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Abstract

In this paper we develop a new two-step tenth algebraic order Runge–Kutta type method.

The vanishing of its phase–lag and its first, second and third derivatives is required for this

method. The impact of the vanishing of the phase–lag and its first, second and third derivatives

of the new obtained Runge–Kutta type two-step method on the effectiveness of the method is

investigated in this paper. We will study (1) the construction of the method, (2) the its local

truncation error (LTE) and the comparison of its LTE with LTE of other similar methods in the

literature (comparative local truncation error analysis), (3) the stability (interval of periodicity)

of the developed method. We mention that for the investigation of the stability of the new

obtained method we will use a scalar test equation with frequency different than the frequency

of the scalar test equation used for phase–lag analysis (stability analysis), (4) its efficiency with

application on the resonance problem of the Schrödinger equation and on the coupled differential

equations arising from the Schrödinger equation. It is will be shown the efficiency of this category
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of methods on the approximate solution of the Schrödinger equation and related initial-value

or boundary-value problems with solutions which have periodical and/or oscillating behavior.

We note here that this method is an improvement of the recent developed method in [1]. We

also introduce, for the first time in the literature, a new error estimation which is based on the

number of derivatives which are vanished in a method. .

1. INTRODUCTION

In this paper we will investigate the improvement of the efficiency of a class of low

computational cost high algebraic order two–step methods for the approximate solution

of the Schrödinger equation and related problems. We will examine the efficiency of

the new developed scheme on the numerical solution of both (1) the radial time inde-

pendent Schrödinger equation and (2) the coupled differential equation arising from the

Schrödinger equation. The numerical solution of this kind of problems are significantly

important on Computational Chemistry (see [2] and references therein). The Schrödinger

equation is an important part for most of the quantum chemical calculations. We note

that the Schrödinger’s equation can be solved only numerically for more than one par-

ticle. The Schrödinger equation offer us the possibility to compute important molecular

properties (for example vibrational energy levels and wave functions of systems) and to

give a detailed presentation of the molecule’s electronic structure (see for more details

in [3–6]).

In more details in this paper we improved the method developed for the first time

in the literature in [1]. What we have improved is the number of derivatives of the

phase–lag which will be vanished. In [1] we had vanished phase–lag and its first and

second derivatives. In this paper we will have vanished phase–lag and its first, second and

third derivatives. As we will prove in the analysis of the new method, this improvement

optimizes the accuracy of the method. The method retains the benefits of the method

developed in [1], i.e., we have a tenth order two–step method of only three stages. In this

paper, for the first time in the literature, we introduce a new error estimation which is

based on the number of derivatives which are vanished in a method.

We will study the numerical solution of special second order periodic and/or oscillatory

initial value problems of the form:

p′′(x) = f(x, p), p(x0) = p0 and p′(x0) = p′0 . (1)
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In more details we will study the systems of ordinary differential equations of second

order in which the first derivative p′ does not appear explicitly and for which the solutions

have periodic and/or oscillating behavior.

2. PHASE–LAG ANALYSIS OF SYMMETRIC 2m

MULTISTEP METHODS

In this section we will present the phase–lag analysis of symmetric multistep methods.

The above mentioned analysis is based on the following algorithm:

• First we define the multistep finite difference method for the the approximate solu-

tion of the initial value problem (1). This method has the general form

m∑

i=−m

ci pn+i = h2
m∑

i=−m

bi f(xn+i, pn+i) . (2)

• We define the area of integration, the integration interval and the stepsize of inte-

gration

The above method can be used for the numerical integration of the initial value

problem (1) following the procedure: (1) Let us consider that the integration of the

initial value problem (1) is taken place within the interval [a, b]. (2) The interval

[a, b] is divided into m equally spaced intervals i.e., {xi}mi=−m ∈ [a, b] . (3) Based on

(2) we define the quantity h by h = |xi+1 − xi|, i = 1−m(1)m− 1. This quantity

is called the stepsize of integration.

• Definition of 2m-step method and symmetric 2m-step method,

Remark 1. For the multistep method given by (2), the number of steps is equal to

2m.

Remark 2. The method (2) is called symmetric if and only if c−i = ci and b−i = bi,

i = 0(1)m.

• Definition of the algebraic order q of a Multistep Method (2)

Remark 3. The below mentioned linear operator

L(x) =

m∑

i=−m

ci p(x+ ih)− h2

m∑

i=−m

bi p
′′(x+ ih) (3)

is associated with the Multistep Method (2), where p ∈ C2.
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Definition 1. [7] The multistep method (2) is called algebraic of order q if the

associated linear operator L given by (3) vanishes for any linear combination of the

linearly independent functions 1, x, x2, . . . , xq+1.

• Definition of the scalar test equation, difference equation, characteristic equation of

a symmetric 2m-step method

If we apply the symmetric 2m-step method, (i = −m(1)m), to the scalar test

equation

p′′ = −φ2 p

we have the following difference equation:

Am(v) yn+m + · · ·+A1(v) yn+1+A0(v) yn +A1(v) yn−1+ · · ·+Am(v) yn−m = 0 (4)

where v = φ h, h is the step length and Aj(v) j = 0(1)k are polynomials of v.

