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Abstract 
The role of data noise is analyzed for a pair of objects and m indicators (m > 1) with respect 
to order relations. A general probability scheme is developed and by specifying a noise-model 
and a distribution for noisy values explicit expressions are derived. These expressions allow 
an a priori estimation at which noise level effects the order relation between the two objects 
are affected. It turns out that a useful quantity can be introduced, by which it can be decided at 
which level of noise perturbations on the set of order relations can be expected. We call this 
quantity the "crucial noise”. Some toy examples and an example out of environmental 
chemistry are discussed. 
  

1. Introduction 

The application of partial order on data matrices for the purpose of data analyses found some 

interest in the scientific community. Nevertheless, a basic criticism concerns the data 

uncertainty which is not adequately accounted by partial order concepts up to now.  Several 

publications put their fingers on that point (for example already 1998 an important paper 

appeared, where the problem of noise is discussed [1,2], or for a more recent paper, see [3]. 

However, it appears difficult to apply the concepts in a simple framework, which can be used 

by everybody. In a recent paper [4] an approach is presented, how by Monte-Carlo-

simulations applying MCbasedHD8_2 of the software package PyHasse [5] the effect of noisy 

data sets on data-driven partial orders (also known as Hasse diagram technique, HDT) can be 

studied. Whereas basically different distributions and models of noise can be simply 
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established within the logical scheme described in the above mentioned paper [4], a main 

problem was let unanswered: How can “noise” be related to the stability of certain order 

theoretical configurations.  

 

Some preliminary considerations have quickly shown that the establishment of certain 

stability ranges for a complete set of objects, with a number of objects >> 2 is by far too 

ambitious, especially since the transitivity axiom needs to consider a multitude of objects 

simultaneously. In this paper we show, how, starting from very simple systems nevertheless 

some predictions for more complex systems can be done, before an explicit calculation by 

MCbasedHD8_2 is performed. Hence, this paper should be understood as a first attempt to 

understand - on a theoretical basis - the effect of noise within the framework of data driven 

posets.  

 

The paper is organized as follows: 

First we briefly give some background information, concerning “data-driven partial orders”, 

and then we explain how noise is introduced. The next sections introduce a theoretical 

concept for predicting the effect of noise on simple two-object- systems characterized by m 

indicators.  An example taken from environmental chemistry will help to enlighten the 

theoretical concepts. A critical discussion concludes the paper. 

 

2. Methods 

2.1 Example data set 

The dataset (X) has been taken from a study of Sailaukhanuly et al. [6], which includes a 

series of obsolete pesticides. The pesticides therein are to be ranked according to the hazard 

they exert on the environment. As there is no single quantity that describes the environmental 

hazard of a chemical a multi-indicator system (MIS) was used as a proxy. Accordingly the 

substances are characterized by persistence, bioaccumulation and toxicity in the environment. 

For the present study a subset, including 7 pesticides is selected from the complete data set 

with normalized data [7]. The object set, X encompasses 7 objects, i.e. |X| = 7 and the values 

are all in the interval [0, 1]. (Table 1). Within this series of indicators constituting the MIS, 

the three indicators are oriented such that a high value of an indicator expresses a high hazard 

on the environment. For further details, see [4,6,8].  
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Table 1. Indicator values for the 7 pesticides applied in the present study, the data matrix dm (for a description 
of the original dataset see [6] 

 

 

 

 

 

 

 

 

2.2 The basic equation of Hasse diagram technique 

In partial ordering the only mathematical relation among the objects is “≤” [9,10]. The “≤”-

relation is the basis for a comparison of objects which are here characterized by indicators q1, 

q2,…,qm. A given object x is comparable to object y if and only if the relation xj ≤ yj holds for 

all j = 1,…,m, i.e. for all qj of the MIS.  

 

xj ≤ yj for all j = 1, 2, 3         (1) 

 

Independent of the orientation x ≤ y or x ≥ y the very existence of a comparability is indicated 

by the symbol ⊥. Sometimes it is convenient to write x <j y to express that xj < yj. If there is 

no object z, for which x < z <y is valid then the relation x<y is called a cover relation. The 

cover relation is the basis to draw the Hasse diagrams visualizing the partial order. The 

construction of the cover matrix is based on the axiom of transitivity for partially ordered sets 

[11]. 

 

Eq. 1 is not necessarily fulfilled for all object pairs, x and y, i.e.,  a ≤-relation cannot be 

established for x and y for all indicators of the MIS. Consequently x and y are regarded as 

mutually incomparable (notation: x ǁ y). Hence, even very minor variations in the indicators 

values may be crucial for comparabilities/incomparabilities of the single object pairs being 

studied. 

 

The analysis of eq. 1 results in an acyclic, transitively reduced, triangle free, directed graph of 

order relations, the so-called Hasse diagram. Hasse diagrams are visualizations of the order 

Name code Pers BioA Tox 
p,p-DDD DDD 0 0.679 0.171 
Methoxychlor MEC 0.027 0.339 0.101 
Aldrin ALD 0.264 0.852 0.627 
Dieldrin DIE 0.293 0.383 0.041 
Heptachlor HCL 0.428 0.48 0.104 
Chlordane CHL 1 0.751 0.212 
Hexachlorbenzene HCB 0.057 0.574 0.187 
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relations due to eq. 1 and are a rather convenient tool when the set of objects is not too large 

(see for instance [9]. 
 

2.3 Modeling noise 

Noise can be modeled in different way. We follow a 7 step procedure that is described in 

details by Carlsen and Bruggemann [4]. 

1. uniform distribution with percentage of variation pj  Randomly values are selected for 

the single objects out of the interval  [xj - p/100 * xj, xj + p/100 * xj]. Such a sample 

subjected to noise is called xnj (we are assuming the same noise level for all m 

indicators, to keep the analysis simple).  

