
Borderenergetic Threshold Graphs

Yaoping Hou1,∗ , Qingyun Tao2

1Department of Mathematics, Hunan First Normal University,
Changsha, China

yphou@hunnu.edu.cn

2Department of Mathematics, Hunan University of Arts
and Science, Changde, China

taoqing cn@126.com

(Received July 26, 2015)

Abstract

The energy of a graph is defined as the sum the absolute values of the eigenvalues of its

adjacency matrix. A graph G on n vertices is said to be borderenergetic if its energy equals

the energy of the complete graph Kn. Using the spectra of threshold graphs, a family of

non-regular and non-integral borderenergetic graphs is obtained.

1 Introduction

All graphs in this paper are simple and undirected. The energy E(G) of a graph G

is defined as [4, 9]

E(G) =

n
∑

i=1

|λi|.

where λ1, λ2, . . . , λn are the eigenvalues of the adjacency matrix of G. There are many

results on energy and its applications in chemistry, see references in [9].

It is well known that the complete graph Kn is determined by its adjacency spec-

trum. It was originally believed that the complete graph Kn has maximum energy
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among all graphs on n vertices. However this conjecture is false. There are many

graphs with energies greater than the energy of the complete graph and these graphs

are called hyperenergetic. Hou and Gutman [6] established a method for constructing

hyperenergetic line graphs with any number of vertices (nine or more) and relatively

few edges. It may be an interesting problem to find graphs with the same energy as

the complete graph Kn, which has energy E(Kn) = 2n− 2.

The earliest example of E(G) = E(Kn) is a graph on 9 vertices, that was reported

in [6]. This is the line graph of a 3-regular graph on 6 vertices, see Fig. 1.
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Fig. 1. A 3-regular graph on 6 vertices and its line graph. The eigenvalues of the
line graph are {4, 1, 1, 1, 1,−2,−2,−2,−2}.

Recently, Gong, Li, Xu, Gutman and Furtula [3] studied the graphs with the same

energy as a complete graph. They put forward the concept of borderenergetic graphs.

A graph G on n vertices is said to be borderenergetic if its energy equals the energy of

the complete graph Kn. In [3], it was shown that there exist borderenergetic graphs

on order n for each integer n ≥ 7, and all borderenergetic graphs with 7, 8, and 9

vertices were determined. In [10], Li, Wei and Gong determined all borderenergetic

graphs with 10 vertices.

Recently, Jacobs, Trevisan and Tura [8] considered the eigenvalues and energies of

threshold graphs. They showed that if 4|n and n ≥ 8, then there is an n-vertex thresh-

old graph equienergetic with the complete graph Kn. In addition, if 9|n, then there

are two n-vertex threshold graphs equienergetic to Kn and these are non-cospectral.
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For each n ≥ 3, they determined n − 1 threshold graphs on n2 vertices, pairwise

non-cospectral and equienergetic to the complete graph Kn2 .

In this note, we prove that for each n ≥ 2 and p ≥ 1 (p ≥ 2 if n = 2), there

are n−1 threshold graphs on p n2 vertices, pairwise non-cospectral and equienergetic

with the complete graph Kp n2 . By this, we unify and generalize the above results

of [8] and provide examples of non-integral and non-regular borderenergetic graphs.

2 Threshold graphs with same energy as the

complete graph

Threshold graphs were first introduced in 1977 by Chvátal and Hammer [2]. The

spectral properties of threshold graphs were studied in [1,7,8]. A graph G is threshold

(or degree maximal graph) if and only if it can be obtained from a single vertex by

iterating the operations of adding a new vertex that is either connected to no other

vertex (an isolated vertex ) or connected to every other vertex (a cone vertex ). The

sequence of these operations is called the building sequence of the respective threshold

graph.

In view of this, we may represent a threshold graph on n vertices using a binary

sequence b = b1b2 . . . bn . Here bi is 0 if the vertex vi was added as an isolated vertex,

and bi is 1 if vi was added as a cone vertex. In our representation, b1 is always zero.

We write 0s (resp. 1s) if there are s repeated 0’s (resp. 1’s) in the building sequence.

For example, we write 0212013 for 00110111.

For a graph G, by n0(G) and n−1 we denote the multiplicities of the eigenvalues

0 and −1, respectively. The following results provide formulas for n0(G) and n−1.

Theorem 1. [1] Let G be a connected threshold graph with building sequence b =

0s11t1 . . . 0sk1tk , where the si’s and ti’s are positive integers. Then

n0(G) =
k

∑

i=1

(si − 1) .
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Theorem 2. [8] Let G be a connected threshold graph with building sequence b =

0s11t1 . . . 0sk1tk , where the si’s and ti’s are positive integers. Then

n−1(G) =























k
∑

i=1

(ti − 1) if s1 > 1

1 +
k
∑

i=1

(ti − 1) if s1 = 1.