The characteristic equation associated with (4) is given by:

Am(v) λ
m + · · ·+ A1(v) λ+ A0(v) + A1(v) λ

−1 + · · ·+ Am(v) λ
−m = 0 . (5)

• Definition of the interval of periodicity, the phase–lag, the term phase-fitted for a

symmetric 2m-step method

Definition 2. [8] A symmetric 2m-step method with characteristic equation given

by (5) is said to have an interval of periodicity (0, v20) if, for all v ∈ (0, v20), the roots

λi, i = 1(1)2m of Eq. (5) satisfy:

λ1 = eiθ(v) , λ2 = e−iθ(v) and |λi| ≤ 1 , i = 3(1)2m

where θ(v) is a real function of v.

Definition 3. [9], [10] For any method corresponding to the characteristic equation

(5), the phase–lag is defined as the leading term in the expansion of

t = v − θ(v) .

Then if the quantity t = O(vq+1) as v → ∞, the order of the phase–lag is q.

Definition 4. [11] A method is called phase-fitted if its phase–lag is equal to

zero.

-612-



• Direct formula for the computation of the phase–lag for a symmetric 2m-step

method

Theorem 1. [9] The symmetric 2m-step method with characteristic equation given

by (5) has phase–lag order q and phase–lag constant c given by

−cvq+2 +O(vq+4) =
2Am(v) cos(mv) + · · ·+ 2Aj(v) cos(j v) + · · ·+ A0(v)

2m2Am(v) + · · ·+ 2 j2Aj(v) + · · ·+ 2A1(v)
.

Remark 4. The above mentioned formula can be used for a direct calculation of the the

phase–lag of any symmetric 2m-step method.

Remark 5. For the purpose of our paper , the symmetric two-step method has phase–lag

order q and phase–lag constant c given by:

−cvq+2 +O(vq+4) =
2A1(v) cos(v) + A0(v)

2A1(v)
.

3. THE NEW HIGH ALGEBRAIC ORDER RUNGE–KUTTA

TWO–STEP METHOD WITH VANISHED PHASE–LAG

AND ITS FIRST, SECOND AND THIRD DERIVATIVES

We consider the family of methods

p̂n = pn − a0 h
2
(
fn+1 − 2 fn + fn−1

)
− 2 a1 h

2 fn

p̃n = pn − a2 h
2
(
fn+1 − 2 f̂n + fn−1

)

pn+1 − 2 pn + pn−1 = h2

[
b1 (fn+1 + fn−1) + b0 f̃n

]
(6)

where fi = p′′ (xi, pi) , i = −2(1)2 and aj , j = 0(1)2 and bi, i = 0, 1 are free parameters.

3.1. Construction of the Method

The family of methods (6), with:

b1 =
1

12
(7)

will be studied.
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The request the above method (6) with coefficient (7) to have vanished phase–lag and

its first, second and third derivatives leads to the following equations:

Phase −−Lag(PL) =
1

2

T0

1 + v2
(

1
12

+ b0a2v2 (−2 a0v2 + 1)
) = 0 (8)

First Derivative of the Phase−−Lag =
T1

(24 v6a0a2b0 − 12 v4a2b0 − v2 − 12)2
= 0 (9)

SecondDerivative of the Phase−−Lag =
T2

(24 v6a0a2b0 − 12 v4b0a2 − v2 − 12)3
= 0 (10)

ThirdDerivative of the Phase−−Lag =
T3

(24 v6a0a2b0 − 12 v4b0a2 − v2 − 12)4
= 0 (11)

where Tj , j = 0(1)3 are given in the Appendix A.

We obtain the coefficients of the new proposed Runge–Kutta type method by solving

the above system of equations (8)–(11):

a0 =
1

4

T4

T5
, a1 =

1

2

T6

T5

a2 =
T7

T8
, b0 =

1

6

T9

T10
(12)

where

T4 = − (cos (v))2 v6 + 4 sin (v) cos (v) v5 + 2 v5 sin (v)

− 27 (cos (v))2 v4 − 2 v6 + 198 sin (v) cos (v) v3 + 6 cos (v) v4

+ 90 sin (v) v3 + 216 (cos (v))2 v2 − 51 v4

+ 864 sin (v) cos (v) v − 288 cos (v) v2 − 864 sin (v) v

+ 1152 (cos (v))2 + 72 v2 − 2304 cos (v) + 1152

T5 = v3
(
− (cos (v))2 v5 − 33 (cos (v))2 v3 − 2 v5

+ 72 sin (v) cos (v) v2 + 36 sin (v) v2 − 342 (cos (v))2 v

− 21 v3 + 1260 sin (v) cos (v)− 468 cos (v) v − 1260 sin (v) + 810 v
)

T6 = sin (v) (cos (v))2 v5 + 4 sin (v) cos (v) v5

−3 (cos (v))3 v4 + 33 sin (v) (cos (v))2 v3

− 5 v5 sin (v) + 150 sin (v) cos (v) v3 − 36 (cos (v))3 v2

+ 9 cos (v) v4 + 252 sin (v) (cos (v))2 v − 183 sin (v) v3

− 6 v4 − 504 sin (v) cos (v) v − 576 (cos (v))3 + 108 cos (v) v2

+ 252 sin (v) v + 1728 (cos (v))2 − 72 v2 − 1728 cos (v) + 576
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T7 = − (cos (v))2 v5 − 33 (cos (v))2 v3 − 2 v5