2. Other models of noise will be discussed in forthcoming papers. 

3. Any run of the MC simulation leads to a perturbed data matrix, dmp. From each dmp a 

perturbed zeta matrix is obtained. The zeta matrix due to the kth run describes the order 

relations as follows: 

a. zetak(x,y) = 1 if object ≤ object y otherwise 0    (2) 

b. When mc runs are performed, then mc zeta matrices are calculated.  

where mc denotes the total number of Monte Carlo simulations. 

4. The mean of all mc zeta matrices is calculated: 

5. zetaav(x,y) = Σzetak(x,y)/mc  k = 1,…,mc      (3) 

6. As zetaav(x,y) can take every value in the interval [0,1] it cannot a priori be expected 

that zetaav describes an order relation. 

 The transitivity must be properly formulated, which is done according to the 

framework of  fuzzy poset theory (DeBaets, DeMeyer [12]). By this method a matrix 

is obtained fulfilling the requirements of  fuzzy transitivity [4]. This matrix is called 

zetath. 

7. As in other fuzzy methods, a defuzzification  applied on zetath is to be performed to 

obtain a crisp relational matrix, i.e., a matrix displaying only 0 and 1. After extracting 

possible equivalence relations the resulting matrix is called zetacrisp. The entries of 

zetath are usually ordered increasingly and are called α.  

The user selected cut-value will be called α-cut.   

Therefore  

a. the α -cut is to be selected, 

b. the equivalence relations are to be extracted and 
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c. the remaining matrix  



 −≥

=
otherwise

cut)y,x(zetathif
)y,x(zetacrisp

0

1 α
 

describes an order relation, which depends on the α-cut and thus on the actual 

noise. 
 

2.4 The general probability scheme 

In order to get insight into the role of noise on partial order, the most simple system, 

consisting of two objects and m (m > 1) indicators is selected. As the original data set can 

lead to x ⊥ y or to x ǁ y. Applying partial order on the original data matrix as it is, does not 

take into regard the noise. Therefore, to stress this situation we call the original data set the 

“frozen” data set.   
 

In the present study the case x = y is excluded. Thus two different cases, i.e., x < y and x ǁ y 

will be considered (sect. 2.3.2, 2.3.3). 

 

2.4.1 Basic concepts 

To simplify notations we define: 

 

n = p/100           (4) 

 

and  

 

xlj = lower limit of xj, xuj upper limit of xj. 

 

Remind that we write xnj for a noisy value of xj according to the distribution range.  An 

analogous notation is used for y. 
 

Without restriction of generality we assume first x < y. In Fig. 1 a schematic overview is 

given, which does not refer to a specific distribution, but is valid for every distribution, where 

a certain overlap for the ranges of xnj and ynj is possible.  

 

When xuj < ylj (a situation not shown in Fig. 1) then obviously  xnj < ynj is obviously valid for 

any sample. 
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In case ylj < xuj the range [ylj, xuj] is not empty and is called an overlap “ovxj,  ovyj”. The 

length of the overlaps ovx and ovy is equal, thus 

 

ovxj = ovyj           (5) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Due to the actual selected noise an overlapping of the zones accessible for xnj and for ynj appears: ovxj, 
ovyj; the zones Xj and Yj are only accessible for xnj and ynj resp. (see 2.3.2 for further details) 

 

The overlapping zone will also be abbreviated by ov, when now confusion is to be expected. 

We nevertheless differentiate between ovx and ovy, as the probability for xnj to be in the 

interval ovxj differs from the probability of ynj to be in ovyj. Thus, the distribution for yj can be 

different from that for xj as a reflection of different sizes of the ranges for xnj and ynj and thus 

for Xj and Yj. The probability Prob(xn < yn) takes into account all m indicators and is an “and” 

coupling of the indicator-wise probabilities of xnj < ynj, denoted similarly as Prob(xnj < ynj).   

 

Therefore: 

 

∏
=

<=<
m

j
jj )ynxnProb()ynxnProb(

1

       (6) 

 

  

xlj                                    ylj                 xuj              yuj        

xnj  

ynj  

Yj  
ovxj 

ovyj 

Xj  
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2.4.2 Case 1: x < y, an estimation of the probability of xnj < ynj  

According to Fig. 1, four ranges for randomly taken values for xnj and ynj exist: 

 

1) xnj in Xj , ynj in ovyj 

2) xnj in Xj , ynj in  Yj 

3) xnj in ovxj, ynj in Yj and 

4) xnj in ovxj and ynj in ovyj.  

 

As xnj can only be in Xj or ovxj , and ynj only in Yj or ovyj, we have 
 

Prob(xnj in Xj) + Prob(xnj in ovxj) = 1 ; simplified:  Xj + ovxj = 1   (7a) 

Prob(ynj in Yj) + Prob(ynj in ovyj) = 1 simplified: Yj + ovyj = 1   (7b) 

Prob(xnj in ovxj and ynj in ovyj) = Prob(xnj in ovxj) * Prob(ynj in ovyj)   (7c) 

 

Eq. 7c is most important. Correspondingly the term Prob(nxj in ovxj and ynj in ovyj) appears 

very often and an abbreviation may be appropriate 
 

povj =  Prob(xnj in ovxj and ynj in ovyj)  = Prob(xnj in ovxj) * Prob(ynj in ovyj)  (7d) 

 

a) Once xnj ∈ ovxj and ynj ∈ ovyj, it is natural to assume 

 

Prob(xnj < ynj ) = Prob(xnj > ynj) = 0.5 * povj     (8) 

 

Beside the equality xnj = ynj, which is considered as negligible in the probability 

scheme, there are no other possibilities. 

