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Abstract

We relate the Kirchhoff index with some other metrized graph invariants. We
establish several contraction formulas for the Kirchhoff index. We use these con-
traction formulas and certain edge densities to give new upper and lower bounds
to the Kirchhoff index for any connected graph. As an another application of our
contraction formulas when the graph is a tree, we derive new formulas as well as
previously known formulas for the Wiener index with new proofs.

1 Introduction

On a metrized graph Γ with set of vertices V (Γ) and resistance function r(x, y), the

Kirchhoff index Kf(Γ) is defined as follows:

Kf(Γ) =
1

2

∑
p, q∈V (Γ)

r(p, q) .

For the distance function d(x, y) on Γ, the Wiener index W (Γ) is defined as:

W (Γ) =
1

2

∑
p, q∈V (Γ)

d(p, q) .

These definitions of Kf(Γ) and W (Γ) on a metrized graph Γ agree with their usual

definitions on a graph (see [15] and [13], respectively). A metrized graph Γ is a finite

connected graph equipped with a distinguished parametrization of each of its edges. One

can consider Γ as a one-dimensional manifold except at finitely many branch points, where

it looks locally like an n-pointed star. A metrized graph Γ can have multiple edges and

self-loops. Next, we give a summary of the results we obtained in this paper.
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In §2, we give a short review of metrized graphs and some notations we use.

In §3, we briefly describe the voltage and the resistance functions on a metrized graph.

We set notations concerning some specific values of these functions and recall some basic

results that we use.

In §4, we improve Kirchhoff index formulas we obtained in [7]. Then we extend the

contraction formulas obtained in [6] to bridgeless graphs. Using these results, we give

a new contraction formula for the Kirchhoff index that involves another graph invariant

y(Γ) (see Equation (2) for the definition of y(Γ) and Theorem 4.5 for the contraction

formula). This enables us giving lower and upper bounds to the Kirchhoff index in terms

of y(Γ), and more importantly this contraction formula of the Kirchoff index can be

applied successively (see Theorem 4.12). Since the Kirchhoff index of Γ is closely related

to the trace of the pseudo inverse of the discrete Laplacian matrix of Γ when Γ has no

self loops and multiple edges, the contraction formulas we derived for the Kirchhoff index

have equivalent forms in terms of the related traces (e.g., see Theorem 4.18 below).

In §5, we use the contraction formulas we derived to give upper and lower bounds to

the Kirchhoff index for connected graphs. This is given in Theorem 1.1 below.

Let G be a finite connected graph with set of vertices V . Suppose {V1, V2} be a

partition of V , i.e., V1 and V2 are two disjoint nonempty subsets of V such that V = V1∪V2.

We call the partition {V1, V2} be admissible if both of the induced subgraphs G[V1] and

G[V2] are connected. If one takes a spanning tree T of G, each edge eT of T determines

an admissible partition of V by considering V1 as the vertices on one side of eT and V2 as

the vertices on the other side. Let E(V1, V2) be the set of edges of G connecting a vertex

in V1 with a vertex in V2. We define the edge density d(V1, V2) of an admissible partition

{V1, V2} as follows:

d(V1, V2) =
|E(V1, V2)|
|V1| · |V2|

. (1)

For S =
{
d(V1, V2) | {V1, V2} is an admissible partition of V

}
, we set

dmin = minS, and dmax = maxS .

Theorem 1.1. (See Theorem 5.1 and Corollary 5.2) Let G be a finite connected graph

with v ≥ 2 vertices and e edges, and let each edge of G have length 1. Then we have

(v − 1)2

e− v + 2
≤ v − 1

dmax

≤ Kf(G) ≤ v − 1

dmin

≤ v2(v − 1)

4Λ
,
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where Λ is the edge connectivity of G.

Note that the upper bound Kf(G) ≤ v2(v−1)
4Λ

was given in [7, Theorem 1.3] for regular

graphs. Here we have it for any graph.

We deal with tree metrized graphs in §6. Note that the Kirchhoff index is the same

as the Wiener index for a tree graph. We restate the results we derived for the Kirchhoff

index in §4 for a tree graph. In this way, we obtain contraction formulas for the Wiener

index of a tree graph. Moreover, we obtain new formulas, given in Theorem 6.3 and

Theorem 6.6 below, for the Wiener index. Our approach enables us to give new proofs of

some previously known formulas, Theorem 6.2 and Theorem 6.9, for the Wiener index.

Then we give various examples that apply our formulas to compute Wiener indices. At

the end of §6, we state two problems. Solution to any of them will be a new proof of a

conjecture about the Wiener index (see Theorem 6.10 below). One can consult [18] for

possible uses of these formulas about the Wiener index and the use of the Wiener index.

Note that there is a one-to-one correspondence between metrized graphs and certain

equivalence class of finite connected weighted graphs in which the weight of an edge is

the reciprocal of its length [2, Lemma 2.2]. We can also view such a graph as a resistive

electrical network in which the resistance of each edge is the same as its length. The

identities that we establish for metrized graphs in this paper are also valid for electrical

networks, and they have equivalent forms for corresponding weighted graphs.

2 Metrized Graphs

In this section, we give a brief review of metrized graphs to make this paper self contained

as much as possible.

“Metrized graph” as a term was introduced by Rumely [19], and developed further

in [3] and [23]. Here is a rigorous definition of a metrized graph:

Definition. [23] [2, Definition 2.1] A metrized graph Γ is a compact, connected metric

space such that for each p ∈ Γ, there exist a radius rp > 0 and an integer υ(p) ≥ 1 such

that p has a neighborhood Vp(rp) isometric to the star-shaped set

S(υ(p), rp) = {z ∈ C : z = tek·2πi/υ(p) for some 0 ≤ t < rp and some k ∈ Z} ,

equipped with the path metric.
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A leisurely survey on metrized graphs can be found in [1]. Following [2], we consider

a metrized graph as an analytic object, not just a combinatorial one. We can intuitively

describe metrized graphs as follows:

A metrized graph Γ is a finite connected graph equipped with a distinguished paramet-

rization of each of its edges. Thus, a metrized graph Γ can have multiple edges and

self-loops.

Metrized graphs are also known in the literature as networks, metric graphs, and

quantum graphs. For a discussion about the connections and differences about these

notions, one can see [2, Page 226 and §1.9] and the papers cited therein.

For any given p ∈ Γ, the number υ(p) of directions emanating from p will be called

the valence of p. By definition, there can be only finitely many p ∈ Γ with υ(p) 6= 2.

For a metrized graph Γ, we denote a vertex set for Γ by V (Γ). We require that V (Γ)

be finite and non-empty and that p ∈ V (Γ) for each p ∈ Γ if υ(p) 6= 2.

For a given metrized graph Γ with vertex set V (Γ), the set of edges of Γ is the set of

closed line segments with end points in V (Γ). We will denote the set of edges of Γ by

E(Γ). However, if ei is an edge, by Γ − ei we mean the graph obtained by deleting the

interior of ei.

We denote the length of an edge ei ∈ E(Γ) by Li, which represents a positive real

number. The total length of Γ, which is denoted by `(Γ), is given by `(Γ) =
∑e

i=1 Li.

For a given metrized graph Γ, it is possible to enlarge the vertex set V (Γ) by considering

additional valence 2 points as vertices. However, this process of enlarging the vertex set

does not change the total length of Γ. Figure 1 illustrates an example.

Figure 1: A metrized graph Γ with three different graph models.

The connections between metrized graphs and finite weighted graphs are explicitly

discussed in [2, §2].

We use the notation Γi for the graph obtained by contracting the i-th edge ei of a

given metrized graph Γ to its end points. If ei ∈ Γ has end points pi and qi, then in Γi,
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these points become identical, i.e., pi = qi. If p is an end point of an edge ei in Γ, then

by p in V (Γi) we mean the vertex, in V (Γi), that p is contracted into.

3 Resistance Function r(x, y)

In this section, we briefly describe the resistance and the voltage functions on a metrized

graph Γ. We make a review of basic facts about these functions and then set notations

that we use in the rest of the paper.

