b+1 = 2
∑
{x,y}∈E

wa(x) · wb(y) ,

where the total number of walks is divided into summands representing the walks with

fixed vertex v or fixed edge traversals (x, y) and (y, x) after a steps. That means, partial

walks of length a and b are attached to a certain vertex or edge traversal. In particular,

we will use the special cases w2(G) =
∑

v∈V d2v, w3(G) = 2
∑
{x,y}∈E dx · dy, w4(G) =∑

v∈V w2(v)2, and w5(G) = 2
∑
{x,y}∈E w2(x) · w2(y).

For a given graph G = (V,E), the subdivision graph SG is obtained from G by in-

troducing for each edge e ∈ E a new vertex ve that splits the old edge e = {v1, v2} and

replaces it by two new edges e1 = {v1, ve} and e2 = {ve, v2}.

2 Related Work

2.1 General graphs and chemical graphs

Lagarias, Mazo, Shepp, and McKay [6] posed the following question: what are the numbers

a, b ∈ N such that wa(G) · wb(G) ≤ n · wa+b(G) is satisfied for all graphs G? Later, they

proved the inequality for the case of an even sum a + b [7]. Hence, it could be stated in

the following way.

Theorem 1 (Lagarias et al.). For all a, b ∈ N , every graph G on n vertices satisfies the

inequality

w2a+b(G) · wb(G) ≤ n · w2(a+b)(G) .

More general forms of these inequalities were proposed in [10,11].

Lagarias et al. presented counterexamples showing wa(G) ·wb(G) � n ·wa+b(G) when-

ever a + b is odd and a, b ≥ 1. This means that the inequalities w1(G) · w2(G) ≤
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w0(G) · w3(G) and w1(G) · w4(G) ≤ w0(G) · w5(G) are not satisfied in general (not

even for bipartite graphs, see [11]). Recently, these counterexamples were generalized

by Täubig [8] to the more general form

w2a+c(G) · w2a+2b+c+1(G) � w2a(G) · w2a+2b+2c+1(G)

for a, b, c ∈ N .

Probably unaware of the work by Lagarias et al., an inequality that is equivalent to

w0(G) ·w3(G) ≥ w1(G) ·w2(G) was investigated again by Hansen and Vukičević [4]. The

AutoGraphiX system [2] had been used to make a conjecture in the slightly different form

M1(G)/n ≤M2(G)/m using the Zagreb indices

M1(G) :=
∑
v∈V

d2v = w2(G) and M2(G) :=
∑
{x,y}∈E

dxdy = w3(G)/2 .

Hansen and Vukičević again found counterexamples for the case of general graphs, but

they also proved the inequality for graphs with maximum degree not exceeding 4. That

includes most of the graphs that are interesting from the perspective of chemical struc-

tures. An undirected graph is called a chemical graph if its maximum degree ∆ is bounded

by ∆ ≤ 4.

Theorem 2 (Hansen and Vukičević). Every chemical graph G satisfies the inequality

M1(G)

n
≤ M2(G)

m
.

2.2 Trees

Vukičević and Graovac [12] proved the same inequality for all trees. (Later, another proof

appeared in the paper of Andova, Cohen, and Škrekovski [1].)

Theorem 3 (Vukičević and Graovac). Let T be a tree with n ≥ 2 vertices and m edges.

Then,
M1(T )

n
≤ M2(T )

m
.

The equality holds if and only if T is a star.

Unaware of this result, the following equivalent form of the inequality that uses the

number of walks was proved in [11].
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Corollary 4. Every tree T satisfies the inequality

w1(T ) · w2(T ) ≤ w0(T ) · w3(T ) or, equivalently, d · w2(T ) ≤ w3(T ) ,

where d = 2m/n denotes the average degree.

In the same paper, a similar inequality for walks of length 4 and 5 is shown.

Theorem 5. Every tree T satisfies the inequality

w1(T ) · w4(T ) ≤ w0(T ) · w5(T ) or, equivalently, d · w4(T ) ≤ w5(T ) .

2.3 Subdivision graphs

Ilić and Stevanović [5] proved the following theorem for subdivision graphs.

Theorem 6 (Ilić and Stevanović). For every graph G on n vertices and m edges, the

corresponding subdivision graph SG obeys the inequality

M1(SG)

n + m
≤ M2(SG)

2m
.

If we translate this to walk numbers, the statement corresponds to the following.

Corollary 7. For every graph G, the corresponding subdivision graph SG obeys the in-

equality

w1(SG) · w2(SG) ≤ w0(SG) · w3(SG) .

Proof. We give a short alternative proof. We have

w0(SG) = n + m = w0(G) + w1(G)/2 (There are m new vertices.)

w1(SG) = 4m = 2w1(G) (Every edge is split into two parts.)

w2(SG) =
(∑

v∈V
d2v

)
+ m · 22 = w2(G) + 4m = w2(G) + 2w1(G)

w3(SG) = 2
∑

{x,y}∈E(SG),x∈V

2dx = 4
∑
x∈V

d2x = 4w2(G)

The formulas for w2(SG) and w3(SG) use the fact that old vertices have the same degree

in G and in SG while new vertices have always degree 2. Then the inequality corresponds

to

2w1(G) · [w2(G) + 2w1(G)] ≤ [w0(G) + w1(G)/2] · 4w2(G)

w1(G)2 ≤ w0(G) · w2(G) .
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Thus the inequality is valid by Theorem 1. In principle, this inequality can also be found

(without reference to walks) in the slightly different form 1 + c2v = n
4m2

∑n
i=1 d

2
i within the

paper of Edwards [3].