 

b) For the following it should be noted that the numerical value of Prob(xnj, ynj in ov) is 

independent, whether in the frozen data set xj < yj or yj < xj is valid. This remark should 

be kept in mind, when reading the following sections.  

The probabilities  for xnj <  ynj are a sum of four terms (according to the aforementioned 

ranges) which are added because the location of xnj or ynj follows an “or” - rule, i.e. xnj is in 

Xj, ynj in Yj or xnj is in Xj and ynj is in ovyj etc.  
 

Prob(xnj  ∈ Xj)*Prob(ynj ∈ ovyj) =  X*ovy 
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Prob(xnj ∈Xj)*Prob(ynj ∈ Yj) = X*Y 

Prob(xnj ∈ ovxj)*Prob(ynj ∈Yj) = ovx*Y 

povj = Prob(xnj  ∈ ovxj)*Prob(ynj ∈ovyj) = ovx*ovy 

 

The sum of these terms should be 1, as for two scalars, xnj, ynj are  always comparable, i.e 

either  

 

xnj > ynj or xnj < ynj (linear orders: “tertium non datur”). 

X*ovy + X*Y + ovx*Y + ovx*ovy = X*(ovy + Y) + ovx*(ovy + Y) = X*1 + ovx*1 = 1 

 

Hence 

Prob(xnj < ynj| xj < yj)) = 1 - 0.5* povj       (9) 

 

For an application of eq. 8 it is to check 

 

a) whether  there is an overlap and 

b) whether xj < yj with respect to the frozen data set (which is expressed by the notation 

Prob(xnj < ynj| xj < yj)). 

 

If the overlap area is empty, then Prob(xnj < ynj) = 1, because Prob(xnj ∈ ovxj) = Prob(ynj ∈ 

ovyj) = 0. 

 

Summarizing:  



 ⋅−

=<<
otherwise

pov.
)yx|ynxnProb( j

jj 1

501
     (10) 

 
 

2.4.3 Case 2: x ǁ y 

Excluding (as above) equality xnj = ynj, there is an index set J1, for which is valid 

 

xnj < ynj  j ∈ J1          (11a) 

 

and an index set J2 for which is valid 
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xnj > ynj   j ∈ J2.         (11b) 
 

|J1| + |J2| = m, with |J1| = m1 and |J2| = m2 
 

It is necessary to state the selection of J2 in a clear manner: 

If Prob(xn<yn| x ǁ y) is to be determined, then J2 encompasses those indicators, for which  

xj > yj. 

 

However, if the probability for xn greater than yn is to be determined, i.e.  

if  Prob(xn>yn| x ǁ y) is wanted, then J2 encompasses just those indicators, for which xj < yj. 

 

Let us determine Prob (xn < yn) and consider xj1 < yj1 , j1 ∈ J1 and xj2 > yj2, j2 ∈ J2. The 

probability of xnj1 < ynj1 is given as before by eq.(9). 

 

Prob(xnj1 < ynj1 ) = 1 - 0.5*povj1 , j1 ∈ J1..   

Prob(xnj2 < ynj2) =  1 - 0.5 *povj2, j2 ∈ J2, hence the searched probability 

Prob(xnj2 > ynj2) =  0.5*povj2, j2 ∈ J2. 

 

Together with eq. 9 we arrive at 
 

∏∏
∈∈

>⋅<=<
2

22
22

1

11
11

m

Jj
jj

m

Jj
jj )ynxn(obPr)ynxnProb()ynxnProb(    (12) 

and by the results of the lines above 

∏ ∏
∈ ∈

⋅⋅⋅−=<
1 2

50501
Jj Jj

jj pov.)pov.()y||x|ynxnProb(     (13) 

Eq. 13 is most important to understand the role of noise for two objects x ǁ y within a poset. 

 

2.5 Realization by a uniform distribution 

2.5.1 Relation between probability and zetaav 

The Monte Carlo simulations by means of the PyHasse module MCbasedHD8_2, described 

by Carlsen, Bruggemann [4] are performed independently, i.e., the probabilities for xnj are not 

depending on probabilities for ynj, as well as the probabilities calculated for indicator 1, do 

not influence the probabilities calculated for indicator 2. Hence, joint probabilities are just 

products of the corresponding probabilities, concerned for the position of x and y in the their 
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accessible ranges and taking into account that establishing for example xn < yn needs that all 

probabilities for j = 1 , …, m are to be regarded. Furthermore, any statistical correlation 

among indicators, which could be taken into account by an appropriate design of the Monte 

Carlo  simulations is not considered.  As zetaav is just an average of the outcome of the MC-

calculation, a term zetaav(x,y) is the probability after all Monte Carlo-simulations that  

xn < yn.  Therefore there is a direct correspondence as follows (eq. 14) 

 

zetaav(xn < yn) = Prob(xn < yn)         (14) 

 

Note, that we are stepping back to zetaav and consider zetath (where the needed 

transformations are included which are required by the fuzzy transitivity) later in sect. 2.6 

 

2.5.2 Formula for povj 

We introduce now estimations of the probabilities, discussed in the former two sections. 