For any x, y, z in Γ, the voltage function jz(x, y) on a metrized graph Γ is a symmetric

function in x and y, which satisfies jx(x, y) = 0 and jz(x, y) ≥ 0 for all x, y, z in Γ. For

each vertex set V (Γ), jz(x, y) is continuous on Γ as a function of all three variables. For

fixed z and y it has the following physical interpretation: If Γ is viewed as a resistive

electric circuit with terminals at z and y, with the resistance in each edge given by its

length, then jz(x, y) is the voltage difference between x and z, when unit current enters

at y and exits at z (with reference voltage 0 at z).

The effective resistance between two points x, y of a metrized graph Γ is given by

r(x, y) = jy(x, x), where r(x, y) is the resistance function on Γ. The resistance function

inherits certain properties of the voltage function. For any x, y in Γ, r(x, y) on Γ is a

symmetric function in x and y, and it satisfies r(x, x) = 0. For each vertex set V (Γ),

r(x, y) is continuous on Γ as a function of two variables and r(x, y) ≥ 0 for all x, y in Γ.

If a metrized graph Γ is viewed as a resistive electric circuit with terminals at x and y,

with the resistance in each edge given by its length, then r(x, y) is the effective resistance

between x and y when unit current enters at y and exits at x.

Note that these definitions of the voltage and the resistance functions on a metrized

graph Γ agree with the definitions on each of the graph model of Γ. Here by a graph model

of Γ we mean the corresponding finite weighted graph associated to the chosen vertex set

of Γ. Thus, for any points x, y and z in Γ the values r(x, y) and jz(x, y) agree with

the values on any chosen graph model of Γ whose vertex set contains these three points.

These functions on a graph are considered as functions with a discrete set as the domain,

namely the vertex set. However, we have the continuous version of these functions on a

metrized graph.

The proofs of the facts mentioned above can be found in [3] and [2, Sections 1.5 and

6]. The voltage function jz(x, y) and the resistance function r(x, y) are also studied in [1].
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We will denote by Ri the resistance between the end points of an edge ei of a graph Γ

when the interior of the edge ei is deleted from Γ.

Let Γ be a metrized graph with p ∈ V (Γ), and let ei ∈ E(Γ) having end points pi and

qi. If Γ− ei is connected, then Γ can be transformed to the graph in Figure 2 by circuit

reductions (see [4, Page 642]). More details on this fact can be found in the articles [3]

and [5, Section 2]. Note that in Figure 2, we have Rai,p = ĵpi(p, qi), Rbi,p = ĵqi(p, pi),

Rci,p = ĵp(pi, qi), where ĵx(y, z) is the voltage function in Γ−ei. We have Rai,p+Rbi,p = Ri

for each p ∈ Γ.

Remark 3.1. If Γ−ei is not connected, firstly we set Rbi,p = Ri and Rai,p = 0 if p belongs

to the component of Γ− ei containing pi, and we set Rai,p = Ri and Rbi,p = 0 if p belongs

to the component of Γ− ei containing qi. Secondly, we mean Ri −→∞ in any expression

that we use Ri.

We will use these notations for the rest of the paper. Next, we recall a basic identity

concerning these values:

Rai,p := j
`

pi
 Hp, qiL

Rbi,p := j
`

qi
 Hp, piL

Rci,p := j
`

p Hpi, qiL

pi qi

p

Li

ei

Figure 2: Circuit reduction of Γ with reference to an edge ei and a point p.

Lemma 3.2. [5, Lemma 2.11] For any p and q in V (Γ),∑
ei∈E(Γ)

Li(Rai,p −Rbi,p)
2

(Li +Ri)2
=

∑
ei∈E(Γ)

Li(Rai,q −Rbi,q)
2

(Li +Ri)2
.

In the rest of the paper, for any metrized graph Γ and a fixed vertex p ∈ V (Γ) we will

use the following notations, which we first defined in [8] and used also in [7]:

y(Γ) =
1

4

∑
ei ∈E(Γ)

LiR
2
i

(Li +Ri)2
+

3

4

∑
ei ∈E(Γ)

Li(Rai,p −Rbi,p)
2

(Li +Ri)2
,

x(Γ) =
∑

ei ∈E(Γ)

L2
iRi

(Li +Ri)2
+

3

4

∑
ei ∈E(Γ)

LiR
2
i

(Li +Ri)2
− 3

4

∑
ei ∈E(Γ)

Li(Rai,p −Rbi,p)
2

(Li +Ri)2
.

(2)
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Note that x(Γ) and y(Γ) do not depend on the choice of the vertex p by Lemma 3.2.

In [7], we established connections between the Kirchhoff index of Γ and the invariants

x(Γ) and y(Γ).

When we use rβ(x, y), we mean the resistance function in the metrized graph β.

4 Contraction Formulas for the Kirchhoff Index

The Kirchhoff index of a graph Γ, Kf(Γ), is defined [15] as follows:

Kf(Γ) :=
1

2

∑
p, q∈V (Γ)

r(p, q) . (3)

The following equality was obtained in [7, Page 4038]. It gives a relation between the

Kirchhoff index of Γ and the Kirchhoff indexes of Γi’s. Although it is a useful formula

to understand how the Kirchhoff index changes after edge contractions, we can not use it

for successive edge contractions because of some technical problems.

(v − 2)Kf(Γ) =
∑

ei∈E(Γ)

Ri

Li +Ri

Kf(Γi) +
∑

ei∈E(Γ)

Ri

Li +Ri

∑
p∈V (Γi)

rΓi
(p, pi) . (4)

The idea of tracing the value of a graph invariant after successive edge contractions

was successfully applied in [6], where we studied the tau constant as an another graph

invariant. We want to utilize this idea for the Kirchhoff index. To do this, we first need

various technical results.

The following lemma is to express rΓi
(p, pi) in terms of the resistance values on Γ that

we are more familiar.

Lemma 4.1. Let Γ be a metrized graph, and let p be a vertex of Γ. For an edge ei of Γ

with end points pi and qi, we have

r(pi, p) + r(qi, p) = 2rΓi
(p, pi) +

LiRi

Li +Ri

− 2
LiRai,pRbi,p

Ri(Li +Ri)
.

Proof. We prove this in two cases.

Case I: ei is not a bridge.

From [5, Section 2], we have

r(pi, p) =
(Li +Rbi,p)Rai,p

Li +Ri

+Rci,p, and r(qi, p) =
(Li +Rai,p)Rbi,p

Li +Ri

+Rci,p . (5)

Thus,

r(pi, p) + r(qi, p) =
LiRi

Li +Ri

+ 2
Rai,pRbi,p

Li +Ri

+ 2Rci,p . (6)
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On the other hand, from [8, Equation 17] we have

rΓi
(p, pi) =

Rai,pRbi,p

Ri

+Rci,p . (7)

Thus, the result follows from Equations (6) and (7) in this case.

Case II: ei is a bridge.

If p belongs to the component of Γ − ei containing pi, we have r(pi, p) + r(qi, p) =

Li + 2r(pi, p) and rΓi
(p, pi) = r(pi, p).

If p belongs to the component of Γ − ei containing qi, we have r(pi, p) + r(qi, p) =

Li + 2r(qi, p) and rΓi
(p, pi) = r(qi, p).

Now, we note that LiRi

Li+Ri
−→ Li and

LiRai,pRbi,p

Ri(Li+Ri)
−→ 0 because of Remark 3.1.

Thus, the result follows in this case, too.

Now, we can substitute the value of rΓi
(p, pi) obtained from Lemma 4.1 into the

formula given in Equation (4). In this way, we derive a new formula for the Kirchhoff

index.

Lemma 4.2. Let Γ be a metrized graph. We have

2(v − 2)Kf(Γ) = 2
∑

ei∈E(Γ)

Ri

Li +Ri

Kf(Γi) + 2v
∑

ei∈E(Γ)

LiRai,pRbi,p

(Li +Ri)2
− v

∑
ei∈E(Γ)

LiR
2
i

(Li +Ri)2

+
∑

p∈V (Γ)

∑
ei∈E(Γ)

Ri

Li +Ri

(r(pi, p) + r(qi, p)) .

