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Abstract. In this paper, we propose the graph energy of 20 amino acids and
the 2D graphical representation of protein sequences based on six physicochemical
properties of 20 amino acids and the relationship between them. Moreover, we
could get a specific vector from the graphical curve of a protein sequence, and
use this vector to calculate the distance between two sequences. This approach
avoids considering the differences in length of protein sequences. Finally, we research
the similarities/dissimilarities of ND5 and 36PDs using our method and get better
results compared with ClustalX2.

1 Introduction

As the number of biological sequences increases fast in the public databases because

of the rapid development of sequencing techniques, how to infer the potential information

of a large number of sequences effectively and accurately becomes a critical challenge in

biological information. Therefore, many valid methods in information extraction from

DNA, RNA or protein sequences are proposed [1-6]. We all know that proteins, encoded

by DNA, determine the material basis of an organism’s anatomy and physiology. Thus,

detecting the similarity of proteins is definitely important [7-9], especially considering the

structure and function of proteins.

Models of protein analysis can be divided into two classes: sequence alignment [10-12]

and alignment-free sequence comparison. The former applies a score function to represent

deletion, insertion and substitution among amino acids in protein sequences comparison.
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But there are some limitations in sequence alignment fixing on computation complexity

and the fact that some sequences lack significant conserved domains. On the other hand,

alignment-free methods like graphical representation of sequences are able to overcome

these limitations [13-17]. The graphical representation of protein sequences, develop-

ing from graphical representation for DNA, is usually implemented by letter sequence

representation (LSR). As protein sequence is composed of 20 amino acids, the graphic

representation of protein sequences is certainly more complicated than that of DNA or

RNA [18-20].

Wu et al. [9] proposed a graphical representation of protein sequences on the basis of

codons encoding the amino acids and calculated the graph energy and Laplacian energy of

20 amino acids respectively. Graph energy was well applied with the unique 2-D graphical

representation in this paper and the result is good comparing with ClustalW.

Instead of utilizing codons, we proposed a novel graphical representation for protein

on the basis of 6 typical physicochemical properties of amino acids and obtained the graph

energy of 20 amino acids via the relationship between amino acids, which is more visual

and reasonable. Considering the difficulty in dealing with sequences with different lengths,

the advantage of our method is obvious. Without using complicated slipping window in

reference [9], we handle this problem by moment vector, which is easy and well used in

2-D graphic representation.

The main strong points of our method are as follows:

1. In our method, 6 typical properties [21-24] are considered to construct representative

graph for every amino acid. The physicochemical properties of amino acids are more

important than other factors in determining the rate and pattern of protein evolution

[25]. Therefore, these properties have a direct and significant impact on estimation

of distance between two polypeptide sequences [26].

2. The curve of a protein sequence is obtained from the application of the Gutman’s

graph energy [27, 35-38]. The energy of graph is meaningful for analysis of graphs,

and it is fit for our unique construction of graphs for 20 amino acids.

3. The moment vector of a protein sequence was successfully applied in a few researches

[28], and these authors have demonstrated that the correspondence between a pro-

tein sequence and its moment vector is one-to-one.
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4. Our novel graphical representation, which could deal with sequences with different

lengths without difficult calculations, has no circuit or degeneracy.

The article is structured as follows: In Sections 2, we describe the construction of

novel curves for protein sequences. The construction of phylogenetic trees of several

typical protein data and comparison between our results and others’ results are described

in section 3.

2 Materials and methods

2.1 Graphic representation of protein sequences

2.1.1 The energy of graph

Let G = [V,E] be a finite and undirected graph, with vertex set V = v1, v2, ..., vn

and edge set E = e1, e2, ..., em. The adjacency matrix A = (aij) of G is a square matrix

of order n, and aij is defined as:

aij =

{
1, if (vi, vj) ∈ E

0, if (vi, vj) /∈ E
(1)

In our paper, we weight the (0,1) matrix with the relationship between amino acids.

