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Abstract 

This paper studies the law of component number of DNA polyhedral links from 

mathematical and chemical viewpoints. The topological properties of extended Platonic 

polyhedral links, including component number, Seifert circle number, crossing number, 

characteristic λ, characteristicQ,are characterized intrinsically.We extend the polyhedral links 

with even half-twistsedges to the ones with odd half-twistsedges, which is helpful for 

experimenter to design and synthesize various practical DNA polyhedra. Our study indicates 

that there are some rules to follow for more DNA polyhedra, providing reference materials 

and some extended examples.

1. Introduction 

People have long since been doing research into crystals. The ancient Greek philosopher 

Plato defined five regular polyhedra: tetrahedron, cube, octahedron, dodecahedron and 

icosahedron, namely Platonic solids. On the other hand, biologists and chemists would like to 
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see polyhedra introduced to general use. In 2000, scientists discovered the peculiarcrystal 

structure of the double-stranded DNA bacteriophage HK97 mature empty capsid, which is 

made of 12 pentameric and 60 hexameric rings of covalently joined subunits that loop 

through each other[1]. Owing to its double helical structure and self-assembly ability, DNA is 

an ideal programmable building blocks for the assembly of a wide range of nanostructures[2]. 

Since Seeman utilized nucleic acids to form migrationally immobile junctions[3], a variety of 

DNA cages [4-6], including some exotic ones [7-9]，had been realized. An important first step 

regarding the application of DNA cages was accomplished by scientists at Oxford University 

and they showed that artificial DNA cages that could be used to carry cargoes of drugs can 

enter living cellsefficiently and survive inside, potentially leading to new methods of drug 

delivery[10]. Recently, a new approach for constructing nanoscale polyhedral surfacesfrom 

DNA has been reported [11], lowing the barriers to applications of DNA nanotechnology.  The 

novel cross-linked structure of DNA cages appears in new research field constantly. 

One great challenge in supramolecular chemistry is the designing of building blocks to 

attain total control of the arrangement of molecules with polyhedral skeletons [12]. There has 

been tremendous interest in trying to rationalize the geometries and chemical properties of 

these novel structures[13-15]. Base on graph theory and knot theory, we proposed the method of 

“m-inverted twisted double-lines and n-branched curves covering” to construct polyhedral 

links[16] and thereby brought some topological viewpoints to describe and answer structural 

characteristics of DNA polyhedra [17-19]. This model actually conforms to the structure of 

DNA cages.  

In our previous work, the Seifert construction of polyhedral links gave a good 

understanding of DNA nanopolyhedra. It generates a new Euler formula for DNA polyhedra 

that relates the numbers of Seifert circles s, componentsµand crossings c[19]. 

 2s cµ+ = +   (1) 

However, this formula is too restrictive to describe DNA polyhedra in theory because it just 

considers the case of DNA polyhedra with even half-twists (crossings) along each edge.Here 

we will study the DNA polyhedra whose edges consist of both even and odd half-twists. 
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Furthermore, a new formula having a wider significance and two topological characteristics 

characterizing the DNA polyhedra are proposed, which is helpful for experimenter to design 

and synthesize various practical DNA polyhedra. Thus, the model of the polyhedral links 

could adapt itself to more types of DNA polyhedra and some interesting and underlying 

principles emerge as well. This study reveals the intrinsic properties and paves the way for the 

topology-aided molecular design of DNA polyhedra. 

2. New Formula for DNA Polyhedra 

2.1 Methods 

To get a full appreciation of what this paper means we must turn first to some basic 

concepts used in our previous work. 

Polyhedral links, the interlinked and interlocked strands based on the skeleton of 

polyhedra, serve as effective models of DNA polyhedra or cages. 

Definition 1 A polyhedral link is an interlinked and interlocked architectures obtained 

form a polyhedral graph G, by using branches curves and twisted lines to replace the vertices 

and edges [19]. 