Proof. Since Ri = Rai,p +Rbi,p for any p ∈ V (Γ), we have∑
ei∈E(Γ)

LiR
2
i

(Li +Ri)2
=

∑
ei∈E(Γ)

Li(Rai,p −Rbi,p)
2

(Li +Ri)2
+ 4

∑
ei∈E(Γ)

LiRai,pRbi,p

(Li +Ri)2
. (8)

We note that the left hand side of Equation (8) is independent of the choice of the vertex

p. Likewise, the first term at the right side of Equation (8) is independent of p because

of Lemma 3.2. Therefore,∑
ei∈E(Γ)

LiRai,pRbi,p

(Li +Ri)2
=

∑
ei∈E(Γ)

LiRai,qRbi,q

(Li +Ri)2
, for any vertices p and q. (9)

Now, we first multiply the equality in Lemma 4.1 by Ri

Li+Ri
and take the summation

of the resulting equality over all edges ei in E(Γ). Then we take the summation of the

equality obtained over all vertices p in V (Γ). Finally, the result follows from Equation (9),

Equation (4) and the equality we derived.
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Now, our goal is to simplify the formula we obtained in Lemma 4.2. First, we improve

a result we derived previously.

The following lemma with the condition that Γ is a bridgeless metrized graph was

proved in [8, Lemma 3.10]. We note that this condition is not necessary.

Lemma 4.3. Let Γ be a metrized graph, and let pi and qi be end points of ei ∈ E(Γ). For

any p ∈ V (Γ), we have∑
ei∈E(Γ)

Li(Rai,p −Rbi,p)
2

(Li +Ri)2
=

∑
ei∈E(Γ)

Li
Li +Ri

(
r(pi, p) + r(qi, p)

)
−
∑

q∈V (Γ)

(υ(q)− 2)r(p, q)

= 2
∑

q∈V (Γ)

r(p, q)−
∑

ei∈E(Γ)

Ri

Li +Ri

(
r(pi, p) + r(qi, p)

)
.

Proof. The proof is almost the same as the proof of [8, Lemma 3.10]. The only additional

work is to use the following facts for edges that are bridges (edges whose removal discon-

nects the graph). Let ei ∈ E(Γ) be a bridge, and let p ∈ V (Γ). Suppose x ∈ ei is as in

G

pi x qi

x Li - x

Figure 3: Γ with x ∈ ei, where ei is a bridge.

Figure 3 and that ei has end points pi and qi. If p belongs to the component of Γ − ei
containing pi, we have

r(p, x) = r(p, pi) + x,
d

dx
r(p, x) = 1, and r(p, pi)− r(p, qi) = −Li . (10)

If p belongs to the component of Γ− ei containing qi, we have

r(p, x) = r(p, qi) + Li − x,
d

dx
r(p, x) = −1 and r(p, pi)− r(p, qi) = Li . (11)

Thus, in any case d2

dx2
r(p, x) = 0 if x belongs to a bridge.

We note that [8, Lemma 3.6], [8, Equation (14)] and [8, Proposition 3.9] are valid for

metrized graphs with possibly bridges.

If we consider Remark 3.1 along with Equations (10) and (11), the proof of [8, Lemma

3.10] can be extended to the case Γ with bridges.

Lemma 4.3 is crucial for our purposes.
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Lemma 4.4. For any metrized graph Γ, we have

4Kf(Γ) = v ·
∑

ei∈E(Γ)

Li(Rai,p −Rbi,p)
2

(Li +Ri)2
+

∑
ei∈E(Γ)

Ri

Li +Ri

∑
p∈V (Γ)

(
r(pi, p) + r(qi, p)

)
.

Proof. First, we take summation of the second equality in Lemma 4.3 over all vertices

p ∈ V (Γ):∑
p∈V (Γ)

∑
ei∈E(Γ)

Li(Rai,p −Rbi,p)
2

(Li +Ri)2
= 2

∑
p,q∈V (Γ)

r(p, q)−
∑

ei∈E(Γ)

Ri

Li +Ri

∑
p∈V (Γ)

r(pi, p) + r(qi, p).

Then the result follows from this equality, Lemma 3.2 and the definition of Kf(Γ).

After having various technical lemmas, we can state our first main result. It describes

the relation between the Kirchhoff index of Γ and the Kirchhoff indexes of each of Γi that

are obtained by contraction of ei ∈ E(Γ):

Theorem 4.5. Let Γ be a metrized graph with v vertices. Then we have

(v − 4)Kf(Γ) =
∑

ei∈E(Γ)

Ri

Li +Ri

Kf(Γi)− v · y(Γ) .

Proof. We first subtract the equality given in Lemma 4.4 from the equality given in

Lemma 4.2. Then the proof follows from Equation (8) and Equation (2).

Next, we have another formula for the Kirchhoff index.

Proposition 4.6. For any metrized graph Γ with v vertices, we have

2Kf(Γ) = v · y(Γ) +
∑

ei∈E(Γ)

Ri

Li +Ri

∑
p∈V (Γi)

rΓi
(p, pi) .

Proof. The result is obtained by subtracting the formula in Theorem 4.5 from Equa-

tion (4).

Note that Theorem 4.5 is more advantageous to work with than Equation (4), because

we studied the term y(Γ) previously [6] and showed that it has various properties.

Our goal for the rest of this section is to apply the contraction formula given in

Theorem 4.5 successively. To do this, we need the contraction formula for y(Γ) for any

metrized graph Γ (see Theorem 4.9 below). The contraction formula of y(Γ) for bridgeless

metrized graphs was shown in [6, Theorem 4.12]. First, we need some preparatory work.

The following theorem was given in [7, Theorem 4.8]. Note that we don’t need the

condition bridgeless as explained in the paragraph before the theorem in that paper (and

as its proof shows). That is, we can give [7, Theorem 4.8] with a minor correction in its

statement as follows:
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Theorem 4.7. Let Γ be a metrized graph. For any two vertices p and q, we have

(v − 2)r(p, q) =
∑

ei∈E(Γ)

Ri

Li +Ri

rΓi
(p, q) .

Next, we apply Theorem 4.7 to the sum of effective resistances along with all edges.

Let

r(Γ) :=
∑

ei∈E(Γ)

LiRi

Li +Ri

.

Note that r(pi, qi) = LiRi

Li+Ri
for any edge ei with end points pi and qi.

Theorem 4.8. Let Γ be a metrized graph. Then we have

(v − 2)r(Γ) =
∑

ei∈E(Γ)

Ri

Li +Ri

r(Γi) .

Proof. Let ej be an edge with end points pj and qj. Applying Theorem 4.7 to the vertices

pj and qj gives

(v − 2)r(pj, qj) =
∑

ei∈E(Γ)

Ri

Li +Ri

rΓi
(pj, qj) .

where v is the number of vertices in Γ. Now, if we take the summation of above equality

over all edges ej in Γ and use the definition of r(Γ), we obtain

(v − 2)r(Γ) =
∑

ei∈E(Γ)

Ri

Li +Ri

∑
ej∈E(Γ)

rΓi
(pj, qj)

=
∑

ei∈E(Γ)

Ri

Li +Ri

∑
ej∈E(Γi)

rΓi
(pj, qj), since rΓi

(pi, qi) = 0 .

=
∑

ei∈E(Γ)

Ri

Li +Ri

r(Γi) .

This gives what we want to show.

Note that Theorem 4.8 for bridgeless metrized graphs was given in [6, Corollary 4.13].

But we show here that it holds for any metrized graph possibly with bridges.

Similarly, the following theorem for bridgeless metrized graphs was given in [6, Theo-

rem 4.12].

Theorem 4.9. Let Γ be a metrized graph with v vertices. Then we have

(v − 2)x(Γ) =
∑

ei∈E(Γ)

Ri

Li +Ri

x(Γi) , and (v − 2)y(Γ) =
∑

ei∈E(Γ)

Ri

Li +Ri

y(Γi) .
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Proof. Let B(Γ) = {ei1 , ei2 , . . . , eit} be the set of bridges in Γ. Let β be the metrized

graph obtained from Γ by contracting all bridges in Γ.

We first note that if ei is a bridge, using Remark 3.1 we obtain
L2
iRi

(Li+Ri)2
−→ 0,

LiR
2
i

(Li+Ri)2
−→ Li and

Li(Rai,p−Rbi,p
)2

(Li+Ri)2
−→ Li. Therefore, considering the definition of x(Γ) in

Equation (2) we conclude that bridges in Γ does not contribute to x(Γ), so x(Γ) = x(β).