+ 72 sin (v) cos (v) v2 + 36 sin (v) v2 − 342 (cos (v))2 v

− 21 v3 + 1260 sin (v) cos (v)− 468 cos (v) v − 1260 sin (v) + 810 v

T8 = v2
(
2 sin (v) (cos (v))2 v4 − (cos (v))2 v5

+ 4 sin (v) cos (v) v4 + 18 (cos (v))3 v3

+ 42 sin (v) (cos (v))2 v2 − 12 sin (v) v4

− 3 (cos (v))2 v3 − 2 v5 + 318 sin (v) cos (v) v2

+ 792 (cos (v))3 v − 36 cos (v) v3 − 1512 sin (v) (cos (v))2

− 360 sin (v) v2 + 21 v3 + 3024 sin (v) cos (v)− 2376 cos (v) v

− 1512 sin (v) + 1584 v
)

T9 = 2 sin (v) (cos (v))2 v4 − (cos (v))2 v5

+ 4 sin (v) cos (v) v4 + 18 (cos (v))3 v3

+ 42 sin (v) (cos (v))2 v2 − 12 sin (v) v4

− 3 (cos (v))2 v3 − 2 v5 + 318 sin (v) cos (v) v2

+ 792 (cos (v))3 v − 36 cos (v) v3 − 1512 sin (v) (cos (v))2

− 360 sin (v) v2 + 21 v3 + 3024 sin (v) cos (v)− 2376 cos (v) v

− 1512 sin (v) + 1584 v

T10 = v2
(
(cos (v))2 v3 + 4 sin (v) cos (v) v2

+ 2 sin (v) v2 + 3 (cos (v))2 v + 2 v3 + 30 sin (v) cos (v)

− 18 cos (v) v − 30 sin (v) + 15 v
)
.

For the case of heavy cancelations for some values of |v| of the above formulae given

by (12), the following Taylor series expansions should be used :

a0 = − 1

112
− 25 v2

56448
− 133307 v4

5811886080

− 69304247 v6

57832737177600
− 7704074170729 v8

122820633131192156160

− 424924254408836447 v10

129374342115072569612697600
− 1781825884550821929679 v12

10360297316575011374584823808000

− 4758838140811357160103101 v14

528424892572445140158424021362278400

− 3053068352774426857128516431557 v16

6474388605771815244054649131495761903616000
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− 590862397167275026014267230642431 v18

23929340286932629142025983190008335995764736000
+ · · ·

a1 =
1

8
− 25 v2

4928
+

85093 v4

507386880

+
1699153 v6

13127113359360
+

6126671263123 v8

53612181128694988800

+
11458816343172173 v10

2258917084548886136094720
+

961505735415818479 v12

3546942747660290230950297600

+
251382053409367380834923 v14

17743204573555850249519732097024000

+
2096765786188783304149959690823 v16

2826122010455951098595283351049737338880000

+
17642642415193348130540829878243 v18

454145519593269359148181185455644748021760000
+ · · ·

a2 =
1

300
+

v2

22176
− 31991 v4

36324288000

− 474931 v6

4068320256000
− 78835746827 v8

11502931424624640000

− 270050471413 v10

979129522864049356800
− 250414854231396079 v12

24057212376769692696576000000

− 246976492280848612487 v14

681685169908146012250177536000000

− 125736267740042913970381 v16

10307079769011167705222684344320000000

− 473587354831511022946937 v18

1154392934129250782984940646563840000000
+ · · ·

b0 =
5

6
− v10

95800320
− 4751 v12

10461394944000

− 220139 v14

10545086103552000
− 2683501739 v16

3312844250291896320000

− 137691778121 v18

4880584083199261409280000
+ · · · (13)

The behavior of the coefficients is given in the Figure 1.

We give for the new method (6) with the coefficients given by (12)–(13) the symbol:

NM2SH3DV . The local truncation error of this method is given by:

LTENM2SH3DV = − 1

95800320
h12

(
4 p(12)n + 15φ2 p(10)n + 20φ4 p(8)n − φ10 p(2)n

)
+O

(
h14
)
.
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Figure 1: Behavior of the coefficients of the new proposed method given by (12) for several
values of v = φ h.

4. COMPARATIVE ERROR ANALYSIS

Our investigation on local truncation error analysis is based on the test problem:

p′′(x) = (V (x)− Vc +G) p(x) (14)

where

• V (x) is a potential function,

• Vc a constant value approximation of the potential for the specific x,

• G = Vc − E and

• E is the energy.

We study the following methods :
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4.1. Classical Method (i.e., Method (6) with Constant Coefficients)

LTECL = − 1

23950080
h12 p(12)n +O

(
h14
)
.

4.2. Method with Vanished Phase–Lag and Its First and Second Derivatives

Developed in [1]

LTEExplTwoStepPC = − 1

23950080
h12

(
p(12)n + 3φ2 p(10)n + 3φ4 p(8)n + φ6 p(6)n

)
+O

(
h14
)
.

