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Abstract

The role of data noise is analyzed for a pair gécis and m indicators (m > 1) with respect
to order relations. A general probability schemdeseloped and by specifying a noise-model
and a distribution for noisy values explicit exmiess are derived. These expressions allow
an a priori estimation at which noise level effettts order relation between the two objects
are affected. It turns out that a useful quantiy be introduced, by which it can be decided at
which level of noise perturbations on the set afeorrelations can be expected. We call this
quantity the "crucial noise”. Some toy examples amd example out of environmental
chemistry are discussed.

1. Introduction

The application of partial order on data matricasthe purpose of data analyses found some
interest in the scientific community. Nevertheless,basic criticism concerns the data
uncertainty which is not adequately accounted hyigdaorder concepts up to now. Several
publications put their fingers on that point (fotaenple already 1998 an important paper
appeared, where the problem of noise is discusk@d for for a more recent paper, see [3].
However, it appears difficult to apply the concepta simple framework, which can be used
by everybody. In a recent paper [4] an approactprissented, how by Monte-Carlo-
simulations applying MCbasedHD8_2 of the softwaaekage PyHasse [5] the effect of noisy
data sets on data-driven partial orders (also knasvHlasse diagram technique, HDT) can be

studied. Whereas basically different distributioasd models of noise can be simply
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established within the logical scheme describeth&n above mentioned paper [4], a main
problem was let unanswered: How can “noise” beteedldo the stability of certain order

theoretical configurations.

Some preliminary considerations have quickly shotlat the establishment of certain
stability ranges for a complete set of objectshvatnumber of objects >> 2 is by far too
ambitious, especially since the transitivity axioeds to consider a multitude of objects
simultaneously. In this paper we show, how, stgrfiom very simple systems nevertheless
some predictions for more complex systems can lme,doefore an explicit calculation by
MCbasedHDS8_2 is performed. Hence, this paper shbeldnderstood as a first attempt to
understand - on a theoretical basis - the effectaide within the framework of data driven

posets.

The paper is organized as follows:

First we briefly give some background informatiaoncerning “data-driven partial orders”,

and then we explain how noise is introduced. Thet rsections introduce a theoretical
concept for predicting the effect of noise on sienplo-object- systems characterized by m
indicators. An example taken from environmentaémafstry will help to enlighten the

theoretical concepts. A critical discussion conekithe paper.

2. Methods

2.1 Example data set

The datasetX) has been taken from a study of Sailaukhanulyl.ef6f which includes a
series of obsolete pesticides. The pesticides ithare to be ranked according to the hazard
they exert on the environment. As there is no simglantity that describes the environmental
hazard of a chemical a multi-indicator system (Mi&s used as a proxy. Accordingly the
substances are characterized by persistence, bimatation and toxicity in the environment.
For the present study a subset, including 7 pésticis selected from the complete data set
with normalized data [7]. The object set, X encosses 7 objects, i.€X||= 7 and the values
are all in the interval [0, 1]. (Table 1). Withihi$ series of indicators constituting the MIS,
the three indicators are oriented such that a Wde of an indicator expresses a high hazard

on the environment. For further details, see [4,6,8



-487-

Table 1. Indicator values for the 7 pesticides appliechim present study, the data matrix dm (for a desenp
of the original dataset see [6]

Name code Pers BioA Tox
p,p-DDD DDD 0 0.679 | 0.171
Methoxychlor MEC 0.027 | 0.339| 0.101
Aldrin ALD 0.264 | 0.852 | 0.627
Dieldrin DIE 0.293 | 0.383 | 0.041
Heptachlor HCL 0.428 | 0.48 0.104
Chlordane CHL 1 0.751 0.212
HexachlorbenzeneHCB 0.057 0.574 0.187

2.2 Thebasic equation of Hasse diagram technique

In partial ordering the only mathematical relateamong the objects i<" [9,10]. The ‘<"-
relation is the basis for a comparison of objedtéctv are here characterized by indicatmprs
O2....,0m. A given object x is comparable to object y if amdy if the relatiorx < y; holds for
allj=1,...m i.e. for allg; of the MIS.

xjsyforallj=1,2,3 1)

Independent of the orientationsxy or x= y the very existence of a comparability is indécht
by the symboll]. Sometimes it is convenient to write xy<to express that <y;. If there is
no object z, for which x < z <y is valid then theation x<y is called a cover relation. The
cover relation is the basis to draw the Hasse dragrvisualizing the partial order. The
construction of the cover matrix is based on theraof transitivity for partially ordered sets
[11].

Eq. 1 is not necessarily fulfilled for all objecaips, x and vy, i.e., &-relation cannot be
established for x and y for all indicators of theSMConsequently x and y are regarded as
mutually incomparable (notation:Ixy). Hence, even very minor variations in the iatiics
values may be crucial for comparabilities/incompditées of the single object pairs being
studied.

The analysis of eq. 1 results in an acyclic, ttaredy reduced, triangle free, directed graph of
order relations, the so-called Hasse diagram. Hdeggams are visualizations of the order
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relations due to eq. 1 and are a rather conveto@htwhen the set of objects is not too large

(see for instance [9].

2.3 Modéding noise

Noise can be modeled in different way. We follow @&tep procedure that is described in

details by Carlsen and Bruggemann [4].

