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Abstract

This paper studies the law of component number of DNA polyhedral links from
mathematical and chemical viewpoints. The topological properties of extended Platonic
polyhedral links, including component number, Seifert circle number, crossing number,
characteristid, characteristiQ,are characterized intrinsically.We extend the polyhedral links
with even half-twistsedges to the ones with odd half-twistsedges, which is helpful for
experimenter to design and synthesize various practical DNA polyhedra. Our study indicates
that there are some rules to follow for more DNA polyhedra, providing reference materials

and some extended examples.

1. Introduction

People have long since been doing research into crystals. The ancient Greek philosopher
Plato defined five regular polyhedra: tetrahedron, cube, octahedron, dodecahedron and

icosahedron, namely Platonic solids. On the other hand, biologists and chemists would like to
*Correspondence should be addressed to T. Deng (Email: dttom@Izu.edu.cn)
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see polyhedra introduced to general use. In 2086ntsts discovered the peculiarcrystal
structure of the double-stranded DNA bacteriophtdg®7 mature empty capsid, which is
made of 12 pentameric and 60 hexameric rings ofleody joined subunits that loop
through each othBt. Owing to its double helical structure and seeasbly ability, DNA is
an ideal programmable building blocks for the agslgrof a wide range of nanostructufés
Since Seeman utilized nucleic acids to form migraily immobile junctiord, a variety of
DNA cagesd*®, including some exotic onés”, had been realized. An important first step
regarding the application of DNA cages was accoshplil by scientists at Oxford University
and they showed that artificial DNA cages that ddog used to carry cargoes of drugs can
enter living cellsefficiently and survive insidegtpntially leading to new methods of drug
delivery®®. Recently, a new approach for constructing narlesgalyhedral surfacesfrom
DNA has been reportétt’, lowing the barriers to applications of DNA nareiteology. The
novel cross-linked structure of DNA cages appearseiw research field constantly.

One great challenge in supramolecular chemisttiyesdesigning of building blocks to
attain total control of the arrangement of moleswiéth polyhedral skeleto?. There has
been tremendous interest in trying to rationalflze geometries and chemical properties of
these novel structuré%®. Base on graph theory and knot theory, we proptieethethod of
“m-inverted twisted double-lines and n-branchedvesrcovering” to construct polyhedral
links™® and thereby brought some topological viewpointdescribe and answer structural
characteristics of DNA polyhedfd*®. This model actually conforms to the structure of
DNA cages.

In our previous work, the Seifert construction dblymedral links gave a good
understanding of DNA nanopolyhedra. It generatesva Euler formula for DNA polyhedra
that relates the numbers of Seifert circesomponenigand crossings™™.

Stu=c+2 1)
However, this formula is too restrictive to deseribNA polyhedra in theory because it just
considers the case of DNA polyhedra with even twi$ts (crossings) along each edge.Here

we will study the DNA polyhedra whose edges consfsboth even and odd half-twists.
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Furthermore, a new formula having a wider significa and two topological characteristics
characterizing the DNA polyhedra are proposed, tvigchelpful for experimenter to design
and synthesize various practical DNA polyhedra. sThhe model of the polyhedral links
could adapt itself to more types of DNA polyhedrad ssome interesting and underlying
principles emerge as well. This study revealstivénisic properties and paves the way for the

topology-aided molecular design of DNA polyhedra.

2. New Formula for DNA Polyhedra

2.1 Methods

To get a full appreciation of what this paper meagsmust turn first to some basic
concepts used in our previous work.

Polyhedral links, the interlinked and interlockelands based on the skeleton of
polyhedra, serve as effective models of DNA polyheat cages.

Definition 1 A polyhedral link is an interlinked drinterlocked architectures obtained
form a polyhedral graph G, by using branches cuavestwisted lines to replace the vertices
and edge8?.

Definition 2 The crossing number of a polyhedrakic is the least number of crossings
that occur in any projection of the polyhedral Ik

Definition 3 The component number of a polyhedrat L is the number of loops (rings)
knotted with each othér.

Definition 4 The Seifert circle number of a polyhaldiink s is the number of Seifert
circles distributed in an orientable surface with polyhedral link as its only ed§8.