4.3. The New Proposed Method with Vanished Phase–Lag and Its First,

Second and Third Derivatives Developed in Section 3

LTENM2SH3DV = − 1

95800320
h12

(
4 p(12)n + 15φ2 p(10)n + 20φ4 p(8)n − φ10 p(2)n

)
+O

(
h14
)
.

We follow the procedure

• As we mentioned in the beginning of this section, we base our study on the test

problem (14). Based on this test problem we computer the derivatives which are

necessary for the computation of the Local Truncation Errors. Some of the expres-

sions of the derivatives used in these computations are presented in the Appendix

B.

• The above computed expressions of the derivatives (some of which are presented in

the Appendix B), are substituted in the formulae of the Local Truncation Error.

Consequently, the resulting formulae of the Local Truncation Errors are dependent

from the quantity G and the energy E.

• We base our investigation on the two cases for the parameter G :

1. The Energy and the potential are closed each other. Consequently

G = Vc − E ≈ 0 i.e., the value of the parameter G is approximately equal to

zero.
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Remark 6. In the case G = Vc − E ≈ 0, all the quantities in the expressions

of the local truncation error with terms of several power of G are approximately

equal to zero.

Remark 7. In the case G = Vc − E ≈ 0, only the terms of the expressions

of the local truncation error for which the power to G is equal to zero i.e., the

terms which are free from G are considered. The reason is the previous remark.

In the case G = Vc −E ≈ 0 (free from G terms) the local truncation error for

the classical method (constant coefficients), the local truncation error for the

method with vanished the phase–lag and its first and second derivatives and

the local truncation error for the method with vanished the phase–lag and its

first, second and third derivatives are the same since the expressions which are

free from G in the local truncation errors in this case are the same. Therefore,

for these values of G, the methods are of comparable accuracy.

2. The Energy and the potential are far from each other. Consequently

G >> 0 or G << 0. Then |G| is a large number. In these cases the best (more

accurate) method is the method which has the minimum power of G in the

expressions of the local truncation error.

• Finally the asymptotic expansions of the Local Truncation Errors are calculated.

Based on the above procedure we obtain the following asymptotic expansions of the

Local Truncation Errors:

4.4. Classical Method

LTECL = − 1

23950080
h12

(
p (x) G6 + · · ·

)
+O

(
h14
)
.

4.5. Method with Vanished Phase–Lag and Its First and Second

Derivatives Developed in [1]

LTEExplTwoStepPC = − 1

5987520
h12

((
d2

dx2
g (x)

)
p (x) G4 + · · ·

)
+O

(
h14
)
.
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4.6. The New Proposed Method with Vanished Phase–Lag and Its First,

Second and Third Derivatives Developed in Section 3

LTENM2SH3DV = − 1

23950080
h12

[(
15

(
d

dx
g (x)

)2

p (x) + 20 g (x) p (x)
d2

dx2
g (x)

+10

(
d3

dx3
g (x)

)
d

dx
p (x) + 51

(
d4

dx4
g (x)

)
p (x)

)
G3

]
+O

(
h14
)
.

From the above mentioned analysis we have the following theorem:

Theorem 2.

• Classical Method (i.e., the method (6) with constant coefficients): For this method

the error increases as the sixth power of G.

• High Algebraic Order Two–Step Method with Vanished Phase–lag and its First and

Second Derivatives developed in [1]: For this method the error increases as the fourth

power of G.

• High Algebraic Order Two–Step Method with Vanished Phase–lag and its First, Sec-

ond and Third Derivatives developed in Section 3: For this method the error in-

creases as the third power of G.

So, for the approximate integration of the time independent radial Schrödinger equation

the New Obtained High Algebraic Order Method with vanished phase–lag and its first,

second and third derivatives is the most efficient from theoretical point of view, especially

for large values of |G| = |Vc − E|.

5. STABILITY ANALYSIS

The stability analysis ia based on the scalar test equation:

p′′ = −ω2 p . (15)

Remark 8. The frequency of the scalar test equation of the phase–lag analysis (φ) –

studied above – is different with the frequency of the scalar test equation used for the

stability analysis i.e., ω 6= φ.
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Application to the scalar test equation (15) leads to the following difference equation:

A1 (s, v) (pn+1 + pn−1) + A0 (s, v) pn = 0

where

A1 (s, v) = 1 + b1 s
2 + a2 b0 s

4 − 2 a0 a2 b0 s
6

A0 (s, v) = −2 + b0 s
2 − 2 a2 b0 s

4 + 4 a2 b0 s
6 (a0 − a1) (16)

s = ω h and v = φ h.