Definition 2 The crossing number of a polyhedral link c is the least number of crossings 

that occur in any projection of the polyhedral link [19].  

Definition 3 The component number of a polyhedral link µ is the number of loops (rings) 

knotted with each other [19].  

Definition 4 The Seifert circle number of a polyhedral link s is the number of Seifert 

circles distributed in an orientable surface with the polyhedral link as its only edge [19]. 

There are two kinds of holes in DNA cages: the large holes are located at vertices and the 

small holes are located at edges, and Seifert circles are used to fill these holes during the 

Seifert construction. 
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2.2 New Euler’s Formula

If applying the Seifert operation to vertices, each vertex converts into a Seifert circle 

independent of the degree of vertex, namely,

 

Where vs  denotes the number of Seifert circles derived from vertices. In addition to these 

circles, other Seifert circles are distributed at edges, the number of which 

the number of Seifert circles of DNA polyhedral links

 

Then, we will discuss the calculation of 

polyhedral graph has F faces, E 

p edges with even half-twists whose half

half-twists whose half-twist numbers are 

each edge of the polyhedral link is 

number of half-twists. Hence, 

 

Figure 1 The Seifert construction of a tetrahedron 

Look at a tetrahedron’s Seifert construction

edges with evenhalf-twists (indica

with odd half-twists(indicated by dotted 

s Formula 

If applying the Seifert operation to vertices, each vertex converts into a Seifert circle 

independent of the degree of vertex, namely, 

vs V=  

denotes the number of Seifert circles derived from vertices. In addition to these 

circles, other Seifert circles are distributed at edges, the number of which is es

of DNA polyhedral linkss equals: 

v es s s= +  

Then, we will discuss the calculation of es . For a DNA polyhedral link, its underlying 

 edges and V vertices. Suppose that this polyhedral link has 

twists whose half-twist numbers are m1, m2, …, mp, q edges with odd 

twist numbers are n1, n2, …, nq, respectively. We could expect that 

each edge of the polyhedral link is assembled by DNA double helix with even or odd 

E p q= +  

Figure 1 The Seifert construction of a tetrahedron  

s Seifert construction shown in Fig. 1, for example.

(indicated by dotted rectangle), 1 2 3 2m m m= = = and 3 

indicated by dotted triangle), 1 2 3 1n n n= = = .Besides, we 

If applying the Seifert operation to vertices, each vertex converts into a Seifert circle 

(2) 

denotes the number of Seifert circles derived from vertices. In addition to these 

es . Therefore, 

(3) 

. For a DNA polyhedral link, its underlying 

that this polyhedral link has 

edges with odd 

, respectively. We could expect that 

assembled by DNA double helix with even or odd 

(4) 

 

, for example. It has 3 

2and 3 edges 

, we can also 
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count the number of Seifert circles derived from vertices, 4vs = and the number of Seifert 

circles derived from edges, 3es = , respectively. 

Given an edge with m twists, m-1 Seifert circles are generated. So the number of Seifert 

circles on the edges is   

1 1

( 1) ( 1)
p q

e i j
i j

s m n
= =

= − + −∑ ∑  

1 1

p q

i j
i j

m p n q
= =

= − + −∑ ∑  

 1 1

( )
p q

i j
i j

m n p q
= =

= + − +∑ ∑
 

(5) 

Substituting Eq.(4) into Eq.(5), we obtain 

 1 1

p q

e i j
i j

s m n E
= =

= + −∑ ∑
 

(6) 

Therefore 

 1 1

p q

v e i j
i j

s s s V m n E
= =

= + = + + −∑ ∑
 

(7) 

Notice that a half-twist corresponds to a crossing, the half-twist number equals to the crossing 

number on each edge. So we have that 

 1 1

p q

i j
i j

c m n
= =

= +∑ ∑
 

(8) 

Let’s plug Eq.(8) into Eq.(7), a more general formula for polyhedral link is put forward. 

 s V c E= + −  (9) 