We first prove that there are no borderenergetic threshold graphs of the form 0k1j

or 0p1q0t.

Proposition 3. There are no borderenergetic threshold graphs 0k1j with k > 1.

Proof. The independent set of size k and clique of size j form an equitable partition

of the adjacency matrix with quotient matrix B =

[

0 j

k j − 1

]

, whose eigenvalues

satisfy x2 − (j − 1)x− jk = 0. Since in the threshold graph 0k1j, 0 is an eigenvalue

with multiplicity k − 1, and −1 is an eigenvalue with multiplicity j − 1, the energy

of the threshold graph 0k1j is

E(G) = j−1 +
1

2

[

(j−1) +
√

(j−1)2 + 4kj
]

+
1

2

[

−(j−1) +
√

(j−1)2 + 4kj
]

= j − 1 +
√

(j−1)2 + 4kj .

If we assume that j − 1 +
√

(j − 1)2 + 4kj = 2(k + j − 1), then we get k = 1, which

yields a contradiction with k > 1.

Proposition 4. There are no borderenergetic threshold graphs 0p1q0t.

Proof. The independent set of size p, the clique of size q and the independent set of size

t form an equitable partition with matrix B =





0 q 0
p q − 1 0
0 0 0



, whose eigenvalues

are 0 and 1
2

(

q − 1±
√

(q − 1)2 + 4pq
)

. Therefore the energy of the graph 0p1q0t is

E(G) = q − 1 +
√

(q − 1)2 + 4pq .

Suppose that q−1+
√

(q − 1)2 + 4pq = 2(p+q+t−1). Then by simple calculation we

find that there is no solution to this equation. Therefore, the proposition holds.
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We now give a family of threshold graphs 01s0k1j which are borderenergetic. In

order to do this, we need following results from [8]

Lemma 5. For positive integers s, k, and j, the characteristic polynomial of the

threshold graph 01s0k1j is, to within a sign,

xk−1(x+ 1)s+j−1
(

x3 − (s+ j − 1)x2 − (s+ jk + j)x+ kjs
)

.

Lemma 6. Let b and c be positive real numbers, and let x2 − bx + c have real roots

λ1, λ2. Then |λ1|+ |λ2| = b.

The following is the main result in this section.

Theorem 7.

(1) For each n ≥ 3 and p ≥ 1, there exist n−1 pairwise non-cospectral borderenergetic

threshold graphs on p n2 vertices.

(2) Let p ≥ 2. Then the threshold graph G = 01p0p−112p and K4p are non-cospectral

and equienergetic.

Proof. We claim that the graphs Gi = 01p(n−i)20p(n−i)i−11pin, for 1 ≤ i ≤ n− 1 satisfy

the theorem. It is easy to see that each Gi has order p n
2. Since p(n− i)i− 1 > 0 for

n ≥ 3 , p ≥ 1, and for n = 2 , p ≥ 2, it follows that Gi 6= 01pn
2
−1. From Lemma 5, we

see that the characteristic polynomial of Gi is, modulo the sign,

xp(n−i)i−2 · (x+ 1)p(n−i)2+pin−1 · q(x) (1)

where q(x) is the cubic polynomial

q(x) = x3 − [p(n− i)2 + pin− 1]x2 − [p(n− i)2 + pin(p(n− i)i− 1) + pin]x

+ p(n− i)2(p(n− i)i− 1)pin .

Although tedious, it can be verified that q(x) can be factored as

[

x+ p(n− i)i
][

x2 − (pn2 − 1)x+ pn(pin− pi2 − 1)(n− i)
]

. (2)

We claim that any two graphs Gi are non-cospectral. Suppose by contradiction that

Gi and Gj are cospectral. Then their corresponding polynomials q(x) must have the
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same roots. Note that the roots from the linear terms are both negative, and the

roots from the quadratic terms are both positive. Therefore the two terms must be

equal, and we have p(n − i)i = p(n − j)j which implies i + j = n. The quadratic

terms have the same roots. Their leading and middle terms agree, their constant

terms must also. That is

pn(n− i)(pin− pi2 − 1) = pn(n− j)(pjn− pj2 − 1) .

Dividing by pn and using i+j = n, we obtain j(pin−pi2−1) = i(pjn−pj2−1) which

implies that j − i = pij(j − i). This means that i = j or pij = 1, a contradiction.

Finally, we calculate E(Gi) from (1) and (2), using Lemma 6. This yields

E(Gi) = p(n− i)2 + pin− 1 + p(n− i)i+ pn2 − 1 = 2(pn2 − 1) = E(Kpn2) .

Let n = 3, p = m. Then we have:

Corollary 8. (Theorem 9 in [8]) For m ≥ 1, the threshold graphs 014m02m−113m and

01m02m−116m of order n are non-cospectral and both borderenergetic.