Substituting the coefficients ai, i = 0(1)2 and b0 into the formulae (16) we obtain:

A1 (s, v) =
1

12

T11

T12
, A0 (s, v) =

1

6

T13

T12

where

T11 = −42 s4v6 + 15 s2v8 + 1620 s4v4 + 2 s6v6

− 4 s4v8 + 2 s2v10 + 51 s6v4 − 72 s6v2

+ 12 (cos (v))2 v10 + 36 (cos (v))2 v8

+ 24 sin (v) v9 − 216 cos (v) v8

− 1152 (cos (v))2 s6 − 360 sin (v) v7 + 2304 cos (v) s6

− 4 cos (v) sin (v) s6v5 + 4 cos (v) sin (v) s2v9

− 198 cos (v) sin (v) s6v3 + 144 cos (v) sin (v) s4v5

+ 30 cos (v) sin (v) s2v7 − 864 cos (v) sin (v) s6v

+ 2520 cos (v) sin (v) s4v3 + 180 v8 + 24 v10 − 1152 s6

+ (cos (v))2 s6v6 − 2 (cos (v))2 s4v8

+ (cos (v))2 s2v10 + 27 (cos (v))2 s6v4

− 66 (cos (v))2 s4v6 + 3 (cos (v))2 s2v8

− 2 sin (v) s6v5 + 2 sin (v) s2v9 + 48 cos (v) sin (v) v9

− 6 cos (v) s6v4 − 18 cos (v) s2v8 − 216 (cos (v))2 s6v2

− 684 (cos (v))2 s4v4 − 90 sin (v) s6v3 + 72 sin (v) s4v5

− 30 sin (v) s2v7 + 360 cos (v) sin (v) v7 + 288 cos (v) s6v2

− 936 cos (v) s4v4 + 864 sin (v) s6v − 2520 sin (v) s4v3

T12 = v7
(
(cos (v))2 v3 + 4 sin (v) cos (v) v2
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+ 2 sin (v) v2 + 3 (cos (v))2 v + 2 v3 + 30 sin (v) cos (v)

− 18 cos (v) v − 30 sin (v) + 15 v
)

T13 = 1584 s2v6 + 42 s4v6 + 21 s2v8 − 1620 s4v4 − 2 s6v6 + 4 s4v8

− 2 s2v10 − 39 s6v4 + 216 s6v2 − 12 (cos (v))2 v10

− 36 (cos (v))2 v8 − 24 sin (v) v9

+ 216 cos (v) v8 − 2304 (cos (v))2 s6 + 360 sin (v) v7

+ 1152 cos (v) s6 − 4 cos (v) sin (v) s6v5

+ 4 cos (v) sin (v) s2v9 − 102 cos (v) sin (v) s6v3

− 144 cos (v) sin (v) s4v5 + 318 cos (v) sin (v) s2v7

+ 1872 cos (v) sin (v) s6v − 2520 cos (v) sin (v) s4v3

− 180 v8 − 24 v10 − (cos (v))2 s6v6

+ 2 (cos (v))2 s4v8 − (cos (v))2 s2v10

− 27 (cos (v))2 s6v4 + 66 (cos (v))2 s4v6

− 3 (cos (v))2 s2v8 + 12 sin (v) s6v5 − 12 sin (v) s2v9

− 48 cos (v) sin (v) v9 − 12 cos (v) s6v4

− 36 cos (v) s2v8 + 216 (cos (v))2 s6v2

+ 684 (cos (v))2 s4v4 + 456 sin (v) s6v3

− 72 sin (v) s4v5 − 360 sin (v) s2v7 − 360 cos (v) sin (v) v7

− 504 cos (v) s6v2 + 936 cos (v) s4v4

− 1368 sin (v) s6v + 2520 sin (v) s4v3 + 3024 cos (v) sin (v) s2v5

− 2 (cos (v))2 sin (v) s6v5 + 2 (cos (v))2 sin (v) s2v9

− 66 (cos (v))2 sin (v) s6v3 + 42 (cos (v))2 sin (v) s2v7

− 504 (cos (v))2 sin (v) s6v − 1512 (cos (v))2 sin (v) s2v5

− 1512 sin (v) s2v5 + 1152 (cos (v))3 s6 + 72 (cos (v))3 s6v2

+ 18 (cos (v))3 s2v8 + 792 (cos (v))3 s2v6

− 2376 cos (v) s2v6 + 6 (cos (v))3 s6v4 .

Definition 5. (see [8]) A multistep method is called P -stable if its interval of periodicity

is equal to (0,∞).
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Definition 6. A multistep method is called singularly almost P -stable if its interval of

periodicity is equal to (0,∞)− S 2. We use the term singularly almost P -stable method

only in the cases when the frequency of the scalar test equation for the phase–lag analysis

is equal with the frequency of the scalar test equation for the stability analysis, i.e., ω = φ.

The s− v plane for the method obtained in this paper is shown in Figure 2.

Figure 2: s − v plane of the new developed two-step tenth algebraic order method with
vanished phase–lag and its first, second and third derivatives.

Remark 9. Studying the s− v region we observe two areas:

• The shadowed area denotes where the method is stable,

• The white area denotes the region where the method is unstable.

Remark 10. In the cases of problems for which the mathematical models request only one

frequency per differential equation in the model, the observation of the surroundings of

the first diagonal of the s − v plane is required. This is because in these cases

the frequency of the scalar test equation used for the phase–lag analysis is equal with

the frequency of the scalar test equation used for the stability analysis. There are many

problems in Sciences, Engineering and Technology for which their mathematical models

2where S is a set of distinct points
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are of the form described above. (for example the time independent Schrödinger equation

and the coupled equations arising from the Schrödinger equation).