Moreover, Rj(Γ) = Rj(β) if ej is not a bridge. Hence,

x(Γ) = x(Γi) when ei is a bridge, and so x(Γi) = x(β).

x(Γi) = x(βi) when ei is not a bridge.
(12)

We use Equation (12) and Remark 3.1 in the second equality below:∑
ei∈E(Γ)

Ri

Li +Ri

x(Γi) =
∑

ei∈E(Γ)−B(Γ)

Ri

Li +Ri

x(Γi) +
∑

ei∈B(Γ)

Ri

Li +Ri

x(Γi)

=
∑

ei∈E(Γ)−B(Γ)

Ri(β)

Li +Ri(β)
x(βi) +

∑
ei∈B(Γ)

x(β),

= (v − t− 2)x(β) + t · x(β), using [6, Theorem 4.12] for β.

= (v − 2)x(Γ), since x(Γ) = x(β).

(13)

This proves the first equality in the theorem. Next, we prove the second equality. We

first note that r(Γ) = x(Γ) + y(Γ) for any metrized graph Γ.

On one hand, by Theorem 4.8 we have

(v − 2)r(Γ) =
∑

ei∈E(Γ)

Ri

Li +Ri

r(Γi) =
∑

ei∈E(Γ)

Ri

Li +Ri

(
x(Γi) + y(Γi)

)
. (14)

On the other hand, by the first equality that we just proved for x(Γ)

(v − 2)r(Γ) = (v − 2)x(Γ) + (v − 2)y(Γ) = (v − 2)y(Γ) +
∑

ei∈E(Γ)

Ri

Li +Ri

x(Γi).

Thus, the second equality in the theorem follows from this equality and Equation (14).

When the number of vertices is 2 or 3, we know the exact relation between Kf(Γ)

and y(Γ).

Corollary 4.10. For any metrized graph Γ with v vertices we have

Kf(Γ) = y(Γ) if v = 2, and Kf(Γ) = 2y(Γ) if v = 3.
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Proof. When v = 2, Γi has only one vertex. In this case, Kf(Γi) = 0 for each edge ei.

Then Theorem 4.5 gives that Kf(Γ) = y(Γ).

When v = 3, Γi has two vertices, so we have Kf(Γi) = y(Γi) by the first equality.

Thus, Theorem 4.5 gives

−Kf(Γ) =
∑

ei∈E(Γ)

Ri

Li +Ri

Kf(Γi)− 3 · y(Γ) =
∑

ei∈E(Γ)

Ri

Li +Ri

y(Γi)− 3 · y(Γ) = −2y(Γ),

where the last equality follows from Theorem 4.9. This completes the proof.

For any integer 1 ≤ k ≤ v − 2, if an edge eik is not a self loop in Γi1,i2,...,ik−1
, then

#(V (Γi1,i2,...,ik)) = #(V (Γi1,i2,...,ik−1
)) − 1. We call Γi1,i2,...,ik be an admissible contraction

of Γ, if it is obtained from Γ by contracting edges with distinct end points at each step.

We have #(V (Γi1,i2,...,ik)) = v − k iff V (Γi1,i2,...,ik) is an admissible contraction of Γ. Note

that we have Ri

Li+Ri
= 0 for a self loop, so contraction of self loops can be neglected in

contraction identities. Therefore, we restrict ourselves to the admissible contractions only.

Now, we successively apply the contraction identity given in Theorem 4.9 as follows:

Theorem 4.11. Let Γ be a metrized graph with v ≥ 3 vertices, and let k be an integer

with 1 ≤ k ≤ v − 2. For admissible contractions, we have

(v − 2)!

(v − k − 2)!
x(Γ) =

∑
ei1∈
E(Γ)

Ri1

Li1 +Ri1

∑
ei2∈
E(Γi1

)

Ri2

Li2 +Ri2

· · ·
∑
eik∈

E(Γi1,...,ik−1
)

Rik

Lik +Rik

x(Γi1,...,ik),

(v − 2)!

(v − k − 2)!
y(Γ) =

∑
ei1∈
E(Γ)

Ri1

Li1 +Ri1

∑
ei2∈
E(Γi1

)

Ri2

Li2 +Ri2

· · ·
∑
eik∈

E(Γi1,...,ik−1
)

Rik

Lik +Rik

y(Γi1,...,ik).

Proof. We have
Rij

Lij
+Rij

= 0 for an edge eij that is a self loop. Thus, contraction of

self loops does not contribute to sums in contraction identities. Applying Theorem 4.9

inductively gives the result.

Note that Theorem 4.11 generalizes the similar results in [6] to any metrized graph.

Next, we take the advantage of the contraction formula to derive Theorem 4.12 which

is our second main result. It describes how the Kirchhoff index changes under successive

edge contractions.
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Theorem 4.12. Let Γ be a metrized graph with v ≥ 5 vertices, and let k be an integer

with 1 ≤ k ≤ v − 4. For admissible contractions, we have

Kf(Γ) =
(v − 4− k)!

(v − 4)!

∑
ei1∈
E(Γ)

Ri1

Li1 +Ri1

∑
ei2∈
E(Γi1

)

Ri2

Li2 +Ri2

· · ·
∑
eik∈

E(Γi1,...,ik−1
)

Rik

Lik +Rik

Kf(Γi1,...,ik)

−
(
v2 − (k + 2)v + k − 1

)
k

(v − k − 2)(v − k − 3)
y(Γ).

In particular, if k = v − 4, we have

Kf(Γ) =
1

(v − 4)!

∑
ei1∈
E(Γ)

Ri1

Li1 +Ri1

· · ·
∑
eiv−4

∈
E(Γi1,...,iv−5

)

Riv−4

Liv−4 +Riv−4

Kf(Γi1,...,iv−4)

− (3v − 5)(v − 4)

2
y(Γ).

Proof. The proof follows by successive application of Theorem 4.5 for each Kf(Γi1,...,ik)

and Theorem 4.9 for each y(Γi1,...,ik). One should be careful about determining the coef-

ficient of y(Γ) after each contraction step. Note that we can compute the coefficient of

y(Γ) at the k-th contraction step with the help of the following identity:

v

v − 4
+

k−1∑
i=1

v − i
v − 4− i

i∏
j=1

v − 1− j
v − 3− j

=

(
v2 − (k + 2)v + k − 1

)
k

(v − k − 2)(v − k − 3)
.

Note that Γi1,...,iv−4 has 4 vertices. Therefore, it is important to know the relation

between Kf(Γ) and y(Γ) when Γ has 4 edges to derive further conclusions from Theo-

rem 4.12. Although the exact relation as in Corollary 4.10 is not possible in general, we

can have upper and lower bounds of Kf(Γ) in terms of y(Γ). This is what we show below.

First, we recall some facts.

Let the set of vertices for an admissible contraction Γi1,i2,...,iv−2 of Γ be {p′, q′}. Suppose

that m vertices of Γ are contracted into p′ and that the remaining k vertices are contracted

into q′. Then both m and k are positive integers with m+ k = v, where v is the number

of vertices in Γ.

Next, we state a corollary to Theorem 4.11. It generalizes the relevant result from [6]

to any metrized graph possibly with bridges.

Corollary 4.13. Let Γ be a metrized graph with v vertices. For admissible contractions

Γi1,...,iv−2, we have

(v − 2)!y(Γ) =
∑
ei1∈
E(Γ)

Ri1

Li1 +Ri1

∑
ei2∈
E(Γi1

)

Ri2

Li2 +Ri2

· · ·
∑
eiv−2

∈
E(Γi1,...,iv−3

)

Riv−2

Liv−2 +Riv−2

rΓi1,...,iv−2
(p′, q′).
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Proof. First we note that y(Γi1,...,iv−2) = rΓi1,...,iv−2
(p′, q′) by the proof of [6, Proposition

5.8].

Then the result follows from Theorem 4.11 with k = v − 2.

Since we obtained the contraction formula in Theorem 4.7 for any metrized graph not

necessarily bridgeless, we can extend the contraction formula for the Kirchhoff index given

in [7, Lemma 5.2] to all metrized graphs:

Lemma 4.14. Let Γ be a metrized graph with v vertices, and let m and k be defined as

above. For any admissible contraction Γi1,i2,...,iv−2, we have

Kf(Γ) =
1

(v − 2)!