Hereto we define 

 

δj: = max(xj,yj) - min(xj,yj) +n*(xj+yj)) if ovxj=ovyj=nonempty    (15) 

 

and 

 

δj: = 0 if ovxj = ovyj is empty.         (16) 

Lxj: = xuj - xlj  = (1+n)*xj - (1-n)*xj = xj +n*xj - xj+n*x j = 2*n*xj    (17a) 

Lyj: = yuj - ylj =(1+n)*yj - (1-n)*yj = yj + n*yj - yj + n*yj =  2*n*yj    (17b) 

 

Then the probability Prob(xnj ,ynj in ov) which is according to eq.(13) the central quantity can 

be estimated as follows 

 

ovxj = δj/Lxj           (18a) 

ovyj = δj/Lyj           (18b) 

 

and the final leading term is just 

 

Prob(xnj ∈ ovxj and ynj ∈ ovyj) =povj =  (δj)
2/(4*n2*xj*yj)     (19) 
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In order to get a compact description, especially for programming, it seems useful to 

introduce the H-tuple: Without loss of generalization of the estimation of Prob(xn < yn), we 

define 
 



 <

=
else

yjxjif
:H j 0

1
         

 

Then it is obtained: 
 

∏
=

⋅+−⋅=<
m

j
jjj ]pov.)pov(H[)ynxnProb(

1

501      (20) 

 

2.5.3 Scaling invariance of xj , yj 

The model for noise assumes that noise-values are taken as relative values with respect to xj 

and yj, respectively. Thus, it is necessary to show that the model is not depending on a scaling 

of xj and yj, respectively. Indeed, all expressions containing xj and yj are homogeneous with 

respect to xj and yj and any scaling factor would cancel out. For example assuming xj < yj and 

a scaling factor λ 

 

δj = xj - yj + n*(xj + yj)  � δj(λ) = λ*xj - λ*yj + n*λ*(xj + yj) = λ*δj 

 

Together with eq. 19 we obtain (writing for the sake of clarity not the abbreviating terms) 

 

Prob(xnj ,ynj in ov(λ) ) = (δj(λ))2/(4*n2*(λ*xj)*(λ*yj)) = λ2*δj
2/(4*λ2*n2*xj*yj) = 

 δj2/(4*n2*xj*yj) =  Prob(xnj ,ynj in ov)  

 

2.6 Role of crucial noise-values 

2.6.1 Case 1: x < y 

In section 2.4 the assumption was made that there must be an overlap so that noise can 

actually influence the poset. Hence, the question is, as to how far an overlap is possible. This 

can be easily calculated following Fig. 1 when a uniform distribution is assumed by 

examining the condition  

 

xuj = ylj for xj < yj in the frozen data set       (21a) 
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yuj = xlj for yj < xj in the frozen data set       (21b) 

 

The crucial noise, where the eq. 21a and eq. 21b is fulfilled, is calculated by eq. 22 

 

ncj = (max(xj,yj) - min(xj,yj)/(xj + yj)        (22) 

 

If noise, n, is less min{nc1, nc2,…,ncm} (abbreviated as min ncj, similarly we abbreviate 

max{nc1,nc2,…,ncm} by max ncj) then the ovxj, ovyj-contributions are 0 hence  

Prob(xnj ∈ ovxj and ynj ∈ ovyj)  = povj = 0 and Prob(xnj < ynj) = 1. 

 

Summarizing: 

 





∈>≤
∈<

=<<
}m,...,{jncminnif

}m,...,{jncminnif
)yx|ynxnProb(

j

j

11

11
     (23) 

 

2.6.2 Case 2: x ǁ y 

If x ǁ y, eq. 10 still applies. However, now the orientation on the single couples ( xj , yj)  is 

important.  

 

Let us examine Prob(xn < yn). Then Table 2 about possible cases is most useful. Note, we 

introduced J1 and J2 as index sets (cf. eq’s. (11a, 11b)). 

 

Table 2. Prob(xn < yn| x ǁ y)) is to be determined. 0m:= (0*0*..,0) m factors, 1m = 1*1*…*1 m factors, εm: 

ε*ε*…* ε  m factors, where ε is a value > 0. An expression ε1*0m2-1 means: Evaluating J2 (eq. 11b) one 
factor in the product in eq. 13 is unequal zero, the remaining m2-1 factors are still 0. Note the 
convention used for min ncj and max ncj respectively. 

 n < min ncj  
j∈J1 

min ncj<n<max ncj 
j ∈J1 

n > max ncj 
j ∈ J1 

n< min ncj 
j ∈ J2 

1m1*0m2 εm1*0m2 εm1*0m2 

min ncj < n < max 
ncj 

j ∈ J2 

1m1*ε1*0m2-

1 
εm1*ε1*0m2-1 εm1*ε1*0m2-1 

n > max ncj 
j ∈ J2 

1m1*εm2 εm1*εm2 εm1*εm2 
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The resulting values are shown in Table 3. Note: ε In different cells of Table 2 does not 

necessarily mean that the values are all equal.  
 

Table 3. Evaluation of Table 2. 

 n < min ncj 
j∈J1 

min ncj<n<max ncj 
j ∈J1 

n > max ncj 
j ∈ J1 

n< min ncj 
j ∈ J2 

0 0 0 

min ncj < n < max ncj 
j ∈ J2 

0 0 0 

n > max ncj 
j ∈ J2 ε ε ε 

  

The main result is that under the conditions assumed for Table 2, the max ncj j ∈ J2 is of 

crucial importance. 
 

Prob(xn < yn|x ǁ y)  ≠ 0 only if  n > max ncj of those j, where within the frozen data set xj > 

yj). I.e. for j ∈ J2.           (24).  
 

2.6.3 Summarizing 

Initially it must be decided which probability is to be termined, i.e.,   

 

Prob(xn < yn) or Prob(xn > yn) or Prob(xn ǁ yn) (within HDT “tertium non datur” is not 

valid!). Here Prob (xn < yn) is chosen. 

