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Abstract

Formulas and procedures are proposed for the cerimutof complexity, similarity
and diversity of molecules in the analyzed groud efthe similarity of two groups (as a
whole), based on the Shannon Entropy formula. Thiele reports certain QSPR studies
regarding twenty pairs of calibration/validationsseith high/low complexity and diversity of
the included molecules and high/low similarity efs A high complexity of structures in the
calibration/validation set decreases the qualitthef prediction for the validation set. A high
similarity of the calibration and validation ses(a whole) increases the quality of the
prediction for the validation set. The diversity mmblecules in the calibration/validation set
should be directly proportional with the similaridy the calibration and validation sets. If the
similarity of the calibration and validation setshigh, a high quality of prediction for the
calibration setdausé increases the quality of the prediction for tladidation setéffec} and
the validation test is useful because of tb@ise-effectrelation. On the contrary, if the
similarity of the calibration and validation sessléw, the influence of the prediction's quality
for calibration set on the prediction's quality foe validation set is low and the validation
test is useless. The text proposes a formula/mitefor identification of "the best"
QSPR/QSAR in the presence of validation/predictien
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1. Introduction

In practical QSPR Quantitative Structure-Property Relationshigtudies one uses
calibration setmolecules (having known values of the dependespiqaty) andprediction set
molecules (having unknown values of the dependeopesty and not used for QSPR
building). The structure of molecules in the prédit set is effect of certain drug design
exertion. The goal of this effort is to obtain 'mamluable’ new structures. Consequently, the
similarity of the structures in calibration set ahe structures in prediction set is frequently
low enough.

The calibration set is used to identify the QSPRhexaatical formula which gives the
minimum sum of square differences between the wbdeand computed values of the
dependent property. The best QSPR equation includesnber of computable features of the
molecules, namegredictors,and it is used to compute the value of the depenpie@perty

for the molecules in prediction set.
On the contrary, imcademicpublishable QSPR studies, the prediction set, hwksc

not used for model building, includes molecules ihgvknown value of activity.
Consequently, the computed values can be compaitacdtive observed values. In this case
the prediction set is nameglidation setand the comparison is @xternal cross-validation
test The agreement between the observed and the ¢edpalues of the dependent property
for the molecules in validation set is consideretieasure of the QSPR's quality. There are
many papers and documents which emphasize the tamper of the external validation test
[1-20] which is madefter computation of QSPR equation. The result of tHedston test
depends on the descriptors used, features of mekeucalibration/validation sets and
features of the calibration/validation sets as alahTherefore, the reliability of external
validation tests is a debatable subject in litewaf@i2b, 21-29].

There are few proposed procedures for extractionatibration and validation sets
from the initial database [28, 30-32]. As a rulegge procedures ensure a high similarity of
calibration and validation sets, whilst the sinitlais not quantitatively measured. Generally
speaking, the similarity of sets seems to emphasiee similarity of structure-property
relationship in the calibration set and validats®et, respectively. Some authors studied the
effect of the composition and similarity (‘featuamge") of the sets on the quality of prediction
in QSPR studies [33, 34].

Besides similarity, another difficult statisticalroblem is the diversity of the
molecules. If the diversity is too low, the statiat methodology cannot identify as
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'significant’ some descriptors and the best QSPRhatainclude, as predictors, these
descriptors. On the contrary, if the diversity @o thigh, the calibration / prediction /
validation sets can be non-homogeneous, i.e. thryirclude few classes, different from the
viewpoint of structure-property relationship. Thatabases used in QSPR studies include
frequently molecules similar enough in their cheahistructure but not similar from other
points of view or molecules different from all ptsirof view.

Some authors emphasized the inability of some @mnsto correctly estimate the bio-
activity for '‘completely new chemicals', despitegaod result of cross-validation [34].
According to Guidance Documents of the OECD Prilesipthe quality of certain QSPR must
be verified by cross-validation, but any QSPR carapplied only for chemicals included in
the Applicability Domain AD [4, 35].