. uniform distributionwith percentage of variation) lRandomly values are selected for
the single objects out of the intervak, { p/100 * x;, X, + p/100 * x]. Such a sample
subjected to noise is calledy (we are assuming the same noise level fornall

indicators, to keep the analysis simple).

2. Other models of noise will be discussed in forthsanpapers.

3. Any run of the MC simulation leads to a perturbathdmatrixdmp From eacldimpa

perturbed zeta matrix is obtained. The zeta mauixto thek, run describes the order
relations as follows:
a. zeta(x,y) = 1 if object< object y otherwise 0 2)
b. When mc runs are performed, themc zeta matrices are calculated.
wheremcdenotes the total number of Monte Carlo simulation

. The mean of alinczeta matrices is calculated:

5. zetaayx,y) =2zeta(x,y)/mck=1,...mc ?3)

. As zetaayx,y) can take every value in the interval [0,1¢@nnot a priori be expected
thatzetaawdescribes an order relation.
The transitivity must be properly formulated, whiés done according to the
framework of fuzzy poset theory (DeBaets, DeMdyey). By this method a matrix
is obtained fulfilling the requirements of fuzawnsitivity [4]. This matrix is called
zetath
. As in other fuzzy methods, a defuzzification apglonzetathis to be performed to
obtain a crisp relational matrix, i.e., a matrisglaying only 0 and 1. After extracting
possible equivalence relations the resulting matrigalledzetacrisp.The entries of
zetathare usually ordered increasingly and are catled
The user selected cut-value will be caltedut
Therefore

a. thea -cutis to be selected,

b. the equivalence relations are to be extracted and
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c. the remaining matrix
1if zetatlf x,y)=a —cut
zetacrisg x,y)= txy)
0 otherwise
describes an order relation, which depends om-ttigt and thus on the actual

noise.

2.4 The general probability scheme

In order to get insight into the role of noise oart@l order, the most simple system,
consisting of two objects and m (m > 1) indicatrselected. As the original data set can
lead to xO y or to xI y. Applying partial order on the original data mpatas it is, does not
take into regard the noise. Therefore, to stressdituation we call the original data set the
“frozen” data set.

In the present study the case x =y is excludedsTvo different cases, i.e., x <y and x
will be considered (sect. 2.3.2, 2.3.3).

2.4.1 Basic concepts
To simplify notations we define:

n =p/100 4)
and
xl; = lower limit ofx;, Xy upper limit ofx;.

Remind that we writexry for a noisy value of; according to the distribution range. An

analogous notation is used for y.

Without restriction of generality we assume firskxy. In Fig. 1 a schematic overview is
given, which does not refer to a specific distribut but is valid for every distribution, where

a certain overlap for the rangesxof andyn is possible.

Whenxy <yl; (a situation not shown in Fig. 1) then obviously < yn is obviously valid for
any sample.
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In caseyl; < xy; the range)lj, xu] is not empty and is called an overlagv, ovy". The
length of the overlapsvxandovyis equal, thus

oVX = ovy ®)

xlj ylj XUj yuj

Xnj

ynj —

Xj — Yj =
oVXj
T owyj

Figure 1. Due to the actual selected noise an overlappirigeozones accessible fm and foryny appearsovy,
ovy; the zones; andY; are only accessible for andyn resp. (see 2.3.2 for further details)

The overlapping zone will also be abbreviated bywalven now confusion is to be expected.
We nevertheless differentiate betweavx and ovy, as the_probabilityfor xn to be in the
intervalovx differs from the probability oyn to be inovy. Thus, the distribution foy; can be
different from that for; as a reflection of different sizes of the rangescfy andyry and thus
for X; andY;. The probabilityProb(xn < yn) takes into account ath indicators and is an “and”

coupling of the indicator-wise probabilitiesx§ <yn, denoted similarly as Probg <yn).

Therefore:

Prob(xn< yn)=|_l Prob(xn; <yn;) (6)
j:
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2.4.2 Case 1: x <y, an estimation of the probability of xn; < yn;
According to Fig. 1, four ranges for randomly taketues forxry andyn exist:

1) xnin X, yn inovy

2) xninX;,yninY,

3) xninovx, yryinY; and
4) xny inovx andyn in ovy.

As xn can only be irX; orovx , andyny only inY; or ovy;, we have

Prob(xn in X;) + Prob(xny inovx) = 1; simplified: X; + ovx = 1 (7a)
Prob(yn in'Y)) + Prob(yn in ovy) = 1 simplified:Y; + ovy = 1 (7b)
Prob(xn in ovx andyny in ovy) = Prob(xn in ovx) * Prob(yn in ovy) (7c)

Eq. 7c is most important. Correspondingly the t&mab(nx in ovx andyn in ovy) appears
very often and an abbreviation may be appropriate

poy = Prob(xn in ovx andyn in ovy) =Prob(xn in ovx) * Prob(yn in ovy) (7d)

a) Oncexn O ovx andyn O ovy, it is natural to assume

Prob(xy <yn ) = Prob(xn >yn) = 0.5 *poy ®)

Beside the equalitxn, = yn, which is considered as negligible in the prohgbil

scheme, there are no other possibilities.

b) For the following it should be noted that the nuicedrvalue ofProb(xn, yn in ov) is
independent, whether in the frozen dataxsety; ory; < x; is valid. This remark should
be kept in mind, when reading the following secsion

The probabilities foxn < yn are a sum of four terms (according to the aford¢imeed
ranges) which are added because the locatiom afr yny follows an “or” - rule, i.exny is in
Xj, ynyinYj orxny is in X; andyn is inovy etc.