 

Whether x ⊥ y or x ǁ y the partitioning of {1,…,m} into J1 and J2 becomes an important point 

and the second decision has to be made (to determine, if necessary J1 and J2) 

 

a) x < y: Then  J1∪ J2 = {1,2,…,m} is relevant as min ncj, j ∈ {1,…,m} determines 

when the probability Prob(xn < yn) becomes less 1 

b) x ǁ y: Now set J2 is relevant, and max ncj, j ∈ J2 determines when Prob(xn < yn) 

becomes larger 0. 

 

Therefore it is of main interest within an evaluation of objects to determine the noise level 

where the noise begins influencing the poset. Eq.s (23 and 24) provide the necessary 

information. The quantities min ncj, j ∈ J1, max ncj j∈ J1, and similarly min ncj, j ∈ J2, max 
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ncj j∈ J2 can take independent from each other different values for J1 and for J2. When 

Prob(xn < yn) is of interest and the frozen data set implies x ǁ y, ,the transition from Prob(xn 

< yn) = 0 to Prob(xn < yn) ≠ 0 depends solely on the actual numerical value of max ncj j ∈ J2.  

 

2.7 Extensions to more than two objects 

The derivation of the zetaav-matrix is based on the pairwise comparison of any single couple 

(x,y), x,y ∈ X. Hence, the entries of this matrix “do not know” anything of a transitivity. The 

transitivity axiom is nevertheless fulfilled, which arises from the fact that the single indicators 

themselves guarantee the transitivity. The transitivity comes only into play, when finally a 

Hasse diagram is to be constructed on the basis of the cover relations. Therefore in discussing 

zetaav we are freed from the additional constraint of the (fuzzy) transitivity. This additional 

aspect is the task of the approximation, leading to zetath and finally to zetacrisp, which is the 

basis to get cover relations and from them the Hasse diagram (see [4]).  
 

The sections above have shown that the matrix zetaav is influenced by noise in two processes 

a) Existing x<y-relations with zetaav(x,y) = 1 (frozen data set) may transform to zetaav-

values <1 and 

b) x ǁ y relations with zetaav(x,y) = 0 and zetaav(y,x) = 0  (frozen data set) may 

transform to zetaav values sligjhtly larger than 0.  

c) According to the nc-values (their minimal value with respect to J1 and maximal values 

with respect to J2) the series of processes a) and of processes b) start at different noise 

levels.  

Hence retaining the Hasse diagram (of the frozen data set) if noise is active, is possible, when 

the  

α-cut > max(Prob(xn < yn| x||y)) and α-cut  < min(Prob(x’n<y’n | x’<y’) with  

max(Prob(xn < yn| x||y)) < min(Prob(x’n<y’n | x’<y’).  
 

We summarize this finding as follows: 

Let noise have a value > max(min ncj j ∈J1, max ncj  j∈J2) and  

let be x,y, x’,y’ be objects where at least either x’ ≠ x or y’ ≠ y,  

let furthermore be max(Prob(xn < yn| x||y))  <  min(Prob(x’n<y’n | x’<y’)                         

then the poset obtained from the frozen set equals the poset obtained from the noisy poset, if  

α-cut ∈  (max(Prob(xn < yn| x||y)) , min(Prob(x’n<y’n | x’<y’)) 
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3. Examples 

3.1 Toy examples 

3.1.1 Case 1, frozen data set: x < y 

To demonstrate the theoretical part it is useful to look first to constructed examples, by which 

the crucial effects in noise can be better seen. Therefore we introduce a data matrix describing 

x < y (Table 4). 

Table 4. Toy example for case 1: x < y 

 q1 q2 q3 q4 
x 0.1 0.2 0.3 0.4 
y 0.9 0.7 0.6 0.5 
nc 0.8 0.555 0.333 0.111 

All four indicators are considered and the last row of Table 4 shows the values of nc.  For the 

case  x < y only min ncj = 0.1111  is important according to eq. 23. Hence, long as noise is 

below this level, xn < yn, and consequently Prob(xn < yn) = 1. Only if noise exceeds 0.1111 

the probability. Hence, Prob(xn4 < yn4) will be reduced and zetaav(x, y) would result in 

values less 1. (Fig. 2): 

 

 
Figure 2. Prob(xn < yn) as function of noise. If n exceeds 0.1111 then the overlap zone ovx4 = ovy4 is no more 

empty and the reduction of the probability xn < yn starts. 

 

If the MIS shown in Table 4, is now considered, however, only including the first three 

indicators are considered. It this case min ncj = 0.3333. The resulting probability distribution 

for xn < yn is displayed in Fig. 3. 
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Figure 3. Prob(xn<yn) as function of noise. If n reaches 0.333 then the overlap zone is not empty. A reduction of 

the probability for xn < yn  for n > 0.333 appears. 

 

Fig.s 2 and 3 demonstrate the important role of the crucial noise nc, to detect the noise level, 

where the partial order becomes affected by noise. However to calculate Prob(xn < yn) = f(n) 

the equations (13) and (23) resp., are to be evaluated. The knowledge of f(n) is important,  

when noise exceeds min ncj , j ∈ J1. 

 

3.1.2 Case 2, frozen data set: x ǁ y 

In Table 5 the same values are used as in Table 4, however their assignment to x and y is 

changed. 

Table 5. Toy example for case 2: x ǁ y 

 q1 q2 q3 q4 
x 0.9 0.7 0.3 0.4 
y 0.1 0.2 0.6 0.5 
nc 0.8 0.555 0.333 0.111 

orientation x >1 y x >2 y x <3 y x <4 y 
 

As can be seen, the nc values are invariant with respect to exchange of xj and yj, following eq. 

22.   