Substituting the Euler’s formula 2V F E+ = + into Eq. (9), we could obtain the following 

result. 

s V c E= + −  

( 2 )E F c E= + − + −  

2 F c= − +  

Then, we have that 
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 2s F c+ = +  (10) 

Eq. (10), 2s F c+ = + , is applied for polyhedral links both with even and odd 

half-twists on each edge. In fact, Eq.(10) could be regarded as the real new Euler’s formula 

for DNA polyhedra for the reason that it has more general scope of application. To some 

extent Eq. (1), “a new Euler’s formula” reported in [19], is a special form of Eq. (10) for it 

could only address the case of polyhedral links with even half-twists on edges. Furthermore, 

Eq. (1) is referred to as new Euler’s formulaⅡinto which Eq. (10), 2s F c+ = + , is 

converted when the component numberµ equals the face number F. 

In addition, both Eq. (9) and Eq. (1) study the DNA polyhedral links, the former 

introduces geometric parameter F and the latter introduces topological invariant µ. We 

believe that they arealso complementary and illustrate each other. 

2.3 Two characteristics of Q and λ 

In this part, two characteristics are defined to describe the intrinsic properties of DNA 

polyhedra. According to new Euler’s formula, 2s F c+ = + , we define Q as its 

characteristic, thus obtaining Q s F c= + −  and Q remains 2 in case of all types of convex 

polyhedral links, including “even” polyhedral links with their edges even twists, “odd” 

polyhedral ones with their edges odd twists and “even and odd” polyhedral ones with their 

edges exiting both odd and even twists, which makes it easy to compute various parameters. 

For “new Euler’s formulaⅡ” or Eq.(1), 2s cµ+ = + , we give a new characteristic of λ to 

substitute the constant which equals 2 when polyhedral link is a convex one. 

 s cλ µ= + −  (11) 

Using above equation and the polyhedral Euler’s formula 2V F E+ = + , we can derive the 

following result: 

 2 Fλ µ= − +  (12) 

From this formula, it is easy to compute λ through the face number F and the component 

number of polyhedral links, avoiding the troubles about counting Seifert circles number 
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using Eq. (1). The value of λ, decreasing from the maximum of 2 to a minus by 2 gradually, 

is an even whose minimum is 

 

2
2 2 4

2

F
F

− − = − 
   (13) 

2.4 DNA polyhedral links and common polyhedral links  

In this part, we will talk about the difference between a common polyhedral link and a 

DNA polyhedral link. 

Firstly, both common polyhedral links and DNA polyhedral links are polyhedral links. 

As a matter of fact, polyhedral links are made up of DNA polyhedral links and non-DNA 

polyhedral links, namely common polyhedral links. So DNA polyhedral links belong to 

polyhedral links, to speak more precisely, a kind of polyhedral links.  

Secondly, a common polyhedral link does not have Seifert circle number for its rings 

or components are not oriented. On the other hand, a DNA polyhedral link has Seifert circle 

number for all its rings or components are oriented or, more to point, the two strands of 

duplex DNA are oppositely oriented. 

2.5 Three topological invariants for a polyhedral link 

For a polyhedron, vertex number V, edge numberE and face numberF arethree 

fundamental geometrical parameters.Correspondingly, crossing number c, component 

numberµand Seifert circle number sare three important topological invariants for a 

polyhedral link.  

For convenience, we assume that mequals 2 and 1 when the number of half-twists is 

even and odd in the case that “m-inverted twisted double-linesand “n-branched 

curvescovering” is used. Let a denote the number of edges with even half-twists and bdenote 

the number of edges with odd half-twists. Then, we have: 

 s V a= +  (14) 
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As for component number, a common polyhedral link has at most F components when it 

has even half-twists on its edges. So, the component number is between 1 and F.  

 1 µ F≤ ≤  (15) 

The component number of a DNA polyhedral link must be an even because of itsdouble helix 

structure. Therefore, there are some small differences in the component number between the 

DNA polyhedral links and the common polyhedral links. 

