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Abstract

In this work, we use some concepts of graph thémmpropose an alignment-free method for DNA
sequence similarity analysis based on genetic cddas approach gives an effective and unique
representation for each DNA sequences. In addiicnprding to our method, we give a numerical
characterization of DNA sequences. This characttéorm facilitates quantitative comparisons of
similarities/dissimilarities analysis of DNA seques based on codons.

1. Introduction

With the exponential growth of biological sequend&ta, DNA sequence analysis has
become an essential task for biologist to undedsthe features, functions, structures, and
evolution of species. Determination of sequenceilaiity is one of the major steps in
computational phylogenetic studies. Analyzing DNégsgences is a fundamental starting
point for understanding biological functions. Howevwe know that it is very difficult to
obtain biological information directly from largeNA sequences. Due to the level of

complexity, mathematical analysis of large voluroEsequence data is at present a challenge
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for bio-scientist. DNA is a nucleic acid that cantathe genetic instructions used during the
development and functioning of all known living argsms. DNA is a polymer, the
monomer units of DNA are nucleotides. There are thifierent types of nucleotides found in
DNA, differing only in the nitrogenous base. Theurfonucleotides are given one-letter
abbreviations as shorthand for the four bases: ®risadenine, G is for guanine, C is for

cytosine, and T is for thymine.

Nowadays, one of the most optimistic fields of neamtiatics is biomathematics. There are
several biological problems that can be treatett wiithematical methods. One of the most
important problems is sequence (DNA or protein)lysis and comparison. For example in
[1-31] you can see some mathematical methods ghiged and numerical representations
for similarity analysis of DNA sequences. In bi@nhatics, the most popular tools for
comparing sequences are alignment methods. A seguadignment is a way of arranging the
sequence of DNA, RNA, or protein to identify regioo$ similarity that may be a
consequence of functional, structural, or evolwignrelationships between the sequences.
Alignment-free sequence comparison is frequentgdu® compare genomic sequences and
in particular, gene regulatory regions. Gene redguaregions are generally not highly
conserved making alignment based methods for #wmtification of gene regulatory regions
less efficient [32]. Alignment-free sequence corgaar has a relatively long history starting
in the mid-1980s [33], see for example the review{34]. Most of the alignment-based
methods compared with alignment-free methods takee momputational time. Moreover,
another advantage of alignment-free methods todbednis their sensitivity against short or
partial sequences [35].

In 2008, Pesek [31] has presented a new numetieahcterization of DNA sequences that
was based on the modified graphical representatioposed by Hamori [14], they have used
analogous embedding into the strong product of ghephs K, and P,. Although, this
approach has merits but this product do not giumigue graph for each sequences. In this
paper, we will give a new graph theoretical apphofe comparing DNA sequences based
on codons. Our method is an alignment-free metmeblc@mpared with alignment-based is
more controllable and it is computationally conweri with large biological databases.
Although the graphs in this paper are large, buexteact simple paths from large graphs and
give a numerical representation. Also, comparinthwither models, our approach has the

following preferences:
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(a) This method give a representation as a dir and weighted graph for DNA sequen
which we will prove that these graphs are uniquesch sequenc
(b) We will show that our method is useful for arzathg DNA sequencewith having a

multiset of all 3 long oligonucleotides of a DNA seque
2. New graph theoretical method

In this sectionat first, we give thedefinition of DNA grapls and we construct a partict
subgraphof these graphs. Then we githe definition of the lexicographic product of tw
graphs and we discuss about the detail c method

Definition 2.1. [36]. Letk > 2 be an integer. We say that a directed giD with a set of
vertices VD) and a set of ordered pairs of points (directegeellED), is DNA graph if it it

possible to assign a labey(x), ..., (X)) of length k to ach vertex of V(D) such tha
(@) li(x) e {A,C,T,G}, for everyi € {1,...,k};

(b) All labels are different, that is1(X),...,k(X)) # (1(y),....k(y)) if X#V;

(©) (xy) € ED) if and only if (2(x),...Lx)) = (i), .. la(y)).