∑
ei1∈
E(Γ)

Ri1

Li1 +Ri1

· · ·
∑
eiv−2

∈
E(Γi1,...,iv−3

)

Riv−2

Liv−2 +Riv−2

m · k · rΓi1,...,iv−2
(p′, q′).

The following upper bound was given in [7, Equation 21] for regular graphs that are

bridgeless. Now, we have it without any restriction on Γ:

Corollary 4.15. For any metrized graph Γ with v vertices, we have

Kf(Γ) ≤ v2

4
y(Γ).

Proof. When m+ k = v for any two positive integers m and k, the maximum of m · k is

at most v2

4
. Then the proof follows from Lemma 4.14 and Corollary 4.13.

Lemma 4.16. Let Γ be a metrized graph with v vertices. Then we have

3y(Γ) ≤ Kf(Γ) ≤ 4y(Γ) if v = 4,

4y(Γ) ≤ Kf(Γ) ≤ 6y(Γ) if v = 5.

Proof. We apply the contraction formula given in Lemma 4.14 to Γ. Since m+k = v and

both m and k are positive integers, if v = 4, then we either have m · k = 3 or m · k = 4,

and if v = 5, then we either have m · k = 4 or m · k = 6. Thus, the inequalities in the

lemma follows from Corollary 4.13.

Now, using Lemma 4.16 for Γi1,...,iv−4 , Theorem 4.12 and Theorem 4.11 with k = v−4,

we derive the following proposition if v ≥ 4. Whenever v = 2 or v = 3, the upper and

lower bounds in this proposition become equal, so the proposition in this case is nothing

but Corollary 4.10.
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Proposition 4.17. For any metrized graph with v vertices, we have

(v − 1)y(Γ) ≤ Kf(Γ) ≤ v2 − 3v + 4

2
y(Γ).

We note that when v ≥ 5 Corollary 4.15 gives better upper bounds than Proposi-

tion 4.17.

Next, we give an example to illustrate how the contraction formula in Theorem 4.12

can be used.

v3

v2

v1

v4

C4

Figure 4: Circle graph with 4 vertices

Example I: Let Cv be the circle graph with v vertices and v edges. Figure 4 illustrates

C4. Suppose each edge length of the metrized graph Γ = Cv is equal to 1. Then `(Cv) = v,

and we have Kf(C4) = 5 by direct computation. Moreover, τ(Γ) = 1
12
`(Cv) by [5,

Corollary 2.17], τ(Γ) = 1
12
`(Cv) − x(Γ)−y(Γ)

6
by [6, Equation 20], x(Γ) + y(Γ) = v−1

v
`(Cv)

by [7, Lemma 6.3]. Thus, x(Γ) = y(Γ) = v−1
2

.

Since Γi1,...,iv−4 = C4 for every admissible contraction of Γ in this case, applying The-

orem 4.12 with k = v − 4 gives Kf(Cv) = v(v2−1)
12

. This agrees with the result obtained

in [17, Equation (5)].

Next, we express the contraction formula for the Kirchhoff index in Theorem 4.12 in

terms of the traces of the pseudo inverses of related discrete Laplacian matrices.

Let β be the metrized graph obtained from Γ as follows: First, we delete any possible

self loops in Γ. Then we replace multiple edges with end points pi and qi by one edge

with the same end points and having length equal to the effective resistance between the

end points of those multiple edges. For example, multiple edges with lengths a and b is

replaced by an edge with length ab
a+b

. Suppose βi1,i2,...,ik is the metrized graph obtained

from Γi1,...,ik by following similar procedure. Then we have the following observations:

We have V (β) = V (Γ) = v and V (βi1,i2,...,ik) = V (Γi1,...,ik) = v−k. For any p, q in V (β),

rβ(p, q) = rΓ(p, q). Similarly, the resistance between any two vertices in βi1,i2,...,ik is equal

to the resistance between those vertices in Γi1,...,ik . Therefore, we have Kf(β) = Kf(Γ)
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and Kf(βi1,i2,...,ik) = Kf(Γi1,...,ik). Next, we recall the following fact ( [22] and [11])

Kf(β) = v · tr(L+), where L+ is the pseudo inverse of the discrete Laplacian of β.

Let L+
i1,i2,...,ik

be the pseudo inverse of the discrete Laplacian matrix of βi1,i2,...,ik . Now, we

can rewrite Theorem 4.12 as follows:

Theorem 4.18. Let Γ be a metrized graph with v ≥ 5 vertices, and let k be an integer with

1 ≤ k ≤ v − 4. Using the notations above, we have the following equality for admissible

contractions:

tr(L+) =
(v − 4− k)!(v − k)

(v − 4)!v

∑
ei1∈
E(Γ)

Ri1

Li1 +Ri1

· · ·
∑
eik∈

E(Γi1,...,ik−1
)

Rik

Lik +Rik

tr(L+
i1,i2,...,ik

)

−
(
v2 − (k + 2)v + k − 1

)
k

(v − k − 2)(v − k − 3)v
y(Γ).

In particular, if k = v − 4, we have

tr(L+) =
4

(v − 4)!v

∑
ei1∈
E(Γ)

Ri1

Li1 +Ri1

· · ·
∑
eiv−4

∈
E(Γi1,...,iv−5

)

Riv−4

Liv−4 +Riv−4

tr(L+
i1,i2,...,iv−4

)

− (3v − 5)(v − 4)

2v
y(Γ).

Note that in Theorem 4.12, we expressed Kf(Γ) in terms of the Kirchhoff indices of

the metrized graphs Γi1,...,iv−4 having 4 vertices and the quantity y(Γ). In fact, we can

apply Proposition 4.6 and the contraction formula of y(Γ) to make one further contraction

to express Kf(Γ) in terms of the resistance values between the vertices of Γi1,...,iv−3 having

3 vertices.

Theorem 4.19. Let Γ be a metrized graph with v ≥ 4 vertices. For admissible contrac-

tions, we have

Kf(Γ) =
1

(v − 4)!

∑
ei1∈
E(Γ)

Ri1

Li1 +Ri1

· · ·
∑
eiv−3

∈
E(Γi1,...,iv−4

)

Riv−3

Liv−3 +Riv−3

[
A
(
r′(p, piv−3

) + r′(q, piv−3
)
)

−B · r′(p, q)
]
,

where A = v2−3v+4
4(v−2)(v−3)

, B = v2−7v+8
4(v−2)(v−3)

, and r′(x, y) is the resistance function in Γi1,...,iv−3

having the vertex set {p, q, piv−3
}. Here the end points of the edge eiv−3 are contracted into

the vertex piv−3
.
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Proof. It follows from Theorem 4.11 that

y(Γ) =
2

(v − 2)!

∑
ei1∈
E(Γ)

Ri1

Li1 +Ri1

∑
ei2∈
E(Γi1

)

Ri2

Li2 +Ri2

· · ·
∑
eiv−4

∈
E(Γi1,...,iv−5

)

Riv−4

Liv−4 +Riv−4

y(Γi1,...,iv−4).

Using this equality in the contraction formula given in Theorem 4.12 we derive

Kf(Γ) =
1

(v − 4)!

∑
ei1∈
E(Γ)

Ri1

Li1 +Ri1

· · ·
∑
eiv−4

∈
E(Γi1,...,iv−5

)

Riv−4

Liv−4 +Riv−4

[
Kf(Γi1,...,iv−4)

− (3v − 5)(v − 4)

(v − 2)(v − 3)
y(Γi1,...,iv−4)

]
.

We use Proposition 4.6 to obtain

2Kf(Γi1,...,iv−4) = 4y(Γi1,...,iv−4) +
∑
eiv−3

∈
E(Γi1,...,iv−4

)

Riv−3

Liv−3 +Riv−3

∑
s∈

V (Γi1,...,iv−3
)

r′(s, piv−3
).

Now, we obtain the following equality by using Theorem 4.5:

y(Γi1,...,iv−4) =
1

4

∑
eiv−3

∈
E(Γi1,...,iv−4

)

Riv−3

Liv−3 +Riv−3

Kf(Γi1,...,iv−3).