The eigenvalues of this weighted adjacency matrix are λ1, λ2, ..., λn. The graph energy

E(G) is defined as:

E(G) =
n∑

i=1

|λi| (2)

2.1.2 Physicochemical properties and graph energies of amino acids

Since the protein sequence is composed of 20 amino acids by different physicochem-

ical properties, each amino acid has the specific properties. Therefore, recognizing the

properties of every amino acid is very essential to classify proteins and study its structures

and functions. The physicochemical properties of amino acids are found to have strong

effects on the pattern of protein evolution [25]. Here, we consider six typical physic-

ochemical properties: relative molecular weight, volume, surface area, specific volume,

pKa (-COOH) and pKa (-NH+
3 ) (six physicochemical properties of 20 amino acids are

shown in Supplementary materials Table 1).

For each amino acid, we know the numerical characteristic of its physicochemical
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properties. To describe the relationship between two amino acids, we define a threshold

Tk for each property:

Tk =
t
(k)
max − t(k)min

19
k = 1, 2, ..., 6 (3)

Where t
(k)
max and t

(k)
min indicate maximal value and minimum value of the kth property

respectively for 20 amino acids. That is to say, T1 is used for relative molecular weight,

T2 for volume, T3 for surface area, T4 for specific volume, T5 for pKa (-COOH) and

T6 for pKa (-NH+
3 ). Considering the kth property, if the absolute value of difference

between amino acid i and amino acid j is less than Tk, we admit the two amino acids

are relational. It is in accord with the fact that if amino acid i has relationship(s) with

j, then amimo acid j also has relationship(s) with i. The relationship(s) is always sym-

metric. For example, in relative molecular weight (the numerical values of A, R, N, D,

C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V are 71.08, 156.2, 114.11, 115.09, 103.13,

128.14, 129.12, 57.06, 137.15, 113.17, 113.17, 128.18, 131.21, 147.18, 97.12, 89.08, 101.11,

186.2, 163.18 and 99.14, respectively), t
(1)
max is 186.20 and t

(2)
min is 57.06, so the threshold

T1 = (186.20− 57.06)/19 = 6.80. And then we take amino acid A and W as examples.

The relative molecular weight of amino acids A is 71.08 and absolute difference be-

tween A and other amino acids is |A−R| = 85.12, |A−N | = 43.03, |A−D| = 44.01, |A−

C| = 32.05, |A−Q| = 57.06, |A−E| = 58.04, |A−G| = 14.02, |A−H| = 66.07, |A− I| =

42.09, |A − L| = 42.09, |A − K| = 57.1, |A − M | = 60.04, |A − F | = 76.1, |A − P | =

26.04, |A− S| = 18, |A− T | = 30.03, |A−W | = 115.12, |A− Y | = 92.1, |A− V | = 68.92.

Therefore, based on relative molecular weight, amino acid A has no relationship with other

amino acids since all absolute differences mentioned above are more than T1 (=6.8). Sim-

ilarly, we can obtain following results:

Based on volume, A has relationship with S, no relationship with other 18 amino

acids;

Based on surface area, A has relationship with S, no relationship with other 18 amino

acids;

Based on specific volume, A has relationship with M, P and W, no relationship with

other 16 amino acids;

Based on pKa (-COOH), A has relationship with G and W, no relationship with

other 17 amino acids;

Based on pKa (-NH+
3 ), A has relationship with D, G and I, no relationship with
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other 16 amino acids.

To sum up, A has 1 relationship with D, I, M and P respectively and has 2 relaiton-

ships with G, S and W respectively.