For any multiset the consists of somé-long oligonucleotides, a DNA graph is of

constructed as follow

Eachk-long oligonucleotide from the multiset becomes eese two vertices are connec
by an arc vertex if thk-1 rightmostnucleotides of first vertex overlap with tk-1 leftmost
nucleotides of the second o

For instancelet S= {ACTG, CTGT, TGTA, GTAC, TACT, ACTT, CTTG} be a multisef

all 44ong oligonucleotides of a DNA sequence, the DNApdr of ‘S’ is made as follow:
CITG ACTG CTGT

TGTA

ACTT TACT GTAC

Figure 1. DNA graph of ‘'S’ withk =4
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Now, we construct a new DNA graph by anotapproach thapresented by Pevzner [36]

follows:

Eachk-long oligonucleotide from the multiset becomesarc, whichits initial end point isk-
1 rightmost nucleotides of arc and its terminal patht isk-1 leftmost nucleotide

For example, the new DNA graph of the graph in Fégl according to above approact

made as follow:

CIT ACT oTe

ACTT

CITG
TACT

IIG TAC GTA

Figure 2. The new DNA graph of Figure

Easily seen that, line digraph of this new DNA drap the DNAgraph thais made by the
previous approach which is shown in Figu In this paper, when we say DNA graph,
mean the DNA graph which is made by second appt

LetS=3% .... snbe a DNA sequence wittn” nucleotidesin the following, we \ish to
construct a particular bgraph of DNA graph according to “S” wik =3 andwe call it G. In

fact the vertices of s will be dinucleotides.

For constructini G, at first, we find all type of dinucleotides which exist in “: and put
them as the verticeof this graph. m other vords, the vertices of Gare all of the
dinucleotides of*S” without repetition, thughe maximum number of verticein Gsis 16.
After that, according to sequence S, we connedexe;s. 1 to vertex §1S+2by an arc, for
each ¥i<n-2.

Now, we give a example

Suppose S FGTGCA, the G of this sguence is presented in the followi
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Figure3. The Gof S = TGTGCA
In continue, we need the definition of lexicograppioduct of graphs.

Definition 2.2. [37].The lexicographic product 6 H of two graphs G and H is defined on V
(Go H) =V (G) x V (H), two vertices (u, x) and (v, 9f G o H being adjacent whenever
uve E(G), or u = v and xg E(H).

In the following, according to the above definitjiome propose a weighted and directed graph
for each DNA sequence based on triplets that wetcalgraph (as all of the vertices of this

graph are triplets).

LetS =35 .... ssbe a DNA sequence whichis a nucleotide for every < i <n. Now
according to the sequence “S”, we consider thelg@pand also the complete and directed
graph K, on four vertices A,C,T and G, then we obtain théckegraphic product of these two
graphs (i.e., Go K4).Note that since Gand Kqare directed graphs, then the result gb®&4

is a directed graph too. For instance, the T-gE@equence S is presented in Figure 4.

Just as observe in Figure 4, each vertex of T-giaph triplet; in fact, each vertex is a

particular combination of a dinucleotide frong &d a nucleotide from K

Now, for making the T-graph as a weighted grapmgusur previous work [30], we assign a

3D coordinate point to each vertex of T-graph.als lwo cases:

1. If the triplet corresponding to a vertex of T-graptiheith codon in the sequence, the
coordinate of this vertex is (xiy,and

2. If the triplet corresponding to the vertex is nataalon in sequence, the coordinate of
vertex is (X,y,0), which (x,y) is the 2D coordinatkthis triplet as introduced in [29]
and Figure 5.
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Figure4. TheT-graph of S = TGTGCA
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Figure5. Sixty-four kinds of triplets distributed in Cartasi2D coordinate
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Then we assign a weight to each edge of T-grapledbgulating the Euclidean distance

between two points corresponding to the verticesnoédge.

Now, we want to discuss about an important propeftythe T-graph, which made our
method powerful, and without error. At first, wevgia theorem about lexicographic product
and by using this theorem, we prove a particuleotém for T-graphs.

Theorem 2.1. [37]. Let X, Y, A and B be graphs. Ifa¥ = AoB and |Y| = |B|, then ¥ B
and X=A.

Theorem 2.2. The T-graph for each DNA sequence is unique.