If we use the last two equality in the contraction formula above for Kf(Γ), we obtain

Kf(Γ) =
1

(v − 4)!

∑
ei1∈
E(Γ)

Ri1

Li1 +Ri1

· · ·
∑
eiv−3

∈
E(Γi1,...,iv−4

)

Riv−3

Liv−3 +Riv−3

[1

2

∑
s∈

V (Γi1,...,iv−3
)

r′(s, piv−3
)

− v2 − 7v + 8

4(v − 2)(v − 3)
Kf(Γi1,...,iv−3)

]
.

Hence, the result follows by noting that∑
s∈

V (Γi1,...,iv−3
)

r′(s, piv−3
) = r′(p, piv−3

) + r′(q, piv−3
),

Kf(Γi1,...,iv−3) = r′(p, piv−3
) + r′(q, piv−3

) + r′(p, q),

where p, q and piv−3
are the three vertices of Γi1,...,iv−3 .

As we have seen in Theorem 4.19, there is a need to know the resistance values between

the vertices of a metrized graph with 3 vertices.

Suppose Γ1 and Γ2 are metrized graphs having vertex sets {p, q, s}, edge lengths 1,

and no self loops. In Γ1, we have k ≥ 1 edges with end points p and q, and u ≥ 1 edges
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Figure 5: Metrized graphs Γ1 and Γ2 having circuit reductions β1 and β2.

connecting the vertices q and s. In Γ2, there are m ≥ 1, n ≥ 1 and t ≥ 1 edges having

the end points {q, p}, {p, s} and {s, q}, respectively. By replacing any multiple edges by

an edge with length equal to the effective resistance between their end points we obtain

the graphs β1 and β2. Figure 5 illustrates these graphs. Then it is easy to compute the

resistance values between the vertices of these graphs as follows:

rΓ1(p, q) =
1

k
, rΓ1(p, s) =

1

k
+

1

u
, rΓ1(q, s) =

1

u

rΓ2(p, q) =
n+ t

mn+mt+ nt
, rΓ2(p, s) =

m+ t

mn+mt+ nt
, rΓ2(s, q) =

m+ n

mn+mt+ nt
.

(15)

Therefore, if Γ is a metrized graph with each edge length 1, the term

A
(
r′(p, piv−3

) + r′(q, piv−3
)
)
−B · r′(p, q)

in Theorem 4.19 is equal to one of the following values:

(A−B)
1

u
+ 2A

1

k
, if Γi1,...,iv−3 = Γ1 and piv−3

= p.

(A−B)(
1

k
+

1

u
), if Γi1,...,iv−3 = Γ1 and piv−3

= q.

(A−B)
1

k
+ 2A

1

u
, if Γi1,...,iv−3 = Γ1 and piv−3

= s.

(A−B)
m+ n

mn+mt+ nt
+ 2A

t

mn+mt+ nt
, if Γi1,...,iv−3 = Γ2 and piv−3

= p.

(A−B)
m+ t

mn+mt+ nt
+ 2A

n

mn+mt+ nt
, if Γi1,...,iv−3 = Γ2 and piv−3

= q.

(A−B)
n+ t

mn+mt+ nt
+ 2A

m

mn+mt+ nt
, if Γi1,...,iv−3 = Γ2 and piv−3

= s.

Lower and upper bounds to these values over all admissible contractions lead to lower

and upper bounds to the Kirchhoff index. For example, if Λ is the edge connectivity of
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Γ, one can show that (4A − 2B) 1
Λ

is an upper bound to these values over all admissible

contractions. Because we have Λ ≤ min{u, k} and Λ ≤ {m + n, m + t, n + t}. Then

this upper bound and Theorem 4.19 lead to the upper bound Kf(Γ) ≤ v(v2−1)
4Λ

for any

metrized graph Γ. We show that better upper bounds can be given in the next section.

5 The Kirchhoff Index and Edge Densities

In the last section, we obtained a contraction formula in Lemma 4.14 that relates the

Kirchhoff index of a metrized graph Γ and Kirchhoff indices of an admissible contractions

Γi1,...,iv−2 . Now, we give another interpretation of this formula by relating admissible

contractions of Γ to admissible partitions of V (Γ).

For an admissible contraction Γi1,i2,...,iv−2 having the set of vertices {p′, q′}, suppose

that 1 ≤ m and 1 ≤ k vertices of Γ are contracted into p′ and q′, respectively. If the

number of edges connecting p′ and q′ is n′, we know that Λ = min{n′}, where the minimum

is taken over all admissible contractions and Λ is the edge connectivity of Γ (see [6, Lemma

6.2]). Moreover, if each edge of Γ has length 1, then rΓi1,...,iv−2
(p′, q′) = 1

n′
. If Γ has e

number of edges, we have n′ ≤ e− v+ 2 as we contracted v− 2 edges to obtain Γi1,...,iv−2 .

Suppose the set of vertices contracted into p′ and q′ are V1 and V2, respectively. Note

that {V1, V2} is an admissible partition of V (Γ) and that |E(V1, V2)| = n′, |V1| = m and

|V2| = k. Therefore, we have the following equality

m · k · rΓi1,...,iv−2
(p′, q′) =

1

d(V1, V2)
. (16)

Using the formula in Lemma 4.14, Equation (16) and the fact that

(v − 1)! =
∑
ei1∈
E(Γ)

Ri1

Li1 +Ri1

∑
ei2∈
E(Γi1

)

Ri2

Li2 +Ri2

· · ·
∑
eiv−2

∈
E(Γi1,...,iv−3

)

Riv−2

Liv−2 +Riv−2

,

we obtain the following result:

Theorem 5.1. Let Γ be a metrized graph with set of vertices V (Γ), and let each edge of

Γ have length 1. Then we have

v − 1

dmax

≤ Kf(Γ) ≤ v − 1

dmin

.

Since 1 ≤ m, 1 ≤ k and m + k = v, we have v − 1 ≤ m · k ≤ v2

4
. Using these

inequalities, Equation (16) and the fact that Λ ≤ n′ ≤ e− v + 2, we obtain the following
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inequalities:

4Λ

v2
≤ dmin, and dmax ≤

e− v + 2

v − 1
. (17)

Thus, the following corollary follows from these inequalities and Theorem 5.1.

Corollary 5.2. Let Γ be a metrized graph with e edges and v ≥ 2 vertices, and let each

edge of Γ have length 1. Then we have

(v − 1)2

e− v + 2
≤ Kf(Γ) ≤ v2(v − 1)

4Λ
,

where Λ is the edge connectivity of Γ.

Note that if the metrized graph with vertex set V (Γ) is a simple graph, then dmax ≤ 1,

in which case we have (v − 1) ≤ Kf(Γ).

6 Trees, When the Kirchhoff Index is the Wiener

Index

In this section, we restrict ourselves to tree metrized graphs. A tree graph is a connected

graph with no cycle. That is, each edge in a tree graph is a bridge. We rewrite many of

the results from §4 for tree metrized graphs. In this way, when the graph is a tree, we

derive new formulas as well as previously known formulas for the Wiener index with new

proofs.

Let d(p, q) denote the distance between the vertices p and q in V (Γ). Then the Wiener

index of Γ is defined as follows (see [9, Page 211] and the references therein):

W (Γ) :=
1

2

∑
p, q∈V (Γ)

d(p, q).

This formula was first given in [13] but the concept of the Wiener number was introduced

in [14].

When Γ is a tree, d(p, q) = r(p, q) for each vertices p and q, where r(x, y) is the

resistance function on Γ. Therefore,

W (Γ) = Kf(Γ) if Γ is a tree. (18)

When Γ is a tree, Lemma 4.3 can be restated as follows
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Lemma 6.1. Let Γ be a metrized graph that is a tree with v vertices. For any p ∈ V (Γ),

we have

`(Γ) =
∑

q∈V (Γ)

(2− υ(q))r(p, q).

In particular, if each edge length is equal to 1, we have

v − 1 =
∑

q∈V (Γ)

(2− υ(q))r(p, q).