If the QSPR axiomgjmilar structures present similar values of thegertieg is true,
there are two possibilities:

a) the new molecules, not yet synthesized, imagmedirug design, are inside the
AD, their properties can be more or less correesiymated, but they are more or less similar
with the properties of molecules in calibration @ed thus they are not interesting

b) the new molecules are outside the AD, their eribgs cannot be correctly
estimated, but are dissimilar with the propertieshe calibration set molecules and so they
are interesting

Thus, a) + b) seem to highlight an internal conttéah of the QSPR methodology.
One can theorize the more interesting moleculesrside AD and close to the borders of
AD.

The goal of our paper is to study the result oémdl validation test as effect of the

- complexity of chemical structure of the analyzedenoles

- homogeneity of molecules in the calibration setnfréhe point of view of

structure—property relationship

- diversity of molecules in calibration and validatisets from the point of view of

the values of the dependent property

- diversity of molecules in calibration and validatisets from the point of view of

molecular features

- similarity of the two sets from the point of view walues of the dependent

property and molecular features

- quality of prediction for the molecules in caliboat set
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2. Methods and formulas

Similarity of two objects

A group including N objects and a criterion K useadtompare objects are considered.
The values of K for objects arg,kk;, ... , ky. There are a maximum valug,J and a
minimum value ki, of K. The similarity $ of any twoi andj objects in group, from the point
of view of K, is computed by the proposed formula The value of Sis in the range {0, 1}.
=1- ‘K - ki‘

Sj B kmax - I(min (l)

The similarity calculated by formula (1) is 'relati, not 'absolute'. For example, the
similarity of the numbers 4 and 7 in group (4, 2),%; = 0.8333, is much higher than the
similarity of the same numbers 4 and 7 in group7(4), § = 0.4000 and the similarity of the
same numbers 4 and 7 in group (4, 5, ¥+ $.0000.

If the values k ks, ... , ky would be equally distributed in the rangenfk kmax then
Sj = (N —-2) /(N —1). Therefore, the ratio (N —/ZN — 1) can be viewed as limit valug.s
of §j. In practice, this value proves suitable, despiteroximity to 1.

Classification of objects in the group
The N objects in the group are included in clagsategories), according to similarity
S;. Each pair of objects in a certain class fulfils tondition (2).
S 2 S (2

Here, we used the next proposed classificationguie® including five steps.

Step #1 identification of the first 'seed’, ilee tobject having minimum sum of similarities
XS; with the other N-1 objects; the first seed isuiield in the first class

Step #2 identification of the next 'seeds', i.bjects having similarity (with each seed)

smallerthan $mi and minimum sum of similaritiesS; (with the other 'seeds’)

Each 'seed' is included in a new class. Step #2iledions run in a loop until the number of
'seeds' becomes, as a rule, zero. Aftemes running of Step #2 there are 1 classes, each

class includes 1 object and the number of non-fled®bjects is N -1 — 1.
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Step #3 identification of the object having maximaum of similaritiexS; with the objects

included in classes

Step #4 identification of the class having feaduagand b)
a) all similarities of included objects with the objadentified in Step #3 fulfil the
condition (2)
b) greatest mean value of similarities of includedeoty with the object identified
in Step #3

The object identified in Step #3 is the most sué@ab be classified. The class identified in
Step #4 is the most suitable to include the ohbigentified in Step #3. Step #3 + Step #4
calculations run in a loop. After Nr— 1 times running of Step #3 + Step #4 therenarel

classes also, each class includes few objects amtber of the non-classified objects
becomes, as a rule, zero. However, sometimes, abe dnalyzed object remains non-
classified, because all classes include one or rbject(s) that have a poor similarity (i.e.

smallerthan $m) similarity to the last object.
Step #5 the non-classified object, if it exisscdmes the last 'seed’ of a new (last) class

Diversity of objects in a group

After classification, one calculates the entropyobjects in group using the Shannon
equation [36], see formula (3). Here, we used titenal logarithm. The value of entropy SE
is in the range {0, log (N)}.

k
SE=-) plbg p ®3)
i=1

where

k is number of classes including minimum one object
p=n/N
n; is the number of objects in clasgy > 0)

If all objects are very similar with the all othanjects therk=1,n=N, p=1 and SE
= 0. On the contrary, if all objects are very namikar with the all other objects thén= N, n
=1, p=1/Nand SE = log (N). Here, SE of objects in d¢ineup is considered the measure of
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group's complexity. The diversity of objects in gpo from the point of view of criterion K, is
the ratio SE/ log (N) its value being in the raf@el}.