Assuming that 20 amino acids are corresponding to 20 different points in a graph Gi,

after considering 6 physicochemical properties, we can get a unique graph for amino acid

i. And the rules for drawing the 20-vertex graph for amino acid A is as follows:

rule 1

There will be m edge(s) between A and amino acid X in the 20-vertex graph if A has m

relationship(s) with X.

rule 2

Assuming that both Y and Z have relationship(s) with A, there should be n edge(s)

between Y and Z if Y has n relationships(s) with Z. On the other hand, if amino acid

Y has relationship(s) with A, Z has relationship(s) with Y, but not with A, then the

relationship(s) between Y and Z is ignored.

Now we have known that A has 1 relationship with D, I, M and P, respectively; has

2 relationships with G, S and W, respectively. By rule 1, we get a graph for A in Figure

1; adding the rule 2, we get the final 20-vertex graph for amino acid A in Figure 2. In

Figure 2, we can find W has 2 relationships with M (both have relation with A), W has

1 relationship with G, and so on. Similarly, we can obtain the 20-vertex graph for W in

Figure 3, which shows that W has 1 relationship with G, E and H, respectively and has

2 relationships with M and A, respectively.

Then we can get a weighted adjacency matrix of the amino acid A, which corresponds

to the multigraph induced by the vertex A and its first neighbors. According to that, we

obtain 20 different weighted adjacency matrices of 20 amino acids (which are shown in

Supplementary Materials) and calculate the eigenvalues of weighted adjacency matrix for

every amino acid. Finally, their graph energies are computed using Eq.(2). The graph

energies of 20 amino acids are shown in Table 1.

Table 1: The graph energies of 20 amino acids
AA W M S R K H Y Q F N

E(G) 16.01 51.43 37.37 29.36 40.76 27.96 24.06 38.03 31.77 40.05
AA C E D P T I A L G V

E(G) 17.29 28.26 33.81 20.88 46.74 35.69 18.20 25.84 27.36 53.66
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Figure 1: The original graph for amino acid A.
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Figure 2: The final 20-vertex graph for amino acid A.
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Figure 3: the 20-vertex graph for amino acid W.
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2.1.3 The 2D graphical representation of protein sequences basing on graph
energy

Proteins consist of twenty kinds of natural amino acids. Since the earliest protein

sequences and structures were determined, it has been clear that the positioning and

properties of amino acids are key to understand many biological processes. In this paper,

the 2D graphical representation of protein sequences is constructed basing on graph energy

of each amino acid as follows:

Given a protein sequence with N amino acids S = s1, s2, ..., sN , we inspect it by

stepping one amino acid at a time. For the step i(i = 1, 2, ..., N), the point Pi(xi, yi) can

be defined as : {
xi = i
yi = E(si)

(4)

Where E(si) is the graph energy of amino acid si. So we get a graphical curve of the

protein sequence.

We take a short segment of a protein of yeast Saccharomyces cerevisiae as an example

to show the graphical representation of protein sequences. Our 2-D graphical represen-

tation of protein I is illustrated in Figure 4. In Figure 5, we illustrate the 2D graphical

representation of ND5 proteins for nine different species.

Protein I: WTFESRNDPAKDPVILWLNGGPGCSSLTGL

2.2 Moment vector

We could get a specific vector from the graphical curve of a protein sequence, which

is obtained by the method aforementioned, and use this vector to calculate the distance

between two sequences.

2.2.1 Introduction of the moment vector and its application

Given a curve of a protein sequence, we could represent this curve with a series of

points, which are actually the coordinates of amino acids, like (1, y1), (2, y2), ..., (n, yn).

Then we compute the moment vector by Eq.(5).

Mj =
n∑

i=1

(xi − yi)j

nj
j = 1, 2, ..., n (5)

Where n is the number of amino acids included in a protein sequence, and (xi, yi)

is the coordinates of ith amino acid of the sequence. Finally, we get a n-dimensional
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moment vector (M1,M2, ...,Mn) for each protein sequence and this vector is one-to-one

with its corresponding sequence [25].