Proof.Let S and S” be DNA sequences which have the sagraph, then we will show that
S=S’". The T-graph of S is;@ Ksand the T-graph of S iss® K, then Go K4 = Gy o Ky,

it means that; Go Ks= Gs o Ksand Both of Go K4 and G- o K4 have the same labeling for
their vertices and also the same directs of thdges. Therefore, by Theorem 1.2, we
conclude that &Gs and also Gand G- have the same labeling, the same directs and the
same edges weight, accordingly, we have & . Thus, according to the structure of these
two overlapping graphs@nd G) as aresult S = Sa.

In [38], we proposed a new approach for DNA sequmenby concepts of graph theory. In
that method when we choose k = 3, in fact, the fiariepath from DNA graph of all 3-long
oligonucleotides from the original string of seqcers is the graph GTherefore, according
to our previous work [38], we can use our new meétfur analyzing DNA sequences, which

the sequence of them is not determined.
3. Numerical characterization of DNA sequences

In this section, we give a numerical representatictording to T-graph. For this purpose, we
extract a particular directed path from T-grapls@dfuence S and we call it C-path. In fact, C-
path is shortest path according to the weightsigée that include all the codons of sequence

S. Note that in C-path, we have consider the mositf codons in succession.

For instance, Figures 6, 7, and 8 show the C-patfac®d from T-graph of sequences S
=ATGGTGCACCTG,3=ATGGTGCACCGT and $=ATGCTGCAGTTG.
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Figure 6. The C-path of §= ATGGTGCACCTG
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Figure 7. The C-path of 3= ATGGTGCACCGT
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Figure 8. The C-path of 8= ATGCTGCAGTTG

In order to numerically characterize of a DNA sewee based on our approach, one can
associate with a corresponding C-path, a matrix@msider a matrix invariant. One of the
possible matrices is the D/D matrix (distance/aiseamatrix) whose elements are defined as
the quotient of the Euclidean distance and the ltmpcal distance between a pair of the
vertices of a graph. Here, we use analogous mased on the weighted graph, i.e., instead

of Euclidean distance between a pair of verticesput the sum of weights between them.

One of the important invariants for DNA sequencedeading eigenvalue\ and another
invariant is ALE-indexf). ALE-index is defined by Li and Wang [22], whighan invariant
of DNA sequences:

Let M = (g)nxn be such a matrix, with the following property:
a8>0,g=g,anda=0 for i,j=1,2,...,n.

The ALE-index of M is defined as follows:
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%= (M) =2 1Mz + "Ml ), where [ llmand]| . [lzare the - and F-norms of a

matrix, respectively.

According to [29], clearly we can show that the AirEex is compatible as a sequence
invariant for the D/D matrix of C-path too. Therefp by using this invariant, we obtain a

numerical representation for our graph theoreticathod.
Finally, we exemplify our approach by the abovethsequences,S; and S.

Table 1. The similarity/dissimilarity matrix for the seques $, S; and S

Sequence S S S
S,0 0.85731.367

S0 30.510

S:0
In Table 1, we give the similarity/dissimilarity tia. The smallest entry in this table is
associated with the pair {S,) and the largest entry in the matrix appear inewl belonging
to S.

4. Conclusion

In this paper, we proposed a new graph theoretiwthod for DNA sequence similarity
analysis based on codons. The basis of our methadimng the lexicographic product of an
overlapping graph, which its vertices are dinudtist, and a complete graph that its vertices
are nucleotides. The result of this product is &um weighted graph for each DNA
sequence, which its vertices are triplets. Furtloeenwe discussed why we choose the
lexicographic product to build a new graph. Thetgoading to this graph, we extracted a
directed path for each sequence based on codonseagdve a numerical characterization of
DNA sequences. Our method in this paper is an rlgm-free method and compared with
alignment-based is more controllable. In additimomparing with other models, our
approach has the following preferences:

(a) This method gave a representation as a direstddveighted graph for DNA sequences,

which we proved that this graphs are unique fohesgjuence.
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(b) We showed that our method is useful for analyzZDNA sequences with having a

multiset of all 3- long oligonucleotides of a DNAgence.
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