Prob(xn, O X)*Prob(yn O ovy) = X*ovy
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Prob(xny OX)*Prob(yn OY;) = X*Y
Prob(xn O ovx)* Prob(yny OY;) = ovx*Y
poy = Prob(xn; O ovx)* Prob(yn; Oovy;) = ovxrovy

The sum of these terms should be 1, as for twarsaly, yn are always comparable, i.e

either

xry >yn or xry <yn (linear orders: “tertium non datur”).
X*ovy+ X*Y + ovxXY + ovxrovy = X*(ovy +Y) + ovX(ovy+Y) =X*1 + ovxl =1

Hence
Prob(xny <yn|x <y;)) = 1 - 0.5*poy 9

For an application of eq. 8 it is to check

a) whether there is an overlap and
b) whetherx <y; with respect to the frozen data set (which is egped by the notation

Prob(xn <yn| % <y)).

If the overlap area is empty, th@mob(xry <yn) = 1, becaus@rob(xn O ovx) = Prob(yn O
ovy) = 0.

Summarizing:

1-0.5Cpov,
Prob(xn, <yn. |x<y)= ! 10
(xny <ym [x<y) {1 otherwise (10)
243Case2: xly
Excluding (as above) equalityy = yn, there is an index sét, for which is valid
Xy <yn joJ (11a)

and an index seX2 for which is valid
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Xy > yny joJz (11b)
|31 + P2 =m, with PJ1] =mland J2| =m2

It is necessary to state the selectioddin a clear manner:

If Prob(xn<yn| x1y) is to be determined, théd encompasses those indicators, for which

X =Y.

However, if the probability forn greater thagnis to be determined, i.e.

if Prob(xn>yn| x1y) is wanted, thed2 encompasses just those indicators, for wijchy;.

Let us determiné’rob (xn < yn) and considex; <V , j1 O J1 andxXy >y, j2 O J2 The
probability ofxny; <ynj is given as before by eq.(9).

Prob(xni <yni ) =1-0.5poy; ,j1 OJL.
Prob(xn, <ynz) = 1- 0.5 povp, j2 0J2, hence the searched probability
Prob(xn, >yn) = 0.5%0vy, j2 O J2

Together with eq. 9 we arrive at

ml m2
Prob(xn<yn)= n Prob(xn;, < yn;, )DB Prob(xn;, >yn,,) 12)
jloJ1 j 2
and by the results of the lines above
Prob(xn< yn|x||y)=”(1—0.5[povj )IID 0.50pov, (13)
j0J1 j032

Eqg. 13 is most important to understand the rolea$e for two objects ky within a poset.

2.5 Realization by a uniform distribution

2.5.1 Relation between probability and zetaav

The Monte Carlo simulations by means of the PyHassdule MCbasedHD8_2, described
by Carlsen, Bruggemann [4] are performed indepethgeare., the probabilities foxry are not
depending on probabilities fomry, as well as the probabilities calculated for irdiic 1, do
not influence the probabilities calculated for wetor 2. Hence, joint probabilities are just

products of the corresponding probabilities, conedrfor the position of x and y in the their
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accessible ranges and taking into account thablegtang for examplen < yn needs that all
probabilities forj = 1 , ..., m are to be regarded. Furthermore, any statistioaletation
among indicators, which could be taken into accdyntan appropriate design of the Monte
Carlo simulations is not considered. As zetaguss an average of the outcome of the MC-
calculation, a terraetaayx,y) is the probability after all Monte Carlo-sifations that

xn<yn. Therefore there is a direct correspondencelbsv® (eq. 14)

zetaayxn < yn) = Prob(xn < yr) (14)

Note, that we are stepping back tetaav and considerzetath (where the needed
transformations are included which are requiredhigyfuzzy transitivity) later in sect. 2.6

2.5.2 Formulafor pov,
We introduce now estimations of the probabilitdiscussed in the former two sections.
Hereto we define

g: = maxf.y;) - min(x,y;) +n*(x+y;)) if ovx;=ovy;=nonempty (15)
and

g: = 0 ifovx = ovy is empty. (16)
Lx: = xu - x| = (14)*x - (LN)*x5 = X %X - X+¥X; = 2*N* X (17a)
Lyi: = Y4 -yl =(140)7y; - (L)%Y =y + 0%y -y + 0y = 250y, (17b)

Then the probabilityProb(xny ,yry in ov) which is according to eq.(13) the central qugntén
be estimated as follows

ovx = g/Lx; (18a)
ovy = g/Ly; (18b)

and the final leading term is just

Prob(xry [ ovx andyn, [0 ovy) =poy = (g)%/(4*n**x*y;) (19)
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In order to get a compact description, especially frogramming, it seems useful to
introduce the H-tuple: Without loss of generaliaatiof the estimation dProb(xn < yn), we
define

1if xj<yj
H = I Xj<y]
0 else

Then it is obtained:

Prob(xn<yn)= ﬁ[ H,; [{1- pov, )+0.50pov, | (20)
=

2.5.3 Scaling invariance of x; , y;

The model for noise assumes that noise-valuesaientas relative values with respeciito
andyj;, respectively. Thus, it is necessary to show tiiatmodel is not depending on a scaling
of x; andy;, respectively. Indeed, all expressions containingndy; are homogeneous with
respect tog andy; and any scaling factor would cancel out. For eXamagsuming; < y; and

a scaling factoA
q=% -yt +y) > gAA) = A - Ay A +y) = A4 g
Together with eq. 19 we obtain (writing for the sal clarity not the abbreviating terms)

Prob(xny yn in ov(4) ) = ()@ n**(A*x)*(A*yp) = A% G4 A% nP*xy)) =
J°I(4*nP*x*y;) = Prob(xrny ,yny in ov)

2.6 Role of crucial noise-values

2.6.1Casel: x<y

In section 2.4 the assumption was made that therst tne an overlap so that noise can
actually influence the poset. Hence, the quesso@s to how far an overlap is possible. This
can be easily calculated following Fig. 1 when afarm distribution is assumed by

examining the condition

xy =yl; for x <y; in the frozen data set (21a)
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yy =xl; for y; <x; in the frozen data set (21b)
The crucial noise, where the eq. 21a and eq. 2filifiked, is calculated by eq. 22
NG = (maxfq.y;) - minq.y;)/(x; + ;) (22)

If noise, n, is less minfic;, nc,...,ncy} (abbreviated as mimg, similarly we abbreviate

max{ncy,nc,...,NGy} by max ng) then the ovxj ovy-contributions are 0 hence

Prob(xn, O ovx andyn O ovy) =poy = 0 andProb(xn <yn) = 1.
Summarizing:

1if n<minng; jO{1,...m}

<1if n>minnc; jO{1,... m} (23)

Prob(xn< yn|x< y)={

26.2Case2: xly
If x I'y, eq. 10 still applies. However, now the orieimtaton the single couplesx( , y;) is

important.

Let us examind’rob(xn < yn). Then Table 2 about possible cases is most usdbik, we
introducedl1 andJ2 as index sets (cf. eg’s. (11a, 11b)).

Table 2. Prob(xn < yn| x I y)) is to be determined.6= (0*0*..,0) m factors, 4 = 1*1*...*1 m factors, &
e*e*...*¢ mfactors, where is a value > 0. An expressiaif0,.; means: Evaluating2 (eq. 11b) one
factor in the product in eq. 13 is unequal zer@ temainingm2-1 factors are still 0. Note the

convention used for ming and maxg respectively.
n<minng | min ng<N<maxng | N> maxng
j0J1 j0J1 jo0J
n< min ng 1m1*Om2 Em1*Om2 Em1*Om2
j0J2
minnG<n<max| ln*&*Oma. Em1* & 0ma21 Em1* &*0ma1
ng 1
j0J2
n> maan 1m1* Em2 Eml* Em2 5ml* Em2
j0J2
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The resulting values are shown in Table 3. Natdn different cells of Table 2 does not

necessarily mean that the values are all equal.

Table 3. Evaluation of Table 2.

n<minng | minng<n<maxng | n>maxng
jo0J1 joJ1 joJ1

n< minng

jgJ2 0 0 0

min NG < n < maxng

jaJ2 0 0 0
n > maxng

j0J2 ¢ ¢ ¢

The main result is that under the conditions assufoe Table 2, the makrg j O J2 is of

crucial importance.

Prob(xn<yn|x I 'y) # 0 only if n > maxncj of thosej, where within the frozen data sgt>

y;). l.e. forj 0 J2. (24).

2.6.3 Summarizing

Initially it must be decided which probability is be termined, i.e.,

Prob(xn < yn) or Prob(xn > yn) or Prob(xn | yn) (within HDT “tertium non datur” is not
valid!). HereProb (xn <yn) is chosen.

Whether xd y or x| y the partitioning of {1,..m} into J1 andJ2 becomes an important point

and the second decision has to be made (to deterihimecessaryl andJ2)

a) x <y: Then J10 J2 = {1,2,...m} is relevant as mimg, j O {1,...,m} determines
when the probabilityProb(xn < yn) becomes less 1
b) x I'y: Now setJ2 is relevant, and marg, j O J2 determines whefProb(xn < yn)

becomes larger 0.

Therefore it is of main interest within an evaloatiof objects to determine the noise level
where the noise begins influencing the poset. K83 and 24) provide the necessary

information. The quantities ming, j 0 J1, maxng jO J1, and similarly mimg, j O J2, max
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ng jO J2 can take independent from each other differentieslforJ1 and forJ2. When
Prob(xn <yn) is of interest and the frozen data set implids/x,the transition fronfProb(xn

<yn) = 0 toProb(xn < yn) # 0 depends solely on the actual numerical valuaaing j O J2.

2.7 Extensions to mor e than two objects

The derivation of theetaavmatrix is based on the pairwise comparison of single couple
(x,y), x,y O X. Hence, the entries of this matrix “do not knowything of a transitivity. The
transitivity axiom is nevertheless fulfilled, whighises from the fact that the single indicators
themselves guarantee the transitivity. The trarigjticomes only into play, when finally a
Hasse diagram is to be constructed on the basieafover relations. Therefore in discussing
zetaav we are freed from the additional constrafrthe (fuzzy) transitivity. This additional
aspect is the task of the approximation, leadingetathand finally tozetacrisp which is the

basis to get cover relations and from them the éldgsgram (see [4]).