3 Main Results

Now, it would be interesting to know whether similar inequalities hold for longer walks

in subdivision graphs, e.g., for the number of 5-step walks. For the next step towards a

proof of the general inequality, we will use the following lemma.

Lemma 8. Given n nonnegative numbers ak and an exponent p ∈ R, the following in-

equality holds: (
n∑

k=1

ak

)p

≤ np−1 ·
n∑

k=1

apk for p ≤ 0 or p ≥ 1 .

The inequality is reversed for 0 ≤ p ≤ 1.

Proof. For p ≤ 0 or p ≥ 1, the inequality is equivalent to
(
1
n

∑n
k=1 ak

)p ≤ 1
n

∑n
k=1 a

p
k. The

basic form of Jensen’s inequality states that f( 1
n

∑
i∈[n] xi) ≤ 1

n

∑
i∈[n] f(xi) for any real

convex function f and all x ∈ Rn. The inequality is reversed if f is concave. The lemma

is correct for ak ≥ 0 since the function f(x) = xp (with x ≥ 0) is convex for p ≤ 0 or

p ≥ 1 and it is concave for 0 ≤ p ≤ 1.

3.1 General graphs

Lemma 9. Every graph G = (V,E) satisfies the inequality

w2(G)2 ≤ m
∑
{x,y}∈E

(dx + dy)
2 .

Proof. By application of Lemma 8, we have(∑
{x,y}∈E

(dx + dy)

)2

≤ m
∑

{x,y}∈E
(dx + dy)

2 .

The proof is complete by observing w2(G) =
∑

v∈V d2v =
∑
{x,y∈E}(dx + dy).

Now we show our main results. For convenience, we use the abbreviation wk = wk(G).

Theorem 10. Every graph G = (V,E) satisfies the inequality

2w1w2 ≤ w0

∑
{x,y}∈E

(dx + dy)
2 = w0

(
w3 +

∑
v∈V

d3v

)
.
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Proof. For the proof, we use the equivalent form

2
w1

w0

≤ 1

w2

∑
{x,y}∈E

(dx + dy)
2 .

We prove the inequality by separating both sides using the term w2/m. First, we have

2w1/w0 ≤ w2/m. This is obviously true since w1 = 2m and w2
1 ≤ w0w2 by Theorem 1. It

remains to show that
w2

m
≤ 1

w2

∑
{x,y}∈E

(dx + dy)
2 ,

which is true by Lemma 9.

It is interesting to see that the inequality

w1w2 ≤ w0

w3 +
∑

v∈V d3v
2

holds true although there are graphs with w1w2 � w0w3 and there are (other) graphs

satisfying w3 =
∑

v∈V d3v. Another interesting equivalent form uses arithmetic means:

1

n

∑
x∈V

d2x ≤
1

m

∑
{x,y}∈E

(
dx + dy

2

)2

.

While arithmetic means appear on the left side (per vertex) and on the right side (per

edge), there is also the squared mean of dx and dy on the right handside. Replacing this

arithmetic mean (dx + dy)/2 by the smaller geometric mean
√

dxdy would lead to the

inequality w1w2 ≤ w0w3, which is not valid for general graphs (as discussed earlier).

3.2 Subdivision graphs

The following theorem has been obtained in [9].1

Theorem 11. For every graph G, the corresponding subdivision graph SG obeys the in-

equality

w1(SG) · w4(SG) ≤ w0(SG) · w5(SG) .

Proof. The calculation starts by applying the formula w4(SG) =
∑

v∈V (SG) w2(v)2. We

need to distinguish two kinds of vertices: old vertices (corresponding to the vertices in

the original graph G) and new vertices (corresponding to the edges of G). For each

old vertex v ∈ V , the number of 2-step walks in SG is wSG
2 (v) = 2dv. For every new

vertex ve corresponding to an edge e = {x, y} in G, the number of 2-step walks in SG is

1submitted to the faculty of computer science at TU München in April 2015
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wSG
2 (ve) = dx + dy. Hence we obtain the following walk numbers in terms of the degrees

and walks of the original graph G:

w4(SG) =
∑
v∈V

(2dv)
2 +

∑
{x,y}∈E

(dx + dy)
2 = 4w2 +

∑
{x,y}∈E

(dx + dy)
2

w5(SG) = 2
∑
{x,y}∈E

2dx · (dx + dy) + 2dy · (dx + dy) = 4
∑
{x,y}∈E

(dx + dy)
2

We obtain the following equivalent inequalities:

(2w1)

(
4w2 +

∑
{x,y}∈E

(dx + dy)
2

)
≤ (w0 + w1/2)

(
4
∑

{x,y}∈E
(dx + dy)

2

)
8w1w2 ≤ 4w0

∑
{x,y}∈E

(dx + dy)
2

2
w1

w0

≤ 1

w2

∑
{x,y}∈E

(dx + dy)
2

The last inequality follows from Theorem 10.

Theorem 12. For every graph G, the corresponding subdivision graph SG obeys the in-

equality

w2(SG) · w3(SG) ≤ w0(SG) · w5(SG) .

Proof. We have

(w2 + 2w1)(4w2) ≤ (w0 + w1/2)

(
4
∑

{x,y}∈E
(dx + dy)

2

)
w2

2 + 2w1w2 ≤ (w0 + w1/2)

(∑
{x,y}∈E

(dx + dy)
2

)
The inequality follows from Lemma 9 and Theorem 10 after observing that w1/2 = m.
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