Similarity of two groups of objects

To compute the similarity of two groups @nd G of objects, each group considered
as a whole, we applied the proposed classificgtimtedure on aggregate, @ G,, which
includes N + N, objects. After classification, there are some s#asincluding objects in
group G (not G), some classes including objects in group(®t G) and some classes
including objects in group &nd objects in group & Using the formula (3) one computes
the entropy SEof objects of G in aggregate, the entropy S& objects of G in aggregate
and the entropy Sk of aggregate. The diversity of objects in aggregatSk,/ log (N; +
N2). The similarity of the two groups is calculatedfbrmula (4).

SIM, = 1[I, 4)

If SE; <SEk,theni=SEK/SE;elsei=Shk,/SEk. If SE < Sk,thenp=SE/
SEjp else 5 = SR,/ SE. Consequently, the value of SgN& in the range {0, 1}.

Any object can be considered, at a suitable lewgroup of objects. For instance, a
molecule can be considered a group of atoms, clarbends or molecular fragments, a
living creature can be considered a group of orgéissues or cells etc. Therefore, the
proposed formulas/algorithm can be used for coniglehversity/similarity analysis of any
(groups of) objects (stars, states, factories,, gasons, microbes, molecules etc.), compared

by a suitable criterion K.

Building of molecules, geometry optimization anttalation of descriptors

Here, the analyzed (groups of) objects are molecule

The virtual building of the molecules and the getrgie optimization were done using
the molecular mechanics program PCModel [37]. Tloeemmigorous geometry's optimization
and calculation of some descriptors were perforlmeMOPAC [38].

Based on the output files created by MOPAC, the CR&/ software [27, 39]
calculated, for each molecule, more than 4#tble moleculedescriptors, specific to this
program. In addition, we used the descriptors ¢aled by the DRAGON software [40].
PRECLAV was used for the identification of moleauliiagments and similarity / diversity /

statistical computations.
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Identification of molecular fragments

The molecular fragments are identified according fareviously described algorithm
[41-43]. Two linked heavy atoms (different from hgden) are included within the same
fragment (together with the attached hydrogen aféinis> 1.051, wherd is the bond order.
For example, the molecule GHCH-O-CH~OH includes always five fragments, €H
CH; + O + CH + OH. The molecule PhCOOGkhcludes, depending on conjugation d@d
value, two fragments PhCOO + gHhree fragments PhCO + O + €HPh + COO + Chlor
four fragments Ph + CO + O + GHSimilarly, the molecule C#NHCOCH; includes three
fragments CH+ NHCO + CH or four fragments Cg+ NH + CO + CH.

Figure 1 presents, as example, the five fragmemis, GIHCO, O, Cl and €H,

identified in N-methyl-2-chloro-phenyl urethane.eftiagment 'Amide' is present.

Cl
(0]
e
o )

Figure. 1 Five identified molecular fragments in N-methy&@loro-phenyl urethane

Diversity and similarity from the viewpoint of varis molecular features

Diversity and similarity calculation from the viewipt of the dependent property uses
the values of the dependent property and formulas-((4). In addition, to calculate the
similarity of calibration and validation sets weedghe much simpler formula (5), wherg,P
and R are the mean values of the dependent propertyercalibration and validation set,
respectively.

[P~ Pl

SIM, =1-— @ Tal _ 5
) maX( l:z:a\l 'Pval) ( )

There are thousands computable molecular featdesijptors). We selected here, as
criteria K for comparison of molecules, descriptdes size, hydrophilicity, flexibility,
chemical structure and shape.

Diversity and similarity calculation from the viewint of molecular size uses the values of
COSMO volume [44], computed by MOPAC. In additiare used the formula (5).
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Diversity and similarity calculation from the viewipt of molecular hydrophilicity
uses the values of descriptor AHF (average hydligfifiiof fragments). In addition, we used
the formula (5).

The hydrophilicity of a certain molecular fragméstalculated here as the difference
between the maximum value,s of hydrogen atoms' net charges and the minimummev&li,
of heteroatoms' net charges, see formula (6).