 

The evaluation of data of Table5 is here based on the assumption that  

a) Prob(xn < yn) is of interest, and  

b) determination of J2. Here J2 = {1, 2} (note: J2 is an index set).  

c) to identify the largest ncj value. Here the largest nc-value for j ∈ J2  is that for q1, 

therefore the probability of xn < yn, is 0 as long as noise (n) is less 0.8 (Fig. 4) 
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Figure 4. Prob(xn < yn) as a function of noise. The actual max ncj value equals 0.8. The values of the 

probabilities Prob(xn < yn), Prob(xn > yn) and Prob(xnǁyn) add to 1, the major contribution arises from 
Prob(xn ǁ yn) 

 

Analoguously to the above we turn to a MIS including only q2, q3 and q4 leads to the 

probability plot as shown in Table 5, the resulting probability distribution for xn < yn is 

shown in Fig. 5 

 
Figure 5. Prob(xn < yn) as a function of noise. Now values > 0 only after max ncj = 0.5555, which is now the 

relevant crucial noise. 

 

The set of the last four Fig’s demonstrate that there are crucial noise values which determine 

• whether or not an existing order relation x < y is affected and hence can be set to zero 

by a suitable defuzzification interval, namely min ncj with j ∈ {q1,q2,q3,q4} 

• whether or not a new order relation can be obtained from an object pair for which the 

original data set implies x ǁ y, namely max ncj, with j ∈ J2   

• thus, if noise is less min ncj then the original Hasse diagram (i.e. the Hasse diagram 

based on a data matrix considered as non-noisy) will be retained.  

thus, if noise is less max ncj) , j ∈ J2, then for no couple (x,y) with (x ǁ y ) due to the 

original data set the  incomparability can be replaced  by a comparability (with a low 

probability ≠ 0 ) due to noise effects. 
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In Fig. 6 both Prob(xn < yn) and Prob(xn > yn) for the situation as described above in Table 

5, i.e., the MIS from Table 4 excluding q4, are shown: 

 
Figure 6. Upper curve: Prob(yn < xn), lower curve: Prob(xn < yn). Beside the slightly differing slopes, the effect 

of nc and of J2 is demonstrated. Note (once again) that Prob(xn< yn) + Prob(xn > yn) + Prob(xn ǁ yn) = 
1 

Taking Prob(y < x) as example: Now J2 is that set, where yj > xj: This is only for q3 and q4, 

where the maximal value is nc3 = 0.333.  

3.2 Application of the concepts onto the real data matrix (sec. 2.1) 

When the data are taken as given in Table 1 then an important question is, at which level of 

noise the Hasse diagram based on the data of Table1 (frozen data set) will be retained. In 

order to find an answer for this question it is only necessary to check the nc-values for each 

pair of chemicals. 

In Fig. 7 the Hasse diagram of the frozen data set (Table 1) is shown.  It is seen that there are 

three minimal elements: DDD, MEC and DIE, whereas there are two maximal elements, 

namely ALD and CHL. To check for stability of the partial order, visualized by the Hasse 

diagram, shown in Fig. 8 the list of nc-values is to be examined, due to eq. 22 (Table 6).  

 
Figure 7. Hasse diagram based on data of Table 1 (PyHasse software) 
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Table 6. List of nc-values, available by MCbasedHD8_2.py    (nc-values, chemicals, the property (indicator) and 
the last two columns the type of relation (0  0_ x ǁ y, , 0  1: x < y, 1  0: x > y, x being the first, y the 
second object) 

nc object1 object2 prop zeta-values 
1.0 DDD MEC Pers 0 0 

0.334 DDD MEC BioA 0 0 
0.257 DDD MEC Tox 0 0 
1.0 DDD ALD Pers 1 0 

0.113 DDD ALD BioA 1 0 
0.571 DDD ALD Tox 1 0 
1.0 DDD DIE Pers 0 0 

0.279 DDD DIE BioA 0 0 
0.613 DDD DIE Tox 0 0 
1.0 DDD HCL Pers 0 0 

0.172 DDD HCL BioA 0 0 
0.244 DDD HCL Tox 0 0 
1.0 DDD CHL Pers 1 0 
0.05 DDD CHL BioA 1 0 
0.107 DDD CHL Tox 1 0 
1.0 DDD HCB Pers 0 0 

0.084 DDD HCB BioA 0 0 
0.045 DDD HCB Tox 0 0 
0.814 MEC ALD Pers 1 0 
0.431 MEC ALD BioA 1 0 
0.723 MEC ALD Tox 1 0 
0.831 MEC DIE Pers 0 0 
0.061 MEC DIE BioA 0 0 
0.423 MEC DIE Tox 0 0 
0.881 MEC HCL Pers 1 0 
0.172 MEC HCL BioA 1 0 
0.015 MEC HCL Tox 1 0 
0.947 MEC CHL Pers 1 0 
0.378 MEC CHL BioA 1 0 
0.355 MEC CHL Tox 1 0 
0.357 MEC HCB Pers 1 0 
0.257 MEC HCB BioA 1 0 
0.299 MEC HCB Tox 1 0 
0.052 ALD DIE Pers 0 0 
0.38 ALD DIE BioA 0 0 
0.877 ALD DIE Tox 0 0 
0.237 ALD HCL Pers 0 0 
0.279 ALD HCL BioA 0 0 
0.715 ALD HCL Tox 0 0 
0.582 ALD CHL Pers 0 0 
0.063 ALD CHL BioA 0 0 
0.495 ALD CHL Tox 0 0 
0.645 ALD HCB Pers 0 1 
0.195 ALD HCB BioA 0 1 
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0.541 ALD HCB Tox 0 1 
0.187 DIE HCL Pers 1 0 
0.112 DIE HCL BioA 1 0 
0.434 DIE HCL Tox 1 0 
0.547 DIE CHL Pers 1 0 
0.325 DIE CHL BioA 1 0 
0.676 DIE CHL Tox 1 0 
0.674 DIE HCB Pers 0 0 
0.2 DIE HCB BioA 0 0 
0.64 DIE HCB Tox 0 0 
0.401 HCL CHL Pers 1 0 
0.22 HCL CHL BioA 1 0 
0.342 HCL CHL Tox 1 0 
0.765 HCL HCB Pers 0 0 
0.089 HCL HCB BioA 0 0 
0.285 HCL HCB Tox 0 0 
0.892 CHL HCB Pers 0 1 
0.134 CHL HCB BioA 0 1 
0.063 CHL HCB Tox 0 1 