Based on the above remark, we investigate the case where the frequency of the scalar

test equation used for the stability analysis is equal with the frequency of the scalar test

equation used for the phase–lag analysis , i.e., we investigate the case where s = v (i.e.,

on the the s − v plane see the surroundings of the first diagonal). Based on the above

mentioned study we found that the interval of periodicity in the case s = v is equal to:

(0, 26).

Based on the above we have the following theorem:

Theorem 3. The method obtained in section 3:

• is of tenth algebraic order,

• has the phase–lag and its first, second and third derivatives equal to zero

• has an interval of periodicity equals to: (0, 26), when the frequency of the scalar test

equation used for the phase–lag analysis is equal with the frequency of the scalar test

equation used for the stability analysis

6. NUMERICAL RESULTS

We will study the effectiveness of the new obtained numerical scheme. This will be

possible by investigating :

1. the numerical solution of the radial time-independent Schrödinger equation and

2. the numerical solution of coupled differential equations of the Schrödinger type

6.1. Radial Time–Independent Schrödinger Equation

The radial time independent Schrödinger equation is given by :

p′′(r) = [l(l + 1)/r2 + V (r)− k2] p(r). (17)

where
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• the function W (r) = l(l+ 1)/r2 + V (r) is called the effective potential; this satisfies

W (x) → 0 as x → ∞,

• the quantity k2 is a real number denoting the energy,

• the quantity l is a given integer representing the angular momentum,

• V is a given function which denotes the potential.

Since the problem (17) is a boundary value one, the boundary conditions must be

defined. For the initial point we have the boundary condition :

p(0) = 0

and another boundary condition, for large values of r, determined by physical considera-

tions.

The new obtained method has coefficients which are frequency dependent. There-

fore, the parameter φ of the coefficients of the method (v = φ h) must be defined. The

parameter φ for the radial Schrödinger equation and for the case l = 0 is given by :

φ =
√

|V (r)− k2| =
√

|V (r)− E|

where V (r) is the potential and E is the energy.

6.1.1. Woods–Saxon Potential

We use for our numerical tests the well known Woods-Saxon potential which is written

as :

V (r) =
u0

1 + q
− u0 q

a (1 + q)2
(18)

with q = exp
[
r−X0

a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

In Figure 3 we present the behavior of the Woods–Saxon potential.

Using the methodology proposed by Ixaru et al. [12], we approximate the potential in

some critical points. Based on these approximations we define the value of the parameter

φ.

-625-



Figure 3: The Woods-Saxon potential.

We choose φ as follows (see for details [13] and [14]) :

φ =





√
−50 + E for r ∈ [0, 6.5− 2h]

√
−37.5 + E for r = 6.5− h

√
−25 + E for r = 6.5

√
−12.5 + E for r = 6.5 + h

√
E for r ∈ [6.5 + 2h, 15].

For example, in the point of the integration region r = 6.5− h, the value of φ is equal

to:
√
−37.5 + E. So, w = φ h =

√
−37.5 + E h. In the point of the integration region

r = 6.5− 3 h, the value of φ is equal to:
√
−50 + E, etc.

6.1.2. Radial Schrödinger Equation – The Resonance Problem

Our first numerical experiment consists of the numerical solution of the radial time

independent Schrödinger equation (17) with the Woods-Saxon potential (18).

Since the above mentioned problem has an infinite interval of integration i.e., r ∈(
0,∞

)
, it is necessary to approximate this interval by a finite one. Consequently, we will

use the integration interval r ∈ [0, 15]. We will solve the above problem in a domain of

energies equal to: E ∈ [1, 1000].

Since in our problem for r greater than some value R and for the case of positive

energies, E = k2, the potential decays faster than the term l(l+1)
r2

, the radial Schrödinger

equation effectively reduces to:

p′′ (r) +

(
k2 − l(l + 1)

r2

)
p (r) = 0 (19)
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In (19) the differential equation has linearly independent solutions krjl (kr) and krnl (kr),

where jl (kr) and nl (kr) are the spherical Bessel and Neumann functions respectively.

Thus, the solution of equation (17) (when r → ∞), has the asymptotic form

p (r) ≈ Akrjl (kr)− Bkrnl (kr)

≈ AC

[
sin

(
kr − lπ

2

)
+ tan dl cos

(
kr − lπ

2

)]

where δl is the phase shift that may be calculated from the formula

tan δl =
p (r2)S (r1)− p (r1)S (r2)

p (r1)C (r1)− p (r2)C (r2)

for r1 and r2 distinct points in the asymptotic region (we choose r1 as the right hand

end point of the interval of integration and r2 = r1 − h) with S (r) = krjl (kr) and

C (r) = −krnl (kr). Since in our test, the problem is treated as an initial–value problem,

we need pj , j = 0, 1 before starting a two-step method. From the initial condition, we

obtain p0. The value p1 is obtained by using high order Runge–Kutta–Nyström methods

(see [15] and [16]). With these starting values, we evaluate at r2 of the asymptotic region

the phase shift δl.

We call the problem as resonance problem in the case of positive energies. We have

two forms for this problem:

• finding the phase-shift δl or

• finding those E, for E ∈ [1, 1000], at which δl =
π
2
.

We actually solve the latter problem, known as the resonance problem.