 2 µ F≤ ≤ (µis an even ) (16) 

A common polyhedral link and a DNA polyhedral link have the same method to 

compute the number of crossings.  

 2c a b= +  (17) 

3. Practical examples 

In our previous work, we studied the architecture and growth of extended Platonic 

polyhedra[17] and constructed various extended Platonic polyhedral links[18]. We select the 

truncated tetrahedron,the truncated octahedron and the cuboctahedron from three types of 

extended Platonic polyhedra [17], to demonstrate the above rules and laws we concluded. The 

analysis and method can also be applied in all the other polyhedra. We will talk about it 

through computer program in the future. 

3.1 The truncated tetrahedron [3464] 

The truncated tetrahedron [3464] (E=18, V=12, F=8), one of Archimedean solids, is 

made by adding four hexagons to a tetrahedron [17]. The data about the common links and 

DNA links of the truncated tetrahedron are listed in Table 1. The Seifert circle number and 

component numberof this link coincide with the Eqs. (15) and (16). More, the component 

number of a common link varies from 1 to 8, the DNA polyhedral link occurs only when µ is 

an even. It is also possible that both a common polyhedral link and a DNA polyhedral link 

occur when µ is an even. In order to describe DNA polyhedral links, a new characteristic Q is 

-394-



 

introduced based on Eq. (10), 2s F c+ = + . Let’s give characteristic Q to describe this 

formula. 

 Q s F c= + −  (18) 

As both Eq. (9) and Eq. (10)can be applied to DNA polyhedral links having odd or even 

half-twists on their edges, the characteristic Q in Eq.(18) remains 2 undervarious conditions, 

which makes it easy to compute any parameter. In contrast, the Eq. (1) can only fit polyhedral 

links with even half-twistsbecause the Euler characteristic λin Eq. (11) could not keep a 

constant when odd half-twistsoccur. Besides, we find that the characteristics of λand Q exist 

only in DNA polyhedral links which have Seifert circles. The value of λ decreases to a minus 

by 2 gradually anditsmaximum is 2 andminimum is 4 F− according toEq. (13). 

 max min2, Fλ λ= = 4 −  (19) 

Table 1 Polyhedral links of the truncated tetrahedron[3464] 

µ s c 2 Fλ µ= − +  Q s F c= + −  Notes 

8 30 36 2 2 18 even 0 odd, a DNA polyhedral link 

7  35   17 even 1 odd, a common polyhedral link 

6 26 32 0 2 14 even 4odd, a DNA polyhedral link 

6  34   16even 2odd, a common polyhedral link 

5  33   15even 3odd, a common polyhedral link 

4 23 29 -2 2 11even 7odd, a DNA polyhedral link 

4 21 27 -2 2 9even 9odd, a DNA polyhedral link 

4 18 24 -2 2 6even 12odd, a DNA polyhedral link 

4  32   14even 4odd, a common polyhedral link 

3  31   13even 5odd, a common polyhedral link 

2 19 25 -4 2 7even 11odd, a DNA polyhedral link 

2  30   12even 6odd, a common polyhedral link 

1  29   11even 7odd, a common polyhedral link 

We could draw the projections of the DNA polyhedral links of the truncated 

tetrahedron which can describe the real DNA polyhedral links effectively and clearly. 
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The projections of three DNA polyhedral links of the truncated 

illustrated in Fig.2. Note that “X even Y odd

half-twists and Y ones having odd half

DNA link in Figure 2(c) has six edges that have 

twelve edges that have odd half-twists (one crossing).   