The sections above have shown that the ma&iaavis influenced by noise in two processes
a) Existing x<y-relations witlzetaa¥x,y) = 1 (frozen data set) may transformzetaav
values <1 and
b) x I y relations withzetaayx,y) = 0 andzetaayy,x) = 0 (frozen data set) may
transform tazetaawalues sligjhtly larger than 0.
¢) According to thenc-values (their minimal value with respecttband maximal values
with respect ta)2) the series of processes a) and of processearbjpsdifferent noise
levels.
Hence retaining the Hasse diagram (of the frozé¢a skt) if noise is active, is possible, when
the
a-cut> max@rob(xn <yn| x||y)) anda-cut < min(Prob(x’'n<y’n | x’<y’) with

maxProb(xn <yn| x|ly)) < minProb(x’n<y’n | xX’<y’).

We summarize this finding as follows:

Let noise have a value > max(mig j 0J1, maxng jOJ2) and

let be x,y, X',y’ be objects where at least eitkez x ory' £y,

let furthermore be maRfob(xn <yn| x|ly)) < minProb(x'n<y’'n | X'<y’)
then the poset obtained from the frozen set edhalposet obtained from the noisy poset, |if

a-cutd (max@rob(xn <yn| x|ly)) , minProb(x’n<y’n | xX’<y"))




-499-

3. Examples

3.1 Toy examples
3.1.1Casel, frozen data set: x <y
To demonstrate the theoretical part it is usefdbuk first to constructed examples, by which
the crucial effects in noise can be better seeardfbre we introduce a data matrix describing
x <y (Table 4).

Table 4. Toy example for case 1: x <y

ql 92 q3 q4
X 0.1 0.2 0.3 0.4
y 0.9 0.7 0.6 0.5
nc 0.8 0.555| 0.333 0.111
All four indicators are considered and the last @hirable 4 shows the valuesmd. For the

case x <y only min ne 0.1111 is important according to eq. 23. Hethorg as noise is
below this levelxn < yn, and consequentlgrob(xn < yn) = 1. Only if noise exceeds 0.1111
the probability. HenceProb(xny < yny) will be reduced andetaayx, y) would result in

values less 1. (Fig. 2):

Prob(xn<yn)

1.1

1 O

0.9 \

08 \

0.7 \

06 . . . : ,
0 0.1 0.2 03 0.4 0.5

Figure 2. Prob(xn < yn) as function of noise. Ifi exceeds 0.1111 then the overlap zowg = ovy, iS no more
empty and the reduction of the probabiklity< yn starts.

If the MIS shown in Table 4, is now considered, koer, only including the first three
indicators are considered. It this case mipn= 0.3333. The resulting probability distribution
for xn<ynis displayed in Fig. 3.
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Prob( xn <yn)

1.1

1
0.9 M
0.8
0.7
0.6 T |

0 0.2 0.4 0.6 0.8

Figure 3. Prob(xn<yn) as function of noise. H reaches 0.333 then the overlap zone is not erAptgduction of
the probability foxn <yn forn > 0.333 appears.

Fig.s 2 and 3 demonstrate the important role ottheial noisenc, to detect the noise level,
where the partial order becomes affected by nélseever to calculat®rob(xn <yn) = f(n)
the equations (13) and (23) resp., are to be ewaludahe knowledge ofiif is important,

when noise exceeds mimg; ,j O J1.

3.1.2 Case 2, frozen data set: x Iy
In Table 5 the same values are used as in Tabt@wever their assignment to x and y is
changed.

Table5. Toy example for case 2:hy
ql q2 a3 q4

X 0.9 0.7 0.3 0.4
y 0.1 0.2 0.6 0.5
nc 0.8 0.555| 0.333 0.111

orientation| x>1y| x>2yx<3y|x<4y

As can be seen, thre values are invariant with respect to exchangs ahdy;, following eq.
22.

The evaluation of data of Table5 is here basederassumption that
a) Prob(xn<yn) is of interest, and
b) determination 082. HereJ2 = {1, 2} (note:J2is an index set).
c) to identify the largeshqg value. Here the largesic-value forj O J2 is that forql,
therefore the probability ofn <yn, is 0 as long as noise)(is less 0.8 (Fig. 4)
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0.004 Prob( xn <yn)
0.003 /’
0.002

0.001

0 <
0 0.2 0.4 0.6 0.8 1 1.2

Figure 4. Prob(xn < yn) as a function of noise. The actual mag value equals 0.8. The values of the
probabilitiesProb(xn < yn), Prob(xn > yn) andProb(xnlyn) add to 1, the major contribution arises from
Prob(xn | yn)

Analoguously to the above we turn to a MIS inclgdionly g2, g3 and g4 leads to the

probability plot as shown in Table 5, the resultimgobability distribution forxn < yn is

shown in Fig. 5

Prob( xn <yn)

0.04

0.02 /
0 —My—\

0 0.2 0.4 0.6 0.8 1

Figure 5. Prob(xn < yn) as a function of noise. Now values > 0 only aftexxng = 0.5555, which is now the
relevant crucial noise.