D=8~ Sun )

If the hydrogen atoms in fragment are missipgS 0. If the heteroatoms in fragment
are missing @n = 0. ThereforeA = 0 for fragments which includes only carbon atq@sn
carbon tetrachloride, {n tetrachloroethylene, ¢dn totally substituted benzene etc.). Using
the values ofA for all fragments one can compute the value of AFR&r example, dodecane
and dodecanol present close values of AHF. Onahé&ary, methanol and dodecanol present
quite different values of AHF.

Diversity and similarity calculation from the viewipt of molecular flexibility uses
the percentage values of rotatable bonds [45]dthtian, we used the formula (5).

Calculation of diversity and similarity from theewpoint of chemical structure and
molecular shape is much more difficult becausecti@mical structure and shape of a certain
molecule cannot be defined by an only one real mimblere, the chemical similarity
calculation uses the result of molecular fragmedesitification [33].

All identified fragments are classified accordingctiteria #1 and #2. If the number of
heavy atoms included in analyzed fragment is lvétee of criterion #1 is 1. If the number of
heavy atoms included is 2 or 3 the value of coter#1 is 2. If the number of heavy atoms
included is > 3 the value of criterion #1 is 3.t€rion #2 is the string of symbols of included
elements, in alphabetical order. If the value dtfecon #1and criterion #2 is the same the
analyzed fragments are consideiethe same class

Then, the Shannon Entropy of classes in the andlyaelecule is computed with
formula (3), where pare the percentages in weight of classes. Thelasitpi of two
molecules, considered two groups of classes' fratgnés calculated by formula (4). The
classification of molecules, from the point of viefvchemical structure, uses, in formula (2),
the value &t = 0.9.

The classification of molecules, from the pointvigw of molecular shape, uses, in
formula (2), the similarity $Scalculated byJltrafast Shape Recognitiamethod [46, 47] and
the value &t = 0.9.
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Databases used

The ten databases used in our computations arerpeesin Table 1. The number of
molecules in each database is in the range {49, 112

To avoid arithmetical problems, the referencesieslof the dependent properties are
placed in the positive range, see the column ro.tdble. For instance, Celsius degrees were
replaced by Kelvin degrees. Other times all vaMegere replaced by corrected values, ¥
V-V min.

Table 1 Analyzed datsds
Database| Chemical Dependent

class property Range Ref.
1 Anthranilic Anti-inflammatory

acids activity {1.000, 4.125} [48]
2 Cyclic ureas | log(1/K) {5.30, 11.01} [49]
3 Flavones logK {0.000, 5.301} [50]
4 Fluoro-alkans| Boiling Point {195.2, 383.2} [51]
5 Guanidines Sweetness powe {0.000, 2.768} [52]
6 HEPTs Anti-HIV activity | {3.66, 8.57} [53]
7 PAHs PADA {0.7, 50.0} [54]
8 Phenols Toxicity {0.000, 2.638} [55]
9 Quinolines Anti-HIV activity | {3.46, 6.70} [56]
10 Urethanes Toxicity {2.30, 7.48} [57]

Percent of Applied dose Dermally Absorbed over @dra

Selection of calibration and validation sets

The molecules in each database in Table 1 wereextdecording to the values of the
dependent property. Then, each database was usedake a) and b) type pairs of
calibration/validation sets:

a) calibration set and validation set are presumdzktsimilar enough'

b) calibration set and validation set are presumezbtmon-similar'

To obtain type a) pair we extracted, as validasiefy the ordered molecules having
ranks 2, 4, 6, etc. or 2, 5, 8, etc. or 2, 4, 7,29,14, 17 etc., depending on desired percentage,
in the range {30, 50}, of validation set within dagase.

To obtain type b) pair we extracted, as validatiet) the molecules having greatest /

smallest values of dependent property.
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Each pair calibration set/validation set is usedaindistinct diversity/similarity
computation and distinct QSPR study. Table 2 pitsséhe number of molecules in

calibration/validation sets and the similarity \v@8IMs calculated with formula (5).