Figure2(a)               

Figure 2 The projections of three DNA polyhedral links of the truncated tetrahedron
[3464]： (a) µ=6, 14 even 4 odd； (

3.2 The truncated octahedron [4

The truncated octahedron [4

solids, is made by adding eight 

polyhedral links of the truncated o

about DNA polyhedral links can also be applied in this type of DNA polyhedral link

the same time, the component numbers of the common polyhedral links of 

octahedron [4668] accord with the Eq. (15), ranging from 1 to 14. To simplify the process, 

only the data about DNA polyhedral links are listed in Table 2. 

we realize that the truncated octahedron

truncated tetrahedron. It is more likely that 

vertices, thus forming more DNA polyhedral links. 

truncated octahedron [4668] are showed in Fig. 

DNA polyhedral links of the truncated tetrahedron

X even Y odd” means there are X edges having even 

and Y ones having odd half-twists in this polyhedral link. For instance, the 

(c) has six edges that have even half-twists (two crossings) and 

twists (one crossing).    

(a)               Figure 2(b)Figure2(c) 

The projections of three DNA polyhedral links of the truncated tetrahedron
(b)µ=4, 9 even 9 odd； (c)µ=4, 6 even 12 odd 

The truncated octahedron [4668] 

[4668] (E=36, V=24, F=14), also one of Archimedean 

, is made by adding eight hexagons to a hexahedron [17]. The data about DNA 

he truncated octahedron [4668] are listed in Table 2. The above rules 

about DNA polyhedral links can also be applied in this type of DNA polyhedral link

the same time, the component numbers of the common polyhedral links of the truncated 

th the Eq. (15), ranging from 1 to 14. To simplify the process, 

only the data about DNA polyhedral links are listed in Table 2. From Table 1and Table 2,

he truncated octahedron has more DNA polyhedral links than 

It is more likely that the truncated octahedron has more faces and

vertices, thus forming more DNA polyhedral links. Three DNA polyhedral links of the 

] are showed in Fig. 3.  

tetrahedron are 

means there are X edges having even 

tance, the 

o crossings) and 

 

The projections of three DNA polyhedral links of the truncated tetrahedron 

Archimedean 

The data about DNA 

The above rules 

about DNA polyhedral links can also be applied in this type of DNA polyhedral links. At 

the truncated 

th the Eq. (15), ranging from 1 to 14. To simplify the process, 

Table 1and Table 2, 

has more DNA polyhedral links than the 

has more faces and 

Three DNA polyhedral links of the 
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Table 2 DNA polyhedral links 

µ s c 

14 60 72 

12 56 68 

10 52 64 

8 48 60 

6 49 61 

6 44 56 

6 36 48 

6 24 36 

4 47 59 

4 34 46 

2 46 58 

2 32 44 

olyhedral links of the truncated octahedron [4668] 

2 Fλ µ= − +  Q s F c= + −  Notes

2 2 36 even 0odd

0 2 32even 4odd

-2 2 28even 8odd

-4 2 24even 12

-6 2 25even 11odd

-6 2 20even 16odd

-2 2 12even 24odd

-6 2 0even 36odd

-8 2 23even 13odd

-8 2 10even 26odd

-10 2 22even 14odd

-10 2 8even 28 odd

 

Figure3(a) 

Notes 

36 even 0odd 

32even 4odd 

28even 8odd 

24even 12odd 

25even 11odd 

20even 16odd 

12even 24odd 

0even 36odd 

23even 13odd 

10even 26odd 

22even 14odd 

8even 28 odd 
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Figure 3 The projections of three
[4668]： (a)µ=6, 20 even 16 odd；

3.3 The cuboctahedron [3

The cuboctahedron [3846] (E

by adding six squares to an octahedron

cuboctahedron [3846] are listed in Table 

showed in Fig. 3, the cuboctahedron

Besides, the cuboctahedron has fewer DNA polyhedral links than the t

as we can see from Table 3. 

polyhedrallinks with vertices of degree 4 than that with vertices of deg

 

Figure3(b) 

 

Figure3(c) 

three DNA polyhedral links of the truncated octahedron
； (b)µ=6, 0 even 36 odd； (c)µ=2, 8 even 28 odd 

3846] 