The set of the last four Fig's demonstrate thatelae crucial noise values which determine

« whether or not an existing order relation x < wpffected and hence can be set to zero
by a suitable defuzzification interval, namely miwith j O {q1,q2,03,04}

* whether or not a new order relation can be obtafrmd an object pair for which the
original data set implies Ixy, namely maxg, with j O J2

» thus, if noise is less ming then the original Hasse diagram (i.e. the Hasagrdm
based on a data matrix considered as non-noisypwiletained.
thus, if noise is less mang) , j O J2, then for no couple (x,y) with (ky ) due to the
original data set the incomparability can be repth by a comparability (with a low

probability# 0 ) due to noise effects.



-502-

In Fig. 6 bothProb(xn < yn) andProb(xn > yn) for the situation as described above in Table
5, i.e., the MIS from Table 4 excluding, are shown:

0.08
0.07
0.06 ff
0.05 -
0.04
0.03 i £
0.02 i yd
0.01 I //

0 15{ ‘

0 02 0.4 06 038 1

Figure 6. Upper curveProb(yn < xn), lower curveProb(xn < yn). Beside the slightly differing slopes, the effect
of ncand ofJ2is demonstrated. Note (once again) fRaib(xn< yn) + Prob(xn >yn) + Prob(xn | yn) =
1

Taking Prob(y < x) as example: Now?2 is that set, wherg > x: This is only forq3 andq4,
where the maximal value 83 = 0.333.

3.2 Application of the concepts onto thereal data matrix (sec. 2.1)

When the data are taken as given in Table 1 theémpartant question is, at which level of
noise the Hasse diagram based on the data of TélteZen data set) will be retained. In
order to find an answer for this question it isyonecessary to check the nc-values for each
pair of chemicals.

In Fig. 7 the Hasse diagram of the frozen datqTatle 1) is shown. It is seen that there are
three minimal elements: DDD, MEC and DIE, wherelasré are two maximal elements,
namely ALD and CHL. To check for stability of thargial order, visualized by the Hasse
diagram, shown in Fig. 8 the list of nc-valuestide examined, due to eq. 22 (Table 6).

S
Hasse diagram / cover matr

Hasse Diagram U= 100 C=11.0

nwl

cover - relation

show equivalence classes ‘

Figure 7. Hasse diagram based on data of Table 1 (PyHa#sese)
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Table 6. List of nc-values, available by MCbasedHD8_2.pfnc-values, chemicals, the property (indicatod an
the last two columns the type of relation (0 Olyx,0 1:x <y, 1 0: x>y, x being the firgtthe
second object)

nc objectl | object2 | prop | zeta-values
1.0 DDD MEC Pers
0.334 DDD MEC BioA
0.257 DDD MEC Tox
1.0 DDD ALD Pers
0.113 DDD ALD BioA
0.571 DDD ALD Tox
1.0 DDD DIE Pers
0.279 DDD DIE BioA
0.613 DDD DIE Tox
1.0 DDD HCL Pers
0.172 DDD HCL BioA
0.244 DDD HCL Tox
1.0 DDD CHL Pers
0.05 DDD CHL BioA
0.107 DDD CHL Tox
1.0 DDD HCB Pers
0.084 DDD HCB BioA
0.045 DDD HCB Tox
0.814 MEC ALD Pers
0.431 MEC ALD BioA
0.723 MEC ALD Tox
0.831 MEC DIE Pers
0.061 MEC DIE BioA
0.423 MEC DIE Tox
0.881 MEC HCL Pers
0.172 MEC HCL BioA
0.015 MEC HCL Tox
0.947 MEC CHL Pers
0.378 MEC CHL BioA
0.355 MEC CHL Tox
0.357 MEC HCB Pers
0.257 MEC HCB BioA
0.299 MEC HCB Tox
0.052 ALD DIE Pers
0.38 ALD DIE BioA
0.877 ALD DIE Tox
0.237 ALD HCL Pers
0.279 ALD HCL BioA
0.715 ALD HCL Tox
0.582 ALD CHL Pers
0.063 ALD CHL BioA
0.495 ALD CHL Tox
0.645 ALD HCB Pers
0.195 ALD HCB BioA

Ple|oPlolC|P|olC|Clo|olo|ololC|olo|Clalol|olCC|olo|e|olo|Clo|e|Clo|o|P|o||P|olo|o|o

Clo|2|®|o|e|P|o|C|Clor|F|Llr[Plnlr Pk o|2|o|F| P o|eloR Pk |o|Clolo|C|o| | R o|e|o
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0.541 ALD HCB Tox 0 1
0.187 DIE HCL Pers 1 0
0.112 DIE HCL BioA 1 0
0.434 DIE HCL Tox 1 0
0.547 DIE CHL Pers 1 0
0.325 DIE CHL BioA 1 0
0.676 DIE CHL Tox 1 0
0.674 DIE HCB Pers 0 0
0.2 DIE HCB BioA 0 0
0.64 DIE HCB Tox 0 0
1 0

1 0

1 0
0 0

0 0

0 0
0 1

0 1

0 1

0.401 HCL CHL Pers
0.22 HCL CHL BioA
0.342 HCL CHL Tox
0.765 HCL HCB Pers
0.089 HCL HCB BioA
0.285 HCL HCB Tox
0.892 CHL HCB Pers
0.134 CHL HCB BioA
0.063 CHL HCB Tox

As can be seen, the least value of nc equals G@XIMEC <« HCL. While n < 0.015
(1.5%) the Hasse diagram shown in Fig. 7 dessrdwerectly the order relations. A new
comparability, albeit with a low probability coulppear for the chemicals DDD and HCB,

when noise exceeds the correspondicgalue of 0.045.