The boundary conditions for this problem are:

p(0) = 0 , p(r) = cos
(√

Er
)

for large r.

We compute the approximate positive eigenenergies of the Woods-Saxon resonance

problem using:

• the eighth order multi–step method developed by Quinlan and Tremaine [17], which

is indicated as Method QT8;

• the tenth order multi–step method developed by Quinlan and Tremaine [17], which

is indicated as Method QT10;
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• the twelfth order multi–step method developed by Quinlan and Tremaine [17], which

is indicated as Method QT12;

• the fourth algebraic order method of Chawla and Rao with minimal phase–lag [18],

which is indicated as Method MCR4;

• the exponentially–fitted method of Raptis and Allison [19], which is indicated as

Method MRA ;

• the hybrid sixth algebraic order method developed by Chawla and Rao with minimal

phase–lag [20], which is indicated as Method MCR6;

• the classical form of the Two-Step Hybrid Method developed in Section 3, which is

indicated as Method NMCL 3;

• the Phase-Fitted Method (Case 1) developed in [7], which is indicated as Method

NMPF1;

• the Phase-Fitted Method (Case 2) developed in [7], which is indicated as Method

NMPF2;

• the Method developed in [21] (Case 2), which is indicated as Method NMC2;

• the method developed in [21] (Case 1), which is indicated as Method NMC1;

• the Two-Step Hybrid Method developed in [1], which is indicated as Method

NM2SH2DV;

• the new obtained Two-Step Runge–Kutta type method developed in Section 3,

which is indicated as Method NM2SH3DV.

The reference values are determined using the well known two-step method of Chawla

and Rao [20] with small step size for the integration. We calculated numerically the

eigenenergies and we compared the computed values with the reference values. In Figures

4 and 5, we present the maximum absolute error Errmax = | log10 (Err) | where

Err = |Ecalculated − Eaccurate|
3with the term classical we mean the method of Section 3 with constant coefficients
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Figure 4: Accuracy (Digits) for several values of CPU Time (in Seconds) for the eigenvalue
E2 = 341.495874. The nonexistence of a value of Accuracy (Digits) indicates that for this
value of CPU, Accuracy (Digits) is less than 0.

CPU time (in seconds)

E
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Figure 5: Accuracy (Digits) for several values of CPU Time (in Seconds) for the eigenvalue
E3 = 989.701916. The nonexistence of a value of Accuracy (Digits) indicates that for this
value of CPU, Accuracy (Digits) is less than 0.

of the eigenenergies E2 = 341.495874 and E3 = 989.701916 respectively, for several values

of CPU time (in seconds). We note that the CPU time (in seconds) counts the computa-

tional cost for each method.
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6.1.3 Remarks on the Numerical Results for the Radial

Schrödinger Equation

Based on the numerical results given above, we have the following:

1. The classical form of the Two-Step Hybrid Method developed in Section 3, which

is indicated as Method NMCL is more efficient than the fourth algebraic order

method of Chawla and Rao with minimal phase–lag [18], which is indicated as

Method MCR4, the exponentially-fitted method of Raptis and Allison [19], which

is indicated as Method MRA, the Phase-Fitted Method (Case 1) developed in

[7], which is indicated as Method NMPF1, the Phase-Fitted Method (Case 2)

developed in [7], which is indicated as Method NMPF2, the Method developed

in [21] (Case 2), which is indicated as Method NMC2 and the eighth order multi-

step method developed by Quinlan and Tremaine [17], which is indicated asMethod

QT8.

2. The tenth algebraic order multistep method developed by Quinlan and Tremaine

[17], which is indicated as Method QT10 is more efficient than the fourth algebraic

order method of Chawla and Rao with minimal phase–lag [18], which is indicated as

Method MCR4. The Method QT10 is also more efficient than the eighth order

multi-step method developed by Quinlan and Tremaine [17], which is indicated as

Method QT8. Finally, the Method QT10 is more efficient than the hybrid sixth

algebraic order method developed by Chawla and Rao with minimal phase–lag [20],

which is indicated as Method MCR6 for large CPU time and less efficient than

the Method MCR6 for small CPU time.

3. The twelfth algebraic order multistep method developed by Quinlan and Tremaine

[17], which is indicated as Method QT12 is more efficient than the tenth order

multistep method developed by Quinlan and Tremaine [17], which is indicated as

Method QT10

4. The Phase-Fitted Method (Case 1) developed in [7], which is indicated as Method

NMPF1 is more efficient than the exponentially-fitted method of Raptis and Allison

[19] and the Phase-Fitted Method (Case 2) developed in [7], which is indicated as

Method NMPF2
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5. The Method developed in [21] (Case 2), which is indicated as Method NMC2 is

more efficient than the exponentially-fitted method of Raptis and Allison [19] and

the Phase-Fitted Method (Case 2) developed in [7], which is indicated as Method

NMPF2 and the Phase-Fitted Method (Case 1) developed in [7], which is indicated

as Method NMPF1

6. The Method developed in [21] (Case 1), which is indicated as Method NMC1, is

more efficient than all the other methods mentioned above.

7. The Two-Step Hybrid Method developed in [1] , which is indicated as Method

NM2SH2DV, is more efficient than all the other methods mentioned above.