Proof. Each edge is a bridge in Γ as it is a tree. Thus, we have (Rai,p − Rbi,p)
2 = R2

i for

each edge in Γ, and so
Li(Rai,p−Rbi,p

)2

(Li+Ri)2
=

LiR
2
i

(Li+Ri)2
. We have

LiR
2
i

(Li+Ri)2
−→ Li and Li

Li+Ri
−→ 0

as Ri −→ ∞. Therefore, the first equality in the lemma follows from the first equality

given in Lemma 4.3. When Li = 1 for every ei ∈ E(Γ), the second equality in the lemma

is obtained by using the fact that `(Γ) = e = v − 1, where e is the number of edges of Γ.

Theorem 6.2. Let Γ be a metrized graph that is a tree with v vertices. Then we have

W (Γ) =
1

4

[
v · `(Γ) +

∑
p, q∈V (Γ)

υ(q)r(p, q)
]
.

In particular, if each edge length is equal to 1, we have

W (Γ) =
1

4

[
v(v − 1) +

∑
p, q∈V (Γ)

υ(q)r(p, q)
]
.

Proof. We take the summation of the equalities given in Lemma 6.1 over all vertices

p ∈ V (Γ). Then we obtain the result by using the definition of W (Γ).

Note that the result given in Theorem 6.2 was known in the literature for trees with

equal edge lengths (see [9, Page 217] and the references therein).

Now, we can state our first main result for trees:

Theorem 6.3. Let Γ be a metrized graph that is a tree with v vertices. Then we have

W (Γ) =
2v − 1

4
`(Γ) +

1

8

∑
p, q∈V (Γ)

υ(p)υ(q)r(p, q).

In particular, if each edge length is equal to 1, we have

W (Γ) =
(2v − 1)(v − 1)

4
+

1

8

∑
p, q∈V (Γ)

υ(p)υ(q)r(p, q).
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Proof. We first multiply both sides of the first equality given in Lemma 6.1 by 2− υ(p).

Then we take the summation of both sides over all vertices p ∈ V (Γ). This gives

`(Γ)
∑

p∈V (Γ)

(2− υ(p)) =
∑

p, q∈V (Γ)

(2− υ(p))(2− υ(q))r(p, q).

Since
∑

p∈V (Γ)(2− υ(p)) = 2v − 2e = 2, we have

2`(Γ) =
∑

p, q∈V (Γ)

(2− υ(p))(2− υ(q))r(p, q). Using the definition of W (Γ) gives

= 8W (Γ) +
∑

p, q∈V (Γ)

υ(p)υ(q)r(p, q)− 4
∑

p, q∈V (Γ)

υ(q)r(p, q),

= −8W (Γ) + 4v · `(Γ) +
∑

p, q∈V (Γ)

υ(p)υ(q)r(p, q), by Theorem 6.2.

This gives the first equality. The second equality follows from the first one by using the

fact that `(Γ) = v − 1 when each edge length is equal to 1.

A discussion similar to the proof of Lemma 6.1 gives

x(Γ) = 0 and y(Γ) = `(Γ) if Γ is a tree. (19)

Next, we restate Theorem 4.12 for a tree:

Theorem 6.4. Let metrized graph Γ be a tree with v ≥ 5 vertices. and let k be an integer

with 1 ≤ k ≤ v − 4. For admissible contractions, we have

W (Γ) =
(v − 4− k)!

(v − 4)!

∑
ei1∈
E(Γ)

· · ·
∑
eik∈

E(Γi1,...,ik−1
)

W (Γi1,...,ik)−
(
v2 − (k + 2)v + k − 1

)
k

(v − k − 2)(v − k − 3)
`(Γ).

In particular, if k = v − 4, we have

W (Γ) =
1

(v − 4)!

∑
ei1∈
E(Γ)

∑
ei2∈
E(Γi1

)

· · ·
∑
eiv−4

∈
E(Γi1,...,iv−5

)

W (Γi1,...,iv−4)−
(3v − 5)(v − 4)

2
`(Γ).

Proof. Since each edge is a bridge, we have Ri

Li+Ri
−→ 1 for each edge ei in Γ. Then the

result follows from Theorem 4.12, Equation (19) and Equation (18).

To derive further results about W (Γ) by using Theorem 6.4, we need to understand

the Wiener index of Γi1,...,iv−4 which is a tree with 4 vertices. Thus, we consider Lemma 6.5

below.

Let Sn and Pn be star and path metrized graphs on n vertices, respectively. Figure 6

illustrates S4 and P4.
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v1 v4v3
v2

cba

P4

b

v4a c v3
v1

v2S4

Figure 6: Path and star graphs with 4 vertices

Lemma 6.5. Suppose metrized graph Γ is a tree with 4 vertices. Then Γ is either S4 or

P4. Moreover, W (P4) = 3(a + b + c) + b and W (S4) = 3(a + b + c), where edge lengths

are as in Figure 6.

Proof. A direct computation gives the result.

Now, we can state our second main result for trees:

Theorem 6.6. Let metrized graph Γ be a tree with v vertices. Suppose each edge length

of Γ is 1. Then we have

W (Γ) = (v − 1)2 +
∑

{ei1 , ei2 , ··· , eiv−4
}⊂E(Γ)

Γi1,...,iv−4
=P4

1,

= (v − 1)2 +
∑

{ei1 , ei2 , ei3}⊂E(Γ)
ei1 ,ei2 ,ei3∈P

P is a path in Γ

1.

The last summation is taken over all subsets {ei1 , ei2 , ei3} of E(Γ) such that the edges ei1,

ei2 and ei3 are parts of a path in Γ.

Proof. Applying Lemma 6.5 for this case, we obtain W (Γi1,...,iv−4) = 10 if Γi1,...,iv−4 = P4,

and W (Γi1,...,iv−4) = 9 if Γi1,...,iv−4 = S4.

We note that

1

(v − 4)!

∑
ei1∈
E(Γ)

∑
ei2∈
E(Γi1

)

· · ·
∑
eiv−4

∈
E(Γi1,...,iv−5

)

1 =
(v − 1)(v − 2)(v − 3)

6
.

Then we use Theorem 6.4 with `(Γ) = (v − 1) to obtain

W (Γ) = (v − 1)2 +
1

(v − 4)!

∑
ei1 , ei2 , ··· , eiv−4

∈E(Γ)

Γi1,...,iv−4
=P4

1 = (v − 1)2 +
∑

{ei1 , ei2 , ··· , eiv−4
}⊂E(Γ)

Γi1,...,iv−4
=P4

1.
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We have the second equality above, because the number of permutations of v − 4 edges

ei1 , ei2 , · · · , eiv−4 is (v − 4)!. This gives the first equality in the theorem.

The second equality in the theorem follows from the first one.

Note that Theorem 6.6 in a sense gives information about how far a graph is away

from being a star graph.

As a corollary to Theorem 6.6, we obtain the following well-known result:

Corollary 6.7. For any metrized graph Γ with v vertices, we have

(v − 1)2 = W (Sv) ≤ W (Γ) ≤ W (Pv) =
v(v2 − 1)

6
.

Proof. No path in Sv can contain 3 edges, so W (Sv) = (v−1)2 by using Theorem 6.6. Since

this is the case with minimum value 0 of the summation in the formula of Theorem 6.6,

we obtain W (Sv) ≤ W (Γ).

On the other hand, any 3 edges in Pv is part of a path in Pv, namely the path is Pv

itself. Thus, the summation in the formula of Theorem 6.6 is
(
v−1

3

)
, and so W (Pv) =

(v − 1)2 +
(
v−1

3

)
by Theorem 6.6. We note that

(
v−1

3

)
is the maximum value of the

summation, so W (Γ) ≤ W (Pv).

We recall the following result due to Doyle and Graver [10] to compare with Theo-

rem 6.6:

Theorem 6.8. [9, Theorem 9] Let graph Γ be a tree with v vertices, and let v1, v2, . . . ,

vυ(p) be the number vertices in the connected components of the graph obtained from Γ by

deleting the edges connected to a vertex p. Then

W (Γ) =
v(v2 − 1)

6
−
∑

p∈V (Γ),
υ(p)≥3

∑
1≤i<j<k≤υ(p)

vivjvk.

Note that Theorem 6.8 somewhat explains how far a graph is away from being a path

graph.