 

As can be seen, the least value of nc equals 0.015 for MEC <Tox   HCL. While n < 0.015 

(1.5%)  the Hasse diagram  shown in Fig. 7 describes correctly the order relations. A new 

comparability, albeit with a low probability  could appear for the chemicals DDD and HCB, 

when noise exceeds the corresponding nc-value of 0.045.  

 

In Table 7 the results of an application of the MCbasedHD8_2 module is shown. 

 

Table 7. zetaav-values n < 0.015 

 DDD MEC ALD DIE HCL CHL HCB 
DDD 1.0 0.0 1.0 0.0 0.0 1.0 0.0 
MEC 0.0 1.0 1.0 0.0 1.0 1.0 1.0 
ALD 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
DIE 0.0 0.0 0.0 1.0 1.0 1.0 0.0 
HCL 0.0 0.0 0.0 0.0 1.0 1.0 0.0 
CHL 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
HCB 0.0 0.0 1.0 0.0 0.0 1.0 1.0 

 

The zetaav-value (MEC<HCL) = 1, indicating that there is no change in the order relations. It 

should further be noted that no entry of the zetaav-matrix deviates from 0 or 1. 

 

Increasing the noise, n  to 0.02 (2 %) a change in the zetaav-values are disclose (Table 8). 
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Table 8. zetaav (n =  0.02) 

 DDD MEC ALD DIE HCL CHL HCB 
DDD 1.0 0.0 1.0 0.0 0.0 1.0 0.0 
MEC 0.0 1.0 1.0 0.0 0.965 1.0 1.0 
ALD 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
DIE 0.0 0.0 0.0 1.0 1.0 1.0 0.0 
HCL 0.0 0.0 0.0 0.0 1.0 1.0 0.0 
CHL 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
HCB 0.0 0.0 1.0 0.0 0.0 1.0 1.0 

 

The only change is for the entry zetaav(MEC < HCL) (see second row of Table 8) and as one 

can expect following the section 2, the value of zetaav(MEC<HCL) is almost 1. An α-cut 

must be selected rather high > 0.965 in order to obtain by defuzzification a MECǁHCL-

relation. 

 

Now  applying a noise of 10% Table 6 shows all ncj -Values. It is immediately noted that 

many couples of chemicals whose ncj-value < 0.1, are present (Table 9). 

 

Table 9. Chemical couples where ncj are < 0.1 

Chemical 1 Chemical 2 indicator relation ncj 
DDD CHL BioA < 0.05 
DDD HCB BioA ǁ 0.084 
DDD HCB Tox ǁ 0.045 
MEC DIE BioA ǁ 0.061 
MEC HCL Tox < 0.015 
ALD DIE Pers ǁ 0.052 
ALD CHL BioA ǁ 0.063 
HCL HCB BioA ǁ 0.089 
HCB CHL Tox < 0.063 

 

As can be seen with noise = 10% some x < y relations become reduced and some x ǁ y 

relations get values ≠ 0 , as can be verified  by inspecting the zetaav-values. Correspondingly 

the α-values allow a variety of possible α-cuts (Table 10). 

 

Table 10. α-values at noise = 10% for all three indicators 

0.0   0.013   0.113   0.637   0.876   0.927   1.0 

 

When the couples of chemicals within Table 9 are incomparable, then their values for 

Prob(xn<yn) is small and may represented due to rounding effects by 0. The zetaav-values are 
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mostly affected by couples of chemicals, which are comparable, i.e. (DDD,CHL), 

(MEC,HCL) ad (HCB, CHL). In Table 11 the corresponding entries are underlined. : 

 

Table 11. zetaav,  (noise = 10%) 

 DDD MEC ALD DIE HCL CHL HCB 
DDD 1.0 0.0 1.0 0.0 0.0 0.8756 0.0126 
MEC 0.0 1.0 1.0 0.0 0.6366 1.0 1.0 
ALD 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
DIE 0.0 0.0 0.1133 1.0 1.0 1.0 0.0 
HCL 0.0 0.0 0.0 0.0 1.0 1.0 0.0 
CHL 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
HCB 0.0 0.0 1.0 0.0 0.0 0.9267 1.0 

 

For example zetaav(DDD<HCB) has now a value unequal zero but very small. Indeed if we 

want to check Prob(DDDn < HCBn) then those ncj are relevant, where j is taken from J2: (eq. 

22). J2 ={ 2 } within the MIS, i.e. indicator BioA, hence this value is decisive for getting  

Prob(DDDn < HCBn).  