Let p = 1. Then we have:

Corollary 9. (Theorem 10 in [8]) For each n ≥ 3, there exist n− 1 threshold graphs

on n2 vertices, pairwise non-cospectral and borderenergetic.

By the case of n = 2, let p = 2m and p = 2m+ 1. Then we have:

Corollary 10. (Theorem 7 in [8]) For m ≥ 1, the threshold graphs 012m02m−114m

are borderenergetic.

Corollary 11. (Theorem 8 in [8]) For m ≥ 1, the threshold graphs 012m+102m14m+2

are borderenergetic.

Remark 12. Let p, q, r be non-negative integers and let p+ q = 2. It has been shown

that the graphs pC4 ∪ qC6 ∪ rC3 are regular and integral borderenergetic graphs. In

the general case, the borderenergetic threshold graphs in this note are non-regular and

non-integral.
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Remark 13. In the Appendix, we list some borderenergetic threshold graphs, found

by means of a computer search. Table 1 lists all borderenergetic threshold graphs with

n vertices, n ≤ 23. Table 2 lists all borderenergetic threshold graphs of the form

0p1q0s1t with n vertices, n = p+ q + s+ t ≤ 100.
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3 Appendix

Table 1. All non-complete connected borderenergetic threshold graphs

with n ≤ 23 vertices.

n All connected threshold graphs with energy 2n-2
8 012014

9 01016, 014013

12 0130216

15 0315016, 01601012012

16 0102112, 0140318, 0190214

17 0120102130215

18 01203112, 0180316

19 0414012012014, 02102120101012014, 021901012012,
0101201012021501, 0170120130212

20 02101301201021014, 010120212010130213, 01013014031014,
01203130101012013, 012010102101701, 01504110

21 010210312015014, 01021010314016, 010215021201012012,
0120120311001, 01201302102120215

22 0410212016015, 04101301301201013, 0412013021012015,
031010150317, 02130101021201201301, 0103101401012012012,
010212012012021201301, 0101021202120140213, 01012010101010316,
01013021202120212013, 012010210130101201201,
0130214012021201201, 0130102101012010214, 01501015031013,

23 03102101301201601, 031010210120213015, 031201012012010120213,
021031201201013012012, 021021012010130120213, 021021100213012,
0210120130310217, 021302101021901, 02130120101014021201,
010310170130213, 0103130103110, 01021010210120214013,
010120310150120213, 01012010120101010213,
0101301021010150101, 010130120310140213, 0101404101013014,
0101503140315, 0101701402101201, 010190140313,
0120312017010213, 0120101041501014, 01201201301301301021,
01201402101201010213, 013010213014013021, 0130101701013021,
014021031017012, 0150102101021601, 0160101401013021,
01601201021021014
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Table 2. All connected borderenergetic threshold graphs 0p1q0s1t

with n ≤ 100 vertices.

order n All connected threshold graphs 0p1q0s1t with energy 2n− 2
8 012014

9 01016, 014013

12 0130216

15 0315016

16 0102112, 0140318, 0190214

18 01203112, 0180316

20 01504110

24 01605112, 041120216

25 0103120, 01405115, 01905110, 01160315

27 01305118, 01120519

28 01706114, 06170114

32 01205124, 01807116, 01180518

35 071502121

36 0104130, 01407124, 01908118, 0611005115, 011607112, 01250416

38 071210218

40 011009120

44 0111010122, 0512206111, 0912202111

45 01509130, 012009115

48 01308136, 0112011124, 012708112

49 0105142, 01409135, 019011128, 0116011121, 012509114, 01360517

50 01207140, 018011130, 0118011120, 013207110

51 01012802111

52 0113012126

54 016011136, 0124011118

56 0114013128

60 0115014130

63 017013142, 0121702142, 0128013121

64 0106156, 014011148, 019014140, 0116015132, 0125014124, 0136011116,
01490618

68 0117016134

70 01511406135

72 01209160, 018015148, 0118017136, 0132015124, 01611802136, 015009112

75 013011160, 0112017145, 0717013148, 0127017130, 0148011115

76 0119018138

78 0111570218

79 01711303146

80 015014160, 0120019140, 0145014120
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Table 2. (cont)

order n All connected threshold graphs 0p1q0s1t with energy 2n− 2
81 0107172, 014013163, 019017154, 0116019145, 0125019136,

0136017127, 0149013118, 0615309113, 01640719

83 0161906152

84 0121020142

87 0101203172

88 0122021144

90 0110019160, 0140019130, 0716109113

92 0123022146, 07122020143

96 016017172, 0124023148, 0154017124

97 04131022140

98 012011184, 018019170, 0118023156, 0132023142, 0150019128,
014142014128, 02114207128, 0172011114

99 0111021166, 0144021133

100 0108190, 014015180, 019020170, 0116023160, 0125024150,
0136023140, 0149020130, 0164015120, 018108110
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