Table 2 Number of molecules and similarity of calibratioalidation sets

Database| Study | Ncai | Nvai | SIMp | Database| Study | Ncai | Nvai | SIMp
1 | 56 | 56 | 0.989 6 Xl 40 |40 | 0.989
Il 79 |33 | 0.685 Xl 56 |24 | 0.691
2 1 47 |32 | 0.991| 7 X1 36 |24 | 0.972
v 40 |39 | 0.780 XIV 30 |30 | 0.447
3 \% 39 | 39 | 0.970 8 XV 34 |16 | 0.948
\! 54 |24 | 0.467 XVl 130 |20 | 0.426
4 VIl 52 |25 | 0.980| 9 XVIl |35 |15 | 0.992
VIII 46 |31 | 0.846 XVIII |30 | 20 | 0.742
5 IX 34 |15 | 0.997| 10 XIX 46 |30 | 0.992
X 29 | 20 | 0.570 XX 38 |38 | 0.700
In QSPR studies |, lll, V, VIl etc., the calibrati@nd validation sets are presumed to

be 'similar enough’, at least from the point ofwigf values of dependent property. In QSPR
studies I, 1V, VI, VIII etc., the calibration andalidation sets are presumed to be 'non-

similar'.

Used statistical methods

We used in all twenty QSPR studies:

- the same initial set of descriptors, i.e. DRAGONsd#tors, PRECLAVwhole
moleculedescriptors and PRECLAV descriptors of molecutagiments; aromaticity
descriptors [42] and 3D descriptors were not used

- the same QSPR algorithm, i.e. the selection ofifiégimt descriptors and equations by
formulas andorward stepwisg@rocedure of PRECLAV

- the 'best' QSPR for prediction, i.e. the equatianifrg maximum value of qualit),

see formula (7), obtained with calibration setuding outliers
=r? 1—£] 7
Q=rf1- ™

r? is square linear correlation of observed/computedes
p is number of predictors
N is number of molecules in calibration set

where
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The value of the functio® is in the range {0, 1}. According to uséatward stepwise
procedure, the value @f increases in the range {2, lo¢N)} and the value ofd increases,
reaches a maximum, then decreases. Thereforeathe of log (N), rounded off to integer,
and the value o are criteria to stop the calculation.

Other criteria for quality of obtained QSPR afdnr formula (7), being in the range
{0, 1} and the Fisher function, see formula (8)irgein the range {Ox}.

2 -
1-r*  p

The relative utility of a certain predictor is counted by formula (9).

_Rz_rz

U
1-r2

)

where

R? is the square correlation between the observetated values of the dependent property
(using the QSPRith all p predictors)

r’ is the square correlation between the observegiuted values of the dependent property
(using the QSPRith p-1 predictors, i.e. the equatiovithoutthe analyzed predictor)

After computation of U for each predictor, the eduof U are normalized by the
highest one (the highest value forthécomes 1000). The predictors with a high enowdhev
of U (U > 600) can be considered 'with high relatitility’. These predictors are useful
because they correlate well with,Pvalues and present low correlation with other jmteds.
Each 'useful' predictor explains (quite) a lot loé Ry variation and, at the same time, a
different thing as other predictors.

PRECLAV calculates the square of cross-validaleeil correlation%y using the
Leave Half Oumethod. However, this usual method is appliedr aftdering of molecules in
the calibration set using the observed values efdépendent property. Consequently, the
function Py is viewed here as a measure of the homogeneityeotalibration set from the
viewpoint of structure-activity relationship, nat a result of a quite drastic internal validation
test. If Pcy > 0.4 the calibration set can be considered 'hemegus enough'.

The outlier index O of a certain molecule is thealgatio |Bys— Pad / SEE, where
Pobs and Rac are the observed and calculated values of thendiepe property and SEE is the
standard error of estimation. If the quality of ghrediction for the calibration set is high the
value of the difference R — Rad is small and the value of SEE is also small. Tlius
value of ratio O can be great or small, regardiEfsthe quality of prediction. Here, other

measures of non-homogeneity (diversity) of molesutecalibration set, from the viewpoint
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of structure-activity relationship, are the founsuof outlier indicexO; (O > 1.5, 0 >2.0,0
>2.5and O > 3.0).

The quality of the prediction for calibration seblkecules is measured b4, Q and
F. The quality of prediction for molecules in valiiten set is measured b$4. Finally, the
diversities, the similarities, various combinatiafsdiversities / similarities (sums, products
and ratios), %a, F, Q and fcy (as a group including over 100 descriptors) ahgl (as
dependent property) are used to obtain the equefidi. In this last statistical computation
the selection of descriptors and equations is nmade¢éhe same PRECLAV formulas and
forward stepwis@rocedure, identification of 'outlier databasesluded.