E=24, V=12, F=14), also one of Archimedean solids, is made 

octahedron[17]. The data about the DNA polyhedral 

are listed in Table 3. Compared with the truncated octahedron

, the cuboctahedron [3846] is also a 14-hedron but has vertices of degree 4. 

has fewer DNA polyhedral links than the truncated octahedron

as we can see from Table 3. We can speculate that it is harder to construct DNA 

llinks with vertices of degree 4 than that with vertices of degree 3. It is possible 

truncated octahedron 

=14), also one of Archimedean solids, is made 

polyhedral links of the 

runcated octahedron [4668] 

hedron but has vertices of degree 4. 

runcated octahedron 

speculate that it is harder to construct DNA 

ee 3. It is possible 
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that the chance of forming DNA polyhedral links

increases. In other words, the more vertices a polyhedron has, the more likely DNA 

polyhedral links it can form. The component numbers of the common polyhedral links of the 

cuboctahedron [3846] accord with the Eq. (15), ranging from 1 to 14. Three DNA polyhedral 

links of the cuboctahedron [3846

Table 3 DNA p

µ s c 

14 36 48 

12 32 44 

10 30 42 

8 28 40 

6 24 36 

4 24 36 

4 22 34 

4 20 32 

orming DNA polyhedral links gets smaller as polyhedral vertices number 

increases. In other words, the more vertices a polyhedron has, the more likely DNA 

polyhedral links it can form. The component numbers of the common polyhedral links of the 

] accord with the Eq. (15), ranging from 1 to 14. Three DNA polyhedral 

6] are showed in Fig. 4. 

Table 3 DNA polyhedral links ofthe cuboctahedron [3846]  

2 Fλ µ= − +  Q s F c= + −  Notes 

2 2 24 even 0 odd

0 2 20 even 4 odd

-2 2 18 even 6 odd

-4 2 16 even 8 odd

-6 2 12 even 12 odd

-8 2 12 even 12 odd

-8 2 10 even 14 odd

-8 2 8 even 16 odd

 

Figure4(a) 

 

Figure4(b) 

l vertices number 

increases. In other words, the more vertices a polyhedron has, the more likely DNA 

polyhedral links it can form. The component numbers of the common polyhedral links of the 

] accord with the Eq. (15), ranging from 1 to 14. Three DNA polyhedral 

24 even 0 odd 

20 even 4 odd 

18 even 6 odd 

odd 

12 even 12 odd 

12 even 12 odd 

10 even 14 odd 

8 even 16 odd 
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Figure 4 The projections of three DNA polyhedral links of the cuboctahedron [3
(a) µ=6, 12 even 12 odd； (

4. Conclusions 

This paper discusses the component numbers of common polyhedral links and

DNA polyhedral links which are expressed by Eqs. (15) and (16). We find that the 

component number of DNA polyhedral links is prone to be an even. Furthermore, a new 

characteristic Q, describing the relation between Seifert circle number, face number and 

crossing number of a polyhedral link, is defined to clarify the 

DNA polyhedral links with even or odd twists, which facilitates 

parameters of the polyhedral links

polyhedral links (the truncated tetrahedr

[4668] and the cuboctahedronal

component number, Seifert circle number, crossing number, characteristic 

of odd or even half-twists. Meanwhile, some of their projections are 

make it convenient to observe the components of links. The Eqs. (10)

as well as the Eq. (1) reported previously

polyhedral links. 

 
Acknowledgements: The authors are very grateful to 
Foundation of China (No. 31560256)
University for Nationalities and 
Nationalities (xbmuyjrc201306), and also to 
Central Universities (31920140088) and (31081215100

 

Figure4(c) 

The projections of three DNA polyhedral links of the cuboctahedron [3
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DNA polyhedral links which are expressed by Eqs. (15) and (16). We find that the 

component number of DNA polyhedral links is prone to be an even. Furthermore, a new 

, describing the relation between Seifert circle number, face number and 
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