 

Table 12. The special case DDD || HCB , determination of Prob(DDDn < HCBn) 

 

 

  

 

 

Selecting now an α-cut in the interval (0.113, 0.637) for example α-cut = 0.5 will still retain 

DDD||HCB, DIE||ALD. However no new comparisons appear, because all the slightly 

reduced values of zetaav  will not affected by the defuzzification. DDD<CHL, MEC<HCL, 

HCB<CHL  Even if  α-cut = 0.9 would be selected then DDD||CHL, MEC||HCL, but HCB < 

CHL (Fig.9). The only affected relations are MEC<HCL  and DDD<CHL whose zetath-

values are less 0.9. (Fig. 9) 

 

DDD Pers BioA Tox 
DDD 0 0.679 0.171 
HCB 0.057 0.574 0.187 

nc 1 0.084 0.045 
J1 1  3 
J2  1  
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Figure 9.  Hasse diagram based on data of Table 1, affected by noise (n = 0.1) 

 

The finding up to now shows that those nc-values become important where potentially x ⊥ y 

is affected. By sufficient (i.e. > min ncj) large noise, zetaav-values will be reduced and hence 

may be crucial for the defuzzification, Therefore it is useful to calculate a) a Table with all 

minimal nc-values describing existing <-relations and b) with those nc-values which are less a 

certain limiting value, which is here arbitrarily selected to be 0.1 (Table 13). 

The module MCbasedHD8_2 of the PyHasse software (Carlsen, Bruggemann, 2015) fulfills 

this task. 

 

Table 13. A: Minimal nc-values of all chemicals for which an <-relation can be established due to data in Table 
1. B: Only those chemicals and min nc-values, which are less a limiting value (here arbitrarily selected 
to be 0.1) 

  A: 

 

 

 

   

 

 

B: 

 

 

Object1 Object2 min value of nc 
DDD ALD 0.113 
DDD CHL 0.05 
MEC ALD 0.431 
MEC HCL 0.015 
MEC CHL 0.355 
MEC HCB 0.257 
DIE HCL 0.112 

Object1 Object2 min value of nc 
DDD CHL 0.05 
MEC HCL 0.015 

-507-



 

There will be a probability Prob(DDDn < CHLn) which is slightly smaller than 1, at noise of 

less 0.1. Hence forming DDDn || CHLn has a pretty low probability. Similarly for the other 

pair of chemicals. 

 

When a data driven poset is affected by noise up to a level of 10% then (in the framework of 

our noise model) only two couples of chemicals need a careful inspection. According to the 

general line of argumentation, for these two pairs a “reaction” can be written as follows 

 

CHL||DDDCHLDDD yprobabilitlow  →<   

HCL||MECHCLMEC yprobabilitlow  →<  

 

4. Discussion 

4.1 zetaav versus zetath 

The probability calculus was applied to estimate the zetaav-values, whereas the leading 

quantity to draw the Hasse diagram is zetacrisp which is derived from zetath. Nevertheless 

zetaav can be play its crucial role in the discussion, because zetath is zetaav, modified due due 

to fuzzy-transitivity, but in general zetath-values do not much differ from the zetaav-values. 

Furthermore we concentrate in the discussion of zetaav on a single object pair, in order not to 

check for the consequences the transitivity axiom would imply. 

 

4.2 What is the win 

Based on eq.’s 10, 13 the concept of crucial noise was established and can be calculated 

according to eq. 22. The main win is therefore the possibility of an a priori estimation as to 

how far a partially ordered set as that of the matrix, shown in sec. 2.1 can be obtained which 

is not affected by noise.  

 

The decisive information is won by examination of the minimal value of the nc-tuple for each 

object pair and each  indicator. If noise is exceeding this minimal value, then either existing 

order relations become available by an appropriate selection of the α-cut, or new comparisons 

can be possible. This latter effect is however most often irrelevant, because in general the 

zetaav-values of new comparisons are very low. As generating x ⊥ y from x || y by noise 

needs that noise must exceed those ncj values, where j is taken from J2.  
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However, when the knowledge according to noise shows that noise exceeds the  nc-values 

then the probabilities according to eq.’s 10, 13 can be calculated and graphs like those in 

Fig’s. 2-5 may be helpful to decide which α-cut value could be appropriate.  

 

4.3 What next 

There are several assumptions, which must be step by step resolved and clarified. 

• The nature of noise must be critically examined and other noise models must be 

checked. 

• Note, a problem is the normalization to [0,1], either the sampling must be controlled, 

or a renormalization has to be done after each random selection. To keep the analysis 

simple, however, we do not take into regard the problems at the limits of the interval. 

• The uniform distribution may be too simple for most applications; here a more general 

procedure must be derived, which is independent on the distribution model. It is clear 

that the relevant part of two distributions (one for the first and one for the second 

object) is the zone of their overlapping. So, if for example a normal distribution is 

considered and the upper tail of the one object and the lower tail of the other object 

have an area which is significantly greater zero then there is an overlap, and equations 

where ovx and ovy appear should work. 

• The way how Monte Carlo simulations are performed, as exposed in [4], must be 

critically examined: Correlations among indicators must be adequately considered in 

the design of Monte Carlo simulations, as well as it would be a good idea to estimate 

the lower and upper limit s of the number of Monte-Carlo runs to obtain reliable data. 

• Furthermore, there are some papers which enlighten the problem of noise from a 

combinatorial approach [1].  Can these methods be integrated to derive additional 

criteria?  

• Although equality xnj = ynj under noise seems to be not a relevant fact, it should be 

possible to include this special case into the general scheme, developed in this paper.  

 

4.4 Other concepts 

Noisy posets are of interest over many years. Some programs in the framework of PyHasse 

[5] allow an analysis of some aspects of noisy data sets. For example the module 

prob_min_max performs a Monte-Carlo simulation based on intervals the user can define, It 

is studied as to how far extremal elements remain extremal and as to how far non extremal 

elements can be considered as extremal ones. A balance is done with following aspects: 
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Probability of being a maximal, a minimal, an isolated element or none of them. This program 

is based on Monte Carlo simulations as MCbasedHD8_2 and needs a specification by the user 

which entries of the data matrix are considered as uncertain. An application concerning 

removal of Uranium will be published in the near future [13]. 
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