3. Results and discussions

The calculated valuescR of diversity in the calibration sets,dpof diversity in the
validation sets and the similarities SiMnd SIMs of calibration set/validation set, from the
point of view of six criteria, for all twenty QSPBtudies, are presented in Table A in
Supplementary Data appendix [58].

The highest correlation between diversity and st} SIMg is for Dy
(hydrophilicity, # = 0.3295). The highest correlation between divgrmnd similarity SIM is
for Dea (size, f = 0.1544). Consequently, there is a low correfatietween diversity
descriptors and similarity descriptors.

Correlation between SIMand SIM is low: ? = 0.7044 (dependent property§, =
0.2248 (size), 7= 0.2642 (hydrophilicity), 7= 0.2545 (flexibility). Hence, the formulas (4)
and (5) describe in different manner the similaoityalibration and validation sets.

Correlation of similarity of calibration and valiiian sets, from the point of view of
molecular features, with similarity SEvbf dependent property is low? £ 0.5783 (size),2r=
0.2518 (hydrophilicity), ¥ = 0.4129 (flexibility), f = 0.4185 (chemical structure, 0.1746
(shape). Therefore, the QSPR axiom seems to hbefdifo a small extent.

If the diversity and similarity, from the point efew of the criterion K, are smaller
than an empirically established value, the QSPRcutation in presence of
prediction/validation set should be, as a rule,iged because of the inability of the
calculated QSPR to make a reliable prediction lier prediction/validation set, regardless of
good prediction for calibration set. However, tlaigoidance' should be applied only if, from

the point of view of criterion K, the observance@®BPR axiom is well marked.
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Correlation of the similarity of the calibration cawalidation sets, from the point of
view of chemical structure, with similarity fromehpoint of view of hydrophilicity & =
0.1455) and flexibility ¢ = 0.2060) is low. Consequently, as expected, e tand
percentages of molecular fragments are not enongtescribe the molecular hydrophilicity
and flexibility.

Supplementary Data includes the results of QSP&estpi.e. the formulas of
multilinear QSPRs | — XX and Tables | — XX of obsmt/computed values of dependent
properties, rounded off to two decimals. In sevesmf twenty QSPRs the number of
predictors is smaller than the maximum allowed eabg (N).

Table 3 presents the correlations in each QSPR.stud

Table 3 The correlations in QSPR studies

Study [ % | F Q v |

| 0.8022| 33.8 | 0.7162 0.5611| 0.3191
I 0.7478| 36.1 | 0.6910 0.5265| 0.5322
i 0.9018| 62.8 | 0.7867 0.6492| 0.5437
Y, 0.8569| 41.9 | 0.7498 0.4407| 0.0256
v 0.8827|51.2 | 0.7696 0.3647| 0.1413

Vi 0.8644| 51.0 | 0.7683 0.1182| 0.1127
Vi 0.9591| 281.3| 0.8853| 0.4607| 0.9411
Vil 0.9269| 133.2| 0.8463| 0.5330| 0.4085

IX 0.9319| 79.4 | 0.7949 0.5543| 0.2410
X 0.8572| 28.8 | 0.7094 0.2666| 0.2462
Xl 0.9396| 140.1| 0.8457| 0.4865| 0.3917
Xl 0.9227| 121.8| 0.8403| 0.6033| 0.0050
Xl 0.8939| 52.2 | 0.7697 0.2693| 0.5131
XV 0.8969| 56.6 | 0.7773 0.5813| 0.3288
XV 0.9037| 97.0 | 0.824Q 0.3804| 0.9327
XVI 0.9479| 118.3| 0.8215| 0.6141| 0.3512
XVII | 0.8256| 28.4 | 0.7076 0.5281| 0.3983
XVIII | 0.8218| 23.1 | 0.6848 0.2208| 0.0029
XIX 0.9166| 73.3 | 0.7971 0.4851| 0.6112
XX 0.8605| 40.7 | 0.7472 0.1969| 0.1963

According to the values ofg, F andQ in Table 3, the prediction for calibration set
molecules is good enough. The initial set of dgsors, as basis for selection of predictors
and QSPRs, seems to be suitable.