2.2.2 Modification for dimension of moment vector

To avoid complicated computation and problem about different lengths of sequences,

a further research is carried out. We translate beta-globin sequences of human, go-

rilla, cod, cairina moschata, gallus and chelonoidis nigra (their versions in NCBI are

AAA16334.1, P02024.2, O13077.2, CAA33756.1, CAA23700.1 and P83123.3 respectively)

into 147-dimensional moment vectors and then calculate the Euclidean distances between

human and the other five species when the dimensions of moment vectors are changed.

The result is showed in Table 2.

It is clearly showed in Table 2 that the distances between beta-globin sequence of

Table 2: The Euclidean distances between human and the other five species
Gorilla Cod Cairina moschata Gallus Chelonoidis nigra

2-dim 0.1071 0.9543 0.5953 0.6027 0.4461
3-dim 0.1194 1.2088 0.6033 0.6176 0.591
4-dim 0.124 1.4275 0.6086 0.63 0.7166
5-dim 0.1256 1.5715 0.6143 0.6421 0.8217
10-dim 0.1264 1.8532 0.622 0.6584 1.0419
20-dim 0.1264 1.9119 0.6223 0.659 1.081
25-dim 0.1264 1.9135 0.6223 0.659 1.0815
30-dim 0.1264 1.9138 0.6223 0.659 1.0816
50-dim 0.1264 1.9138 0.6223 0.659 1.0816
100-dim 0.1264 1.9138 0.6223 0.659 1.0816
147-dim 0.1264 1.9138 0.6223 0.659 1.0816

human and the other five species are stable when the dimension increases to 30. At the

same time, we also research another two datasets (Cytochrome C sequences of 8 species

and ND5) to search the regularity by the same method. The results are shown in Table 2-3

in supplementary materials. From Table 2 in supplementary materials, we can find that

the distances of human and the other seven species are also stable when the dimension

increases to 30; although human is much far from fish, plant and bacterium in evolution,

the differences just appear in 0.0001 or 0.00001, which can be ignored. From Table 3 in

supplementary materials, we can find that the distances of human and the other eight

species are almost stable when the dimension grows to 30, but the differences appear in

0.1, which is not as perfect as short sequences. After constructing phylogenetic trees of
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ND5 using 30-dim moment vectors and 600-dim moment vectors, we discover that these

two trees are the same. In summary, 30-dim moment vectors are representative if protein

sequences are not too long, and we can find a relatively small number of dimensions for

long protein sequences (like thousands of or ten thousands of base pairs) via the same

method. Therefore, we extract 30-dimensional moment vectors of protein sequences to

replace n-dimensional moment vectors and then calculate distances between sequences to

construct phylogenetic trees.

3 The similarities/dissimilarities analysis

To test our novel method, we apply it to the real protein sequence data to analyze

the similarities or dissimilarities of different species. Next, we will compare the results of

our method with those of ClustalX2 [29-30].

3.1 Outline of the similarities/dissimilarities model

In order to construct a phylogenetic tree for different species, we translate protein

sequences into graphical curves and then extract their 30-dimension moment vectors.

Finally, we can construct the phylogenetic tree with these moment vectors by proper

distance formula and rules.

3.2 The similarities/dissimilarities of nine ND5 protein
sequences

The protein sequence similarity can be measured from distance between these multi-

dimensional vectors, such as Euclidean distance, Manhattan distance, City Block distance.

Here, we take Euclidean distance as the similarity measure between two vectors.

We research the similarity of the nine ND5 proteins using our method. Given two pro-

tein sequences P1 and P2, 30-dimensional moment vectors of them are V = (v1, v2, ..., v30)

and W = (w1, w2, ..., w30), and the distance between them is defined as:

d(P1, P2) =

√√√√ 30∑
i=1

(vi − wi)2 (6)

The smaller is the Euclidean distance d, the more similar are two protein sequences.