There are two kinds of holes in DNA cages: theddrgles are located at vertices and the
small holes are located at edges, and Seifertesirate used to fill these holes during the

Seifert construction.
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2.2 New Eulers Formula

If applying the Seifert operation to vertices, eaeltex converts into a Seifert circ

independent of the degree of vertex, nar
§=V 2
Where §, denotes the number of Seifert circles derived frartices. In addition to the:

circles, other Seifert circles are distributed @ges, the number of whidss,. Therefore,
the number of Seifert circled DNA polyhedral links equals:
s=5+3 &)
Then, we will discuss the calculation S,. For a DNA polyhedral link, its underlyir

polyhedral graph haB faces,E edges and/ vertices. Supposthat this polyhedral link he
p edges with even hatfvists whose ha-twist numbers arey, m, ..., m, g edges with odi
half-twists whose halfwist numbers arny, n, ..., ng, respectively. We could expect t
each edge of the polyhedral link assembled by DNA double helix with even or «

number of half-twists. Hence,

E=p+q (4)

Figure 1 The Seifert construction of a tetrahed

Look at a tetrahedros’ Seifert constructic shown in Fig. 1for example It has 3

edges with evenhalf-twisténdiceted by dotted rectangle)yn = m = m=2and 3edges

with odd half-twistsifidicated by dottectriangle), n, =n, = n,=1.Besides we can also
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count the number of Seifert circles derived fromtices,s, =4and the number of Seifert

circles derived from edgess, =3, respectively.

Given an edge wit twists,m-1 Seifert circles are generated. So the numbeeid¢i$

circles on the edges is

8= (M-D+3 (7-D

P ]
=2m- P3N g
i=1 j=1

2} ]
=y m+Yn-(p+q ®)

i ]

Substituting Eq.(4) into Eq.(5), we obtain

P q
s=)m+y n-E ®6)
i=1 j=1
Therefore
) ]
s=g+g= V) mey - )
i=1 j=1

Notice that a half-twist corresponds to a crossdiing half-twist number equals to the crossing
number on each edge. So we have that
P q
c=>m+3n ®)
=1 =
Let’s plug Eq.(8) into Eq.(7), a more general fotanior polyhedral link is put forward.
s=V+c- E 9)
Substituting the Euler’s formul® + F = E+2into Eg. (9), we could obtain the following
result.
s=V+c- E
=(E+2-F)+c-E
=2-F+c

Then, we have that
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s+F=2+c (10)

Eq. (10),s+ F=2+c, is applied for polyhedral links both with evendawdd
half-twists on each edge. In fact, Eq.(10) coulddgarded as the real new Euler’s formula
for DNA polyhedra for the reason that it has moemeyal scope of application. To some
extent Eq. (1), “a new Euler’s formula” reported[i®], is a special form of Eq. (10) for it
could only address the case of polyhedral link$ witen half-twists on edges. Furthermore,
Eq. (1) is referred to as new Euler's formllamto which Eq. (10),s+ F=2+c, is
converted when the component numbequals the face numbEr

In addition, both Eq. (9) and Eqg. (1) study the DN@lyhedral links, the former
introduces geometric parameterand the latter introduces topological invariantWe

believe that they arealso complementary and itisteach other.

2.3 Two characteristics ofQ and 4

In this part, two characteristics are defined tecdibe the intrinsic properties of DNA
polyhedra. According to new Euler's formules+ F=2+c, we define Q as its
characteristic, thus obtainin@ = s+ F— ¢ andQ remains 2 in case of all types of convex
polyhedral links, including “even” polyhedral linksith their edges even twists, “odd”
polyhedral ones with their edges odd twists andteand odd” polyhedral ones with their
edges exiting both odd and even twists, which mékessy to compute various parameters.
For “new Euler's formuldl” or Eq.(1),s+ = c+2, we give a new characteristic bfto
substitute the constant which equals 2 when polgididk is a convex one.

A=s+u-c (11)
Using above equation and the polyhedral EulersifdaV + F = E+2, we can derive the
following result:

A=2-F+yu (12)
From this formula, it is easy to computehrough the face nhumbé&r and the component

number of polyhedral links, avoiding the troubldmat counting Seifert circles number
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using Eg. (1). The value df decreasing from the maximum of 2 to a minus lyyalually,

is an even whose minimum is

(13)

2.4 DNA polyhedral links and common polyhedral linls

In this part, we will talk about the difference Wwetn a common polyhedral link and a
DNA polyhedral link.

Firstly, both common polyhedral links and DNA patyhral links are polyhedral links.
As a matter of fact, polyhedral links are made 6DNA polyhedral links and non-DNA
polyhedral links, namely common polyhedral linke BNA polyhedral links belong to
polyhedral links, to speak more precisely, a kihgalyhedral links.

Secondly, a common polyhedral link does not haviie@eircle number for its rings
or components are not oriented. On the other heaRNA polyhedral link has Seifert circle
number for all its rings or components are orierwedmore to point, the two strands of

duplex DNA are oppositely oriented.