The correlation of%, with ey is positive, but very low (r = 0.2647). The coatébn
of rPya With F (r = 0.5198) and (r = 0.4162) is also low. There is no strong caeffect
relation between the quality of prediction for badition set molecules and the quality of
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prediction for validation set molecules. Actualthe value of 7% is within narrow range
{0.7478, 0.9591} and the value dt4 is within wide range {0.0029, 0.9411}.

The descriptor having greatest positive correlatior= 0.5325) with % is the
similarity of calibration/validation sets from thgoint of view of the dependent property,
calculated using formula (4). The descriptor having greatest negative correlation (r = -
0.2377) with fua is the diversity of molecules in validation segaeding the chemical
structure.

Above comments regarding correlations withmre not very significant because 'the
best' equation for description df4 can include predictors having a low enough cofieia
with % because oftheir low intercorrelation. Moreover, the group tenty pairs of
calibration set/validation set in Table 2 can ideyas a rule, some outlier pairs.

Using all twenty pairs calibration set/validatiogt sve have not identified any outlier
pair and we obtained the equation (10). This siedilsstudy seems to be a modepaéctical

QSPR studies, because the similarity of the caldomand prediction sets is not very high.

r2,=-1.0637+ 0.0834D,~ 0.279D,+ 2.2581, (10)

val —

where

D, is the sum of outlier indices (O > 2.5) (U = 1000)

D, is minimum complexity (Shannon Entropy of masdemalecular fragments) of the
molecules in calibration set (U = 904)

D3 is product Q « S, where Q is the quality (Byaf prediction for calibration set and S is
similarity ofestimatedvalues of dependent property for calibration aalithation sets
(U =871)

There is a good match between the valued,gfin Table 3 and the values calculated
by formula (10): 7 = 0.8091; F = 24.0; Q = 0.6877. We point out tireal dependency of
r’a On the diversity of calibration set molecules, te quality of the prediction for the
calibration set molecules and on the similarityesfimated values of the dependent property
for the calibration and validation sets. A high gbexity of chemical structures in the
calibration set decreases the value’gf.r

As a rule, the best QSPR/QSAR according to fornfd)aand the best QSPR/QSAR
according to formula (10) are different, becaus&eduently low similarity of the calibration
and validation/prediction sets. Accordingly, thenfiola (7) can be used as a criterion for the
identification of "the best" QSPR/QSAR in absentdhe validation/prediction set and the
formula (10) can be used as a criterion for idematfon of "the best" QSPR/QSAR in

presence of validation/prediction set. This is & n&wpoint regarding the prediction method
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in presence of validation/prediction set. In préstre published QSPR/QSAR studies use, in
prediction for calibration and validation/predictisets, the same formula.
See the scatter-plot of equation (10) in Figure 2.

Calc. r2val

0 0.2 0.4 0.6 0.8 1
Obs. r2val

Figure 2 Scatter-plot of equation (10)

Using only the pairs calibration set/validation &elil, V, VIl etc., presumed to be
'similar enough', we have not identified any outfair and we obtained the equation (11).
This statistical study seems to be a modedaE#demicQSPR studies, because the similarity
of calibration and prediction sets is high, athie validation tests.
r2, =2.8255- 5.9618D,+ 3.065®,+ 0.80H2, (12)

val
where

D; is the ratio R./Dval Of the diversities of the molecules in calibrafialidation sets from
the point of view of shape (U = 1000)

D is the diversity of molecules in calibration serf the point of view of hydrophilicity
(U=0911)

Dsis sum Q + S, where Q is the quality of predictionthe calibration set, by formula (7),
and S is similarity oéstimatedvalues of the dependent property for the calibreéind
validation sets (U = 612)

The match between the values &frin Table 3 and the values calculated by formula
(11) is very good, at least from the view pointdénd F: f = 0.9682; F = 71.1; Q = 0.6777.
The predictor B has the smallest 'relative utility' in descriptiofir,.

Using only the pairs Il, 1V, VI, VIII etc., presurdeo be 'non-similar', we have not
identified any outlier pair and obtained the equat{12). Maybe, this statistical study is a
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model of QSPR calculation for outside AD moleculescause of the low similarity of the

calibration and prediction sets.