We calculate the Euclidean distance between two vectors of ND5 proteins from nine dif-

ferent species, as shown in Table 3, and then we can find some results as follows:
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1. The distance between Common chimpanzee and Pigmy chimpanzee is the smallest,

and it shows that proteins of them are very similar with each other, which is consistent

with the biology fact.

2. The values of d between Human, Gorilla, Common chimpanzee and Pigmy chim-

panzee are relatively small, which means that they are also similar, and these results are

consistent with the evolution relationship.

3. Considering the overall situation, Opossum is the farthest from other eight species,

which is accordant to the evolution theory.

ClustalX2 is one of the most popular multiple alignment of sequence programs for

DNA or proteins. In order to highlight the effectiveness of our approach, we construct the

phylogenetic tree using our approach shown in Figure 6. And we can see that the result

of our method is almost consistent with that of ClstalX2.

Table 3: The Euclidean distances matrix for nine ND5 proteins sequences
Human Gorilla C.chim P.chim Rat Mouse Opossum F.whale B.whale

Human 0 1.9533 0.5863 0.7773 3.708 1.9673 6.1867 2.21 2.3105
Gorilla 0 1.8602 2.17 3.1928 3.6482 7.898 1.7569 1.6112
C.chim 0 0.3501 3.956 2.2025 6.0645 2.4786 2.5092
P.chim 0 4.2143 2.1067 5.7371 2.7756 2.8044

Rat 0 3.9999 9.2647 1.6453 1.6353
Mouse 0 5.3188 3.1213 3.2736

Opossum 0 8.1876 8.2828
F.whale 0 0.3601
B.whale 0

0 1 2 3 4 5 6

Common chimpanzee

Pigmy chimpanzee 

Human

Gorilla 

Fin whale

Blue whale

Rat

Mouse

Opossum

Figure 6: Phylogenetic tree of the nine ND5 proteins constructed by our method.

3.3 The similarities/dissimilarities of 36 protein sequences

We have applied our method to analyzing a database of 36 proteins domains classified

into 5 different families (globin, alpha-beta, tim-barrel, all-alpha and all-beta).

-441-



Globin: 1eca, 5mbn, 1hlb, 1hlm, 1babA, 1babB, 1ithA, 1mba, 2hbg, 2lhb, 3sdhA,

1ash, 1flp, 1myt, 1lh2, 2vhbA, 2vhb.

Alpha-beta: 1aa9, 1gnp, 6q21A, 1ct9A, 1qraA, 5p21.

Tim-barrel: 6xia, 2mnr, 1chrA, 4enl.

Beta: 1cd8, 1ci5, 1qa9, 1cdb, 1neu, 1qfoA, 1hnf.

Alpha: 1cnp, 1jhg.

We use UPGMA and Eq.(6) to construct a phylogenetic tree via our novel method.

The result is shown in Figure 7.

Since 36 sequences have been classified into five families [31-33], it is easy to estimate
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Figure 7: Phylogenetic tree of the 36 proteins constructed by our method.

the result of applying our approach to this dataset. In Figure 7, we can see that only

1CT9A is misplaced. Additionally, family Alpha is not completely separated from Beta.

Although there are some shortages, our result is consistent with those references. We

also construct the phylogenetic tree of the dataset by ClustalX2 and the result is shown

in Figure 8. Compared with ClustalX2, our method is much better than this multiple-

alignment method for both short sequences and long sequences.
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Figure 8: Phylogenetic tree of the 36 proteins constructed by ClustalX2.
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4 Conclusion

As an application of graph energy and moment vector, we transform protein sequences

into 2-D curve graphs and then analyze their evolutionary relationships. In this paper,

the unique weighted adjacency matrix of every amino acid is not only innovative but also

meaningful, especially considering the six typical physicochemical properties of amino

acids and the nexus among them. As a good graph-representing method which has no

circuit or degeneracy, our approach meets all the requirements mentioned in reference [34].

To add to this, our method is valid and efficient in dealing with several typical datasets.
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