In Table 7 the results of an application of the M€&dHD8_2 module is shown.

Table 7. zetaawvaluesn < 0.015

DDD | MEC | ALD | DIE | HCL | CHL | HCB

DDD 1.0 0.0 1.0 0.0 0.0 1.0 0.0
MEC | 0.0 1.0 1.0 0.0 1.0 1.0 1.0
ALD 0.0 0.0 1.0 0.0 0.0 0.0 0.0
DIE 0.0 0.0 0.0 1.0 1.0 1.0 0.0
HCL 0.0 0.0 0.0 0.0 1.0 1.0 0.0
CHL 0.0 0.0 0.0 0.0 0.0 1.0 0.0
HCB 0.0 0.0 1.0 0.0 0.0 1.0 1.0

Thezetaawalue (MEC<HCL) = 1, indicating that there is rfeaage in the order relations. It
should further be noted that no entry of #e¢aavmatrix deviates from 0 or 1.

Increasing the noise, to 0.02 (2 %) a change in thetaawvalues are disclose (Table 8).
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Table 8. zetaavn = 0.02)

DDD | MEC | ALD | DIE | HCL | CHL | HCB
DDD 1.0 0.0 1.0 0.0 0.0 1.0 0.0
MEC | 0.0 1.0 1.0 0.0 0.965 1.0 1.0
ALD 0.0 0.0 1.0 0.0 0.0 0.0 0.0
DIE 0.0 0.0 0.0 1.0 1.0 1.0 0.0
HCL 0.0 0.0 0.0 0.0 1.0 1.0 0.0
CHL 0.0 0.0 0.0 0.0 0.0 1.0 0.0
HCB 0.0 0.0 1.0 0.0 0.0 1.0 10

The only change is for the entzgtaayMEC < HCL) (see second row of Table 8) and as one
can expect following the section 2, the valuezefaayMEC<HCL) is almost 1. Am-cut
must be selected rather high > 0.965 in order t@minbby defuzzification a MEEICL-

relation.

Now applying a noise of 10% Table 6 showsrall-Values. It is immediately noted that

many couples of chemicals whasg-value < 0.1, are present (Table 9).

Table 9. Chemical couples wherg are < 0.1

Chemical 1| Chemical 2  indicatof relation ;ng
DDD CHL BioA < 0.05
DDD HCB BioA [ 0.084
DDD HCB Tox I 0.045
MEC DIE BioA I 0.061
MEC HCL Tox < 0.015
ALD DIE Pers I 0.052
ALD CHL BioA [ 0.063
HCL HCB BioA [ 0.089
HCB CHL Tox < 0.063

As can be seen with noise = 10% some x < y relatioecome reduced and soméd x
relations get values 0 , as can be verified by inspecting #etaavvalues. Correspondingly

the a-values allow a variety of possibéecuts(Table 10).

Table 10. a-values at noise = 10% for all three indicators
0.0 0.013 0.113 0.637 0.876 0.927 1.0

When the couples of chemicals within Table 9 areoinparable, then their values for

Prob(xn<yn) is small and may represented due to rounding&ffey 0. Theetaavvalues are



mostly affected by couples of chemicals, which amemparable, i.e. (DDD,CHL),
(MEC,HCL) ad (HCB, CHL). In Table 11 the corresponglentries are underlined. :
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Table 11. zetaay (noise = 10%)

DDD | MEC | ALD | DIE HCL | CHL | HCB
DDD 1.0 0.0 1.0 0.0 0.0 _ 0.875@.0126
MEC | 0.0 1.0 1.0 0.0|_0.6366 1.0 1.0
ALD 0.0 0.0 1.0 0.0 0.0 0.0 0.0
DIE 0.0 0.0 | 0.1133 1.0 1.0 1.0 0.0
HCL 0.0 0.0 0.0 0.0 1.0 1.0 0.0
CHL 0.0 0.0 0.0 0.0 0.0 1.0 0.0
HCB 0.0 0.0 1.0 0.0 0.0] _0.9267 1.0

For examplezetaayDDD<HCB) has now a value unequal zero but verylsriradeed if we
want to checkProb(DDDn <HCBn) then thoseng are relevant, whetjes taken from2: (eq.
22).J2 ={ 2 } within the MIS, i.e. indicator BioA, hencthis value is decisive for getting

Prob(DDDn < HCBn).

Table 12. The special case DDD || HCB , determinatioiafb(DDDn < HCBn)

Selecting now amr-cutin the interval (0.113, 0.637) for examptecut = 0.5 will still retain
DDD||HCB, DIE||ALD. However no new comparisons appebecause all the slightly
reduced values dafetaav will not affected by the defuzzification. DDD<CHMEC<HCL,
HCB<CHL Evenif a-cut= 0.9 would be selected then DDD||CHL, MEC||HCut HCB <
CHL (Fig.9). The only affected relations are MEC<HCand DDD<CHL whosezetath

DDD | Pers BioA Tox

DDD 0 0.679 0.171

HCB | 0.057| 0.574 0.187
nc 1 0.084 0.045
J1 1 3
J2 1

values are less 0.9. (Fig. 9)
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Hasse Diagram, parameters: Selected seed (if any) 123
uniform distribution
noise: 10.010.010.0

MC runs: 10000 alpha-cut = 0.9

Figure 9. Hasse diagram based on data of Table 1, affésgtedise ( = 0.1)

The finding up to now shows that those nc-valuebe important where potentiallyXxy

is affected. By sufficient (i.e. > ming) large noisezetaavvalues will be reduced and hence
may be crucial for the defuzzification, Thereforesi useful to calculate a) a Table with all
minimal nc-values describing existing <-relatiomsl &) with thosenc-values which are less a
certain limiting value, which is here arbitrarilglected to be 0.1 (Table 13).