2.5 Three topological invariants for a polyhedral ink

For a polyhedron, vertex numbéf, edge numbé& and face numbér arethree
fundamental geometrical parameters.Correspondingtpssing numberc, component
numberand Seifert circle numbesare three important topological invariants for a
polyhedral link.

For convenience, we assume thaquals 2 and 1 when the number of half-twists is
even and odd in the case thatihverted twisted double-linesandn-branched
curvescovering” is used. Latdenote the number of edges with even half-twistsbdenote
the number of edges with odd half-twists. Thenharee:

s=V+a (14)
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As for component number, a common polyhedral liak &t mosE components when it
has even half-twists on its edges. So, the comgonenber is between 1 afd
l<sus<F (15)
The component number of a DNA polyhedral link maestn even because of itsdouble helix
structure. Therefore, there are some small difissrin the component number between the
DNA polyhedral links and the common polyhedral 8nk
2< u<F (uis an even) (16)
A common polyhedral link and a DNA polyhedral lifflave the same method to
compute the number of crossings.

c=2a+b a7)

3. Practical examples

In our previous work, we studied the architectunel growth of extended Platonic
polyhedr&™ and constructed various extended Platonic polytdiks'®. We select the
truncated tetrahedron,the truncated octahedronttnduboctahedron from three types of
extended Platonic polyhed?d), to demonstrate the above rules and laws we cdedIiThe
analysis and method can also be applied in allother polyhedra. We will talk about it

through computer program in the future.

3.1 The truncated tetrahedron [36°]

The truncated tetrahedron“ﬁ] (E=18, V=12, F=8), one of Archimedean solids, is
made by adding four hexagons to a tetrahedifdriThe data about the common links and
DNA links of the truncated tetrahedron are listedrable 1. The Seifert circle number and
component numberof this link coincide with the E¢i5) and (16). More, the component
number of a common link varies from 1 to 8, the Dptyhedral link occurs only whenis
an even. It is also possible that both a commowhealral link and a DNA polyhedral link

occur wheru is an even. In order to describe DNA polyhedratdi a new characterisi@is
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introduced based on Eq. (103+ F=2+c. Let's give characteristi® to describe this
formula.
Q=s+F-c (18)

As both Eq. (9) and Eg. (10)can be applied to D#yjpedral links having odd or even
half-twists on their edges, the characterigim Eq.(18) remains 2 undervarious conditions,
which makes it easy to compute any parameter.itrast, the Eq. (1) can only fit polyhedral
links with even half-twistsbecause the Euler chiandstic lin Eq. (11) could not keep a
constant when odd half-twistsoccur. Besides, we fivat the characteristics £dndQ exist
only in DNA polyhedral links which have Seifertdis. The value of decreases to a minus

by 2 gradually anditsmaximum is 2 andminimumdis F according toEg. (13).

A =2, =4-F (19)

'max min ~

Table 1 Polyhedral links of the truncated tetrabef#'6’]

" s c A=2-F+u Q=s+F-c Notes

8 30 36 2 2 18 even 0 odca DNA polyhedral link

7 35 17 even 1 odd, a commepolyhedral link
6 26 32 0 2 14 even 4odca DNA polyhedral link

6 34 16even odd, a common polyhedral link
5 33 15even 3odd, a common polyhedral

4 23 29 -2 2 11even 7odda DNA polyhedral link

4 21 27 -2 2 9even 9odda DNA polyhedral link

4 18 24 -2 2 6even 12odca DNA polyhedral link

4 32 14even 4odd, a common polyhedral

3 31 13even 5o0dd, a common polyhedral

2 19 25 -4 2 7even 11odda DNA polyhedral link

2 30 12even 6odd, a common polyhedral

1 29 1leven 7odd, a common polyhedral link

We could draw the projections of the DNA polyhediiaks of the truncated

tetrahedron which can describe the real DNA polyaklihks effectively and clearly.



-396-

The projections of thre®NA polyhedral links of the truncatetetrahedro are
illustrated in Fig.2. Note thatX' even Y od" means there are X edges having €
half-twistsand Y ones having odd h-twists in this polyhedral link. For itence, the
DNA link in Figure Zc) has six edges that haeven half-twists (tw crossings) an

twelve edges that have odd haffists (one crossing).