Next, we restate Lemma 4.14 for trees. For an edge ei with end points pi and qi, let

mi be the number of vertices that are in the connected component of Γ − ei containing

pi, and let ki be the number of vertices that are in the connected component of Γ − ei
containing qi. Then we have mi + ki = v.
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Theorem 6.9. Let metrized graph Γ be a tree with v vertices. Suppose each edge length

of Γ is 1. Then we have

W (Γ) =
∑

ei∈E(Γ)

mi · ki.

Proof. Each edge ei is a bridge, so Ri

Li+Ri
−→ 1. Moreover, Γi1,...,iv−2 is the edge that is

not contracted, so we have rΓi1,...,iv−2
(p′, q′) = 1. Therefore, Lemma 4.14 implies

W (Γ) =
1

(v − 2)!

∑
ei1 , ei2 , ··· , eiv−2

∈E(Γ)

m · k,

where m and k are as defined before. Considering the permutations of the contracted

edges, we can rewrite this as

W (Γ) =
∑

{ei1 , ei2 , ··· , eiv−2
}⊂E(Γ)

m · k =
∑

ei∈E(Γ)

m · k.

Now, suppose Γi1,...,iv−2 = ei. Then the number of vertices contracted into pi is nothing

but mi, i.e., m = mi. Similarly, the number of vertices contracted into q′ is ki. That is,

k = ki. This completes the proof.

Note that Theorem 6.9 was known previously [9, Page 218] and [14].

Example II: Let β1 and β2 be metrized graphs with s+ t+ 2 and s+ t+ 3 vertices,

respectively. These are illustrated in Figure 7. Suppose s ≥ 0, t ≥ 0 and each edge length

in β1 and β2 is equal to 1. By applying Theorem 6.6, we obtain

W (β1) = (s+ t+ 1)2 +
(
s
1

)(
t
1

)
= (s+ t+ 1)2 + s · t.

W (β2) = (s+ t+ 2)2 +
(
s
1

)(
2
1

)(
t
1

)
+
(
s
1

)(
2
2

)(
t
0

)
+
(
s
0

)(
2
2

)(
t
1

)
= (s+ t+ 2)2 + 2s · t+ s+ t.

v1 v2

qtps

p2
q2

q1p1 Β1

v1 v3

qtps

p2
q2

q1p1 Β2

v2

Figure 7: Tree metrized graphs β1 and β2.
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We note that these results agree with the results given in [9, Page 234] (as β1 =

D(s + t + 2, s, t) and β2 = D(s + t + 3, s, t), where D(v, s, t) is the graph defined as

in [9, Page 234]).

Example III: In this example, we work with metrized graphs β3 and β4 illustrated

in Figure 8. β3 and β4 have s + t + k + 4 and s + t + k + m + 4 vertices, respectively.

Suppose s ≥ 0, t ≥ 0, k ≥ 0, m ≥ 0 and each edge length in these graphs is equal to 1.

By applying Theorem 6.6, we obtain

W (β3) = (s+ t+ k + 3)2 +

(
s

1

)(
2

1

)(
k

1

)
+

(
s

1

)(
2

2

)
+

(
2

2

)(
k

1

)
+

(
s

1

)(
2

1

)(
t

1

)
+

(
s

1

)(
2

2

)
+

(
2

2

)(
t

1

)
+

(
k

1

)(
2

1

)(
t

1

)
+

(
k

1

)(
2

2

)
+

(
2

2

)(
t

1

)
= (s+ t+ k + 3)2 + 2(sk + st+ kt+ s+ t+ k).

Now, to compute W (β4) we can use the computation used in obtaining W (β3). Namely,

when we compute the number of three edges that are part of a path in β4, we can divide

the edges in two groups: The ones having an end point in {u1, u2, · · · , um} and the ones

with no end points in this set.

W (β4) = (s+ t+ k +m+ 3)2 + 2(st+ (s+ t)(k + 1) + k) +

(
m

1

)[(s
1

)
+

(
k

1

)
+

(
t

1

)]
= (s+ t+ k +m+ 3)2 + 2(sk + st+ kt) + (m+ 2)(s+ t+ k).

v1 v3

qtps

p2
q2

q1p1

Β3

v2

v4

rkr2r1

v1 v3

qtps

p2
q2

q1p1

Β4

v2

v4

rkr2r1

umu2
u1

Figure 8: Tree metrized graphs β3 and β4.

Example IV: In this case, we work with the metrized graph β5 illustrated in Figure 9.

β5 has v = s+ t+ k+m+ n+ 5 vertices. Suppose s ≥ 0, t ≥ 0, k ≥ 0, m ≥ 0, n ≥ 0 and

each edge length of β5 is equal to 1. By applying Theorem 6.6 and using the computation

of W (β4), we obtain

W (β5) = (v−1)2+2(sk+st+kt+mn+kn+sn)+(n+2)(s+k)+(m+2)(s+k+t+1)+n(t+5).

The details are left as an exercise to the reader.
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v5v4v2

v1

v3p2

ps

p1

q1 q2 qt

r2 rk
r1

u2

um
u1

zn

z2

z1

Β5

Figure 9: Tree metrized graph β5.

Example V: In this case, we work with the metrized graph β6 illustrated in Figure 9.

β6 has v = s+ t+ k+m+ n+ h+ 6 vertices. Suppose s ≥ 0, t ≥ 0, k ≥ 0, m ≥ 0, n ≥ 0,

h ≥ 0 and each edge length of β6 is equal to 1. By applying Theorem 6.6 and using the

computation of W (β5), we obtain

W (β6) = (v − 1)2 + 2(sk + st+ kt+mn+ kn+ sn) + (n+ 4)(s+ k) + n(t+ 6)

+ (m+ 2)(s+ k + t+ 2) + h(3s+ 3k + 2n+ 2m+ t+ 6).

The details are left as an exercise to the reader.

v6
v5

v4v2

v1

v3p2

ps

p1

q1 q2 qt

r2 rk
r1

u2

um
u1

zn

z2

z1w1 w2 wh

Β6

Figure 10: Tree metrized graph β6.

Problem I: Show that the function F : N5 −→ N given by F (s, t, k,m, n) = (s+ t+

k+m+n+4)2+2(sk+st+kt+n(m+k+s))+(n+2)(s+k)+(m+2)(s+k+t+1)+nt+5n

takes every integer bigger than 557, and that the only integers not assumed by F are the

following 89 numbers:
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 33, 34, 35, 36, 37, 38,
39, 41, 43, 45, 47, 49, 51, 52, 53, 55, 56, 60, 61, 69, 73, 75, 77, 78, 79, 81, 83, 85, 87, 89, 91, 99, 101, 106, 113,
125, 129, 131, 133, 135, 141, 143, 147, 149, 157, 159, 165, 197, 199, 203, 213, 217, 219, 281, 285, 293, 301,

325, 357, 501, 509, 557}.
We checked by a computer program that any integer not in the list above and less

than 20000 can be a value of F .
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Problem II: Show that the function G : N6 −→ N given by G(s, t, k,m, n, h) =
(s + t + k + m + n + h + 5)2 + 2(sk + st + kt + mn + kn + sn) + (n + 4)(s + k) + (m +
2)(s+ k+ t+ 2) + n(t+ 6) + h(3s+ 3k+ 2n+ 2m+ t+ 6) takes every integer bigger than
301, and that the only integers not assumed by G are the following 104 numbers:
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59, 60, 61, 64, 66, 69, 70, 71, 72, 73,
75, 77, 78, 79, 81, 83, 85, 87, 89, 91, 95, 98, 99, 101, 102, 106, 113, 119, 124, 127, 129, 131, 133, 135, 139,

141, 143, 147, 149, 157, 159, 165, 197, 199, 203, 213, 217, 219, 279, 293, 301}.
Again, we tested by a computer program that any integer not in the list above and

less than 20000 can be a value of G.
The following theorem was conjectured in [16] and [12], and proved in both [21] and

[20].

Theorem 6.10. Except for exactly the following 49 positive integers, every positive integer
is the Wiener index of some tree.
{2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 30, 33, 34, 37, 38, 39, 41, 43, 45, 47, 51, 53, 55,

60, 61, 69, 73, 77, 78, 83, 85, 87, 89, 91, 99, 101, 106, 113, 147, 159}.

Note that a positive solution to any of Problem I and Problem II above will be another
proof of Theorem 6.10.
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