12, =-1.2720- 0.3356D,+ 2.937D, (12)

val =
where

D; is maximum complexity (Shannon Entropy of topotodistances) of molecules in
validation set (U = 1000)

D is the similarity of molecules in the calibratiealidation sets from the point of view of
hydrophilicity (U = 931)

The match between the values @fin Table 3 and the values calculated by formula
(12) is good: 7= 0.8948; F = 34.0; Q = 0.7158.

Table 4 includes the values dfa in Table 3 and the values o4 calculated by
equations (10), (11) and (12). One observes vemglaality of prediction of equation (11) for
pairs I, IV, VI, VIl etc., and a very low qualitgf prediction of equation (12) for pairs I, IlI,
V, VIl etc. The equation which describes well enlotige 'similar' pairs calibration/validation

set cannot offer a good description for 'non-sirhpairs and vice versa.

Table 4 The values dtg

Pair |ria Calc

in Table 3| Eq. (10)| Eq. (11) | Eq. (12)
I 0.3191 0.240 0.344 0.501
Il 0.5322 0.491 0.583 0.489
1] 0.5437 0.455 0.480 0.117
v 0.0256 0.234 0.455 0.091
\Y, 0.1413 0.316 0.180 0.438
\ 0.1127 0.155 0.186 0.142
Vil 0.9411 1.080 1.019 0.497

VIl 0.4085 0.479 1.816 0.494
IX 0.2410 0.297 0.297 0.048
X 0.2462 0.114 0.491 0.193

Xl 0.3917 0.286 0.354 0.365
Xl 0.0050 0.074 0.951 - 0.017%
XMl 0.5131 0.443 0.478 0.584
XV 0.3288 0.494 -0.093] 0.348
XV 0.9327 0.709 0.887 0.368
XVI 0.3512 0.271 0.433 0.253
XVII | 0.3983 0.308 0.403 - 0.004
XVIII | 0.0029 0.034 0.302 0.058
XIX 0.6112 0.529 0.591 0.330
XX 0.1963 0.234 0.437 0.160
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The algebraic sign of predictors in equations (1@)}) and (12) highlights the
influence (direct or inverse) of the complexityyetlisity, similarity and predictive power for
calibration set on the qualitfy of prediction for validation set, see Table 5.

Table 5 Influence of the complexity, drgity, similarity and predictive power
Influence of Similarity of
calibration and
validation sets
(by dependent
property)
low (eq. 12) medium (eq. 10) high (eq. 11
complexity of molecules in not selected as inverse not selected gs
calibration set predictor predictor
complexity of molecules inverse not selected as | not selected as
in validation set predictor predictor
diversity of molecules in not selected as direct not selected as
calibration set predictor predictor
diversity of molecules in not selected ag  not selected as direct
validation set predictor predictor
similarity of the calibration and direct direct direct
validation sets (by molecular
features)
quality of the prediction for the | not selected as direct direct
calibration set predictor

The calculation of diversity and similarity, fronmet point of view of molecular
features, can use molecules having unknown valutnedfdependent property. In addition,
unlike the calculation of the Applicability Domaithe calculation of diversity and similarity
is madebefore QSPR calculation. The calculation of diversity asidhilarity requires less
time than the computation of QSPR(s).

4. Conclusions

The influence of the size of the database and efvdlidation set on the quality of
prediction for the validation set is low (i.e. thember and percentage of molecules are not
selected as predictors fdt4).

A high complexity of structures in calibration/\ddition set decreases the quality of
prediction for validation set.

A high similarity of calibration and validation sefas a whole) increases the quality of
prediction for validation set.
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In selection of the validation set the diversitynodlecules in calibration/validation set

should be directly proportional with the similari§the calibration and validation sets.

If the similarity of the calibration and validatiogets is high, a high quality of

prediction for the calibration setquse increases the quality of prediction for the vatidn

set effec) and the validation test is useful because ofdaisse-effect relation.

If the similarity of the calibration and validatiosets is low, the influence of the

prediction's quality for calibration set on the giotion's quality for validation set is low and

the validation test is useless.

The newly proposed formula can be used as critdoondentification of "the best"

QSPR/QSAR in presence of the validation/predictien
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