A /@

g
A
{ Y Y
s/ \atie/

FigureZa) Figure 2(b)Figure2(c)

Figure 2The projections of three DNA polyhedral links okttruncated tetrahedr
[3%6": (@) =6, 14 even 4 odd(b)u=4, 9 even 9 odd(c)u=4, 6 even 12 odd

- §(<

3.2 The truncated octahedron [£6]

The truncated octahedrda®6®] (E=36, V=24, F=14), also one ofArchimedear
solids is made by adding eiglhexagons to a hexahedrdf. The data about DN,
polyhedral links offte truncated ctahedron [%°] are listed in Table ZThe above rule
about DNA polyhedral links can also be appliecis type of DNA polyhedral lirs. At
the same time, the component numbers of the conpolyhedral links othe truncate«
octahedron [%6°%] accord wth the Eq. (15), ranging from 1 to 14. To simptife process
only the data about DNA polyhedral links are liste@able 2 FromTable 1and Table
we realize thathte truncated octahedr has more DNA polyhedral links thethe
truncated tetrahedrott.is more likely thathe truncated octahedrtvas more faces a
vertices, thus forming more DNA polyhedral linlThree DNA polyhedral links of th

truncated octahedron%f] are showed in Fic3.
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Table 2 DNA plyhedral linksof the truncated octahedrorf§f]

" s c A=2-F+yu Q=s+F-c Notes

14 60 72 2 2 36 even 0od
12 56 68 0 2 32even 4od
10 52 64 -2 2 28even 8od
8 48 60 -4 2 24even lodd
6 49 61 -6 2 25even 1100
6 44 56 -6 2 20even 160c
6 36 48 -2 2 12even 240c
6 24 36 -6 2 Oeven 360d
4 47 59 -8 2 23even 130c
4 34 46 -8 2 10even 260c
2 46 58 -10 2 22even 14o0c
2 32 44 -10 2 8even 28 od

/e

Ot

W 7Y
Li;zié«/

Figure3(a)
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Figure3(c)
Figure 3 The projections dghree DNA polyhedral links of théruncated octahedr
[4%6%: (a)=6, 20 even 16 odd(b).=6, 0 even 36 odd(c)u=2, 8 even 28 odd

3.3 The cuboctahedron 3%4%

The cuboctahedron S[&5] (E=24,V=12,F=14), also one of Archimedean solids, is m
by adding six squares to aotahedro”!. The data about the DNgolyhedrallinks of the
cuboctahedron 3% are listed in Tabl3. Compared with theuncated octahedr [4%6°]
showed in Fig. 3the cuboctahedr: [3%4%] is also a 14edron but has vertices of degre:
Besides, the cuboctahedrbas fewer DNA polyhedral links than thruncated octahedr
as we can see from Table We canspeculate that it is harder to construct D

polyhedrdlinks with vertices of degree 4 than that withtiees of deree 3. It is possibl
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that the chance 0bfming DNA polyhedral link gets smaller as polyhedikertices numbe
increases. In other words, the more vertices ahgalson has, the more likely DN
polyhedral links it can form. The component numizéithe common polyhedral links of tI
cuboctahedron f2°] accord with the Eq. (15), ranging from 1 to 1#irde DNA polyhedrs
links of the cuboctahedron3] are showed in Fig. 4.

Table 3 DNA jolyhedral links ofthe cuboctahedrorf4g

" s c A=2-F+pu Q=s+F-c Notes

14 36 48 2 2 24 even 0 od
12 32 44 0 2 20 even 4 od
10 30 42 -2 2 18 even 6 od
8 28 40 -4 2 16 even &dc
6 24 36 -6 2 12 even 12 oc
4 24 36 -8 2 12 even 12 oc
4 22 34 -8 2 10 even 14 oc
4 20 32 -8 2 8 even 16 oc

Figure4(b)
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Figure4(c)
Figure 4The projections of three DNA polyhedral links oéttuboctahedron 4%
(a)u=6, 12 even 12 odd(b) u=4, 12 even 12 odd(c) =4, 8 even 16 oc

4. Conclusions

This paper discussdbe component numbers of common polyhedral linkd
DNA polyhedral links which are expressed by Eq®) (and (16). We find that tt
component number of DNA polyhedral links is proodé an even. Furthermore, ar
characteristi®, describing the relation between Seifert circlenber, face number ar
crossingnumber of a polyhedral link, is defined to clarifieintrinsic attribute of rea
DNA polyhedral links with even or odd twists, whichcilitatescomputationof the
parameters of thgolyhedral link. We take three typicaDNA extended Platoni
polyhedral links the truncated tetraheal links [3'6"], the truncated octahedrahiinks
[4%° and the cuboctahedron links [$4°%]) for examples, characterizin their
component number, Seifert circle number, crossinglrer, characteristiQ, the edge
of odd or even halfwists. Meanwhile, some of their projections showed which
make it convenient to observe the components k§lifihe Egs. (1-(19) in this papel
as well as the Eq. (1) reported previol*® are important tools fodesigning DNA

polyhedral links.
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