The module MCbasedHD8_2 of the PyHasse software9@a Bruggemann, 2015) fulfills
this task.

Table 13. A: Minimal nc-values of all chemicals for which an <-relatiomdze established due to data in Table
1. B: Only those chemicals and min nc-values, whighless a limiting value (here arbitrarily sedect

to be 0.1)

Al Objectl | Object2| min value oic
DDD ALD 0.113
DDD CHL 0.05
MEC ALD 0.431
MEC HCL 0.015
MEC CHL 0.355
MEC HCB 0.257
DIE HCL 0.112

B: Objectl | Object2| min value ofc
DDD CHL 0.05
MEC HCL 0.015
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There will be a probability ProBODn < CHLnN) which is slightly smaller than 1, at noise of
less 0.1. Hence forming DDDn || CHLn has a preidty probability. Similarly for the other

pair of chemicals.

When a data driven poset is affected by noise uplevel of 10% then (in the framework of
our noise model) only two couples of chemicals naezareful inspection. According to the

general line of argumentation, for these two paifseaction” can be written as follows

DDD <CHL O P¥7°#® _, DDD||CHL
MEC<HCL O Pty . MEC||HCL

4. Discussion

4.1 zetaav ver sus zetath

The probability calculus was applied to estimate tetaavvalues, whereas the leading
guantity to draw the Hasse diagramzetacrispwhich is derived fronzetath Nevertheless
zetaavcan be play its crucial role in the discussiomausezetathis zetaay modified due due
to fuzzy-transitivity, but in generaletathvalues do not much differ from treetaavvalues.
Furthermore we concentrate in the discussioretdiavon a single object pair, in order not to

check for the consequences the transitivity axioooled/ imply.

4.2 What isthewin

Based on eq.’s 10, 13 the concept of crucial neias established and can be calculated
according to eq. 22. The main win is therefore gbesibility of an a priori estimation as to
how far a partially ordered set as that of the imaghown in sec. 2.1 can be obtained which

is not affected by noise.

The decisive information is won by examination e minimal value of thac-tuple for each
object pair and each indicator. If noise is exdaegdhis minimal value, then either existing
order relations become available by an appropsekection of ther-cut, or new comparisons
can be possible. This latter effect is however noftn irrelevant, because in general the
zetaav-values of new comparisons are very low. &segating xd y from x || y by noise

needs that noise must exceed thogealues, whergis taken fromj2.
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However, when the knowledge according to noise shthat noise exceeds thecvalues

then the probabilities according to eq.’s 10, 18 ba calculated and graphs like those in

Fig’'s. 2-5 may be helpful to decide whichcut value could be appropriate.

4.3 What next

There are several assumptions, which must be stepep resolved and clarified.

The nature of noise must be critically examined aftiter noise models must be
checked.

Note, a problem is the normalization to [0,1], eitlthe sampling must be controlled,
or a renormalization has to be done after eachormnskelection. To keep the analysis
simple, however, we do not take into regard thdlems at the limits of the interval.
The uniform distribution may be too simple for mapplications; here a more general
procedure must be derived, which is independertherdistribution model. It is clear
that the relevant part of two distributions (one foe first and one for the second
object) is the zone of their overlapping. So, if B&xample a normal distribution is
considered and the upper tail of the one objectthrdower tail of the other object
have an area which is significantly greater zeemtthere is an overlap, and equations
where ovx and ovy appear should work.

The way how Monte Carlo simulations are performasl,exposed in [4], must be
critically examined: Correlations among indicatarsst be adequately considered in
the design of Monte Carlo simulations, as welltasduld be a good idea to estimate
the lower and upper limit s of the number of Mo@t&#o runs to obtain reliable data.
Furthermore, there are some papers which enligtitenproblem of noise from a
combinatorial approach [1]. Can these methodsnibegiated to derive additional
criteria?

Although equalityxry = yry under noise seems to be not a relevant fact,oiildhbe
possible to include this special case into the g@rseheme, developed in this paper.

4.4 Other concepts
Noisy posets are of interest over many years. Sprograms in the framework of PyHasse

[5] allow an analysis of some aspects of noisy dsgé#s. For example the module

prob_min_max performs a Monte-Carlo simulation ldase intervals the user can define, It

is studied as to how far extremal elements remgiremal and as to how far non extremal

elements can be considered as extremal ones. Adeaisa done with following aspects:
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Probability of being a maximal, a minimal, an igethelement or none of them. This program
is based on Monte Carlo simulations as MChasedHR&id?needs a specification by the user
which entries of the data matrix are consideredusertain. An application concerning
removal of Uranium will be published in the neatufie [13].
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