8. Finally, the New Obtained Two-Step Runge–Kutta type Method developed in Sec-

tion 3, which is indicated as Method NM2SH3DV, is the most efficient one.

6.2. Error Estimation

The estimation of the local truncation error (LTE) is necessary in order to produce

variable-step schemes. Several schemes of this form have been developed the last decades

for the numerical solution of systems of differential equations (see for example [7]– [64]).

Our scheme for variable step integration consists a local error estimation technique

which is based on an embedded pair of multistep methods and on the fact that when the

algebraic order is maximal then we have better numerical solution for the problems with

oscillatory or periodical behavior.

We use as lower order solution yLn+1, for the purpose of local error estimation, the

method developed in [64] - which is of eight algebraic order. As higher order solution

yHn+1 we use the method obtained in the present paper - which is of tenth algebraic order.

Now, the local truncation error in yLn+1 is estimated by

LTE =
∣∣yHn+1 − yLn+1

∣∣ .

For a required local error of acc and for a step size used for the nth step equal to hn,

the estimated step size for the (n+ 1)st step, which would give a local error equal to acc,

is given by

hn+1 = hn

( acc

LTE

) 1

q
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where q is the algebraic order of the method.

Our local truncation error estimate is based on the lower order solution yLn+1. However,

for an error estimate which is less than acc, we adopt the widely used procedure of

performing local extrapolation. Thus, although the control of an estimation of the local

error is taken place in lower order solution yLn+1, it is the higher order solution yHn+1 which

is accepted at each point.

6.3. Coupled Differential Equations

The mathematical models of many problems in

• quantum chemistry,

• material science,

• theoretical physics,

• atomic physics,

• physical chemistry and chemical physics, etc.

consist of coupled differential equations of the Schrödinger type.

The close-coupling differential equations of the Schrödinger type can be written as:

[
d2

dx2
+ k2

i −
li(li + 1)

x2
− Vii

]
pij =

N∑

m=1

Vim pmj

for 1 ≤ i ≤ N and m 6= i.

We will study the case in which all channels are open. Consequently, the following

boundary conditions are hold (see for details [22]):

pij = 0 at x = 0

pij ∼ ki xjli (kix)δij +

(
ki
kj

)1/2

Kij ki xnli (kix) (20)

where jl(x) and nl(x) are the spherical Bessel and Neumann functions, respectively.

Remark 11. The new obtained method can also be applied in case of problems involving

closed channels.

Defining a matrix K ′ and diagonal matrices M , N by (see for detailed analysis in [22]):

K ′

ij =

(
ki
kj

)1/2

Kij
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Mij = kixjli(kix)δij

Nij = kixnli(kix)δij

we find that the asymptotic condition (20) can be written as:

p ∼ M+NK′ .

The rotational excitation of a diatomic molecule by neutral particle impact is a real

problem in quantum chemistry, theoretical physics, material science, atomic physics and

molecular physics with its mathematical model to be expressed with close–coupling dif-

ferential equations of the Schrödinger type. Denoting, as in [22], the entrance channel by

the quantum numbers (j, l), the exit channels by (j′, l′), and the total angular momentum

by J = j + l = j′ + l′, we find that

[
d2

dx2
+ k2

j′j −
l′(l′ + 1)

x2

]
pJjlj′l′(x) =

2µ

~2

∑

j′′

∑

l′′

< j′l′; J | V | j′′l′′; J > pJjlj′′l′′(x)

where

kj′j =
2µ

~2

[
E +

~
2

2I
{j(j + 1)− j′(j′ + 1)}

]
.

E is the kinetic energy of the incident particle in the center-of-mass system, I is the

moment of inertia of the rotator, and µ is the reduced mass of the system.

The potential V can be be written as (see for details [22]):

V (x, k̂j′jk̂jj) = V0(x)P0(k̂j′jk̂jj) + V2(x)P2(k̂j′jk̂jj)

and consequently, the coupling matrix element may then be written as

< j′l′; J | V | j′′l′′; J >= δj′j′′δl′l′′V0(x) + f2(j
′l′, j′′l′′; J)V2(x)

where the f2 coefficients can be obtained from formulas given by Bernstein et al. [23]

and k̂j′j is a unit vector parallel to the wave vector kj′j and Pi, i = 0, 2 are Legendre

polynomials (see for details [24]). The boundary conditions are

pJjlj′l′(x) = 0 at x = 0 (21)

pJjlj′l′(x) ∼ δjj′δll′ exp[−i(kjjx− 1/2lπ)]−
(
ki
kj

)1/2

SJ(jl; j′l′) exp[i(kj′jx− 1/2l′π)]

where the relation of scattering S matrix with K matrix of (20) is given by

S = (I+ iK)(I− iK)−1 .
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The numerical method for step-by-step integration from the initial value to matching

points is included in the algorithm which is used for the calculation of the cross sections

for rotational excitation of molecular hydrogen by impact of various heavy particles. The

algorithm used in our numerical tests is based on an analogous algorithm which has been

developed for the numerical tests of [22].

For our numerical experiments we choose the S matrix which is calculated using the

following parameters

2µ

~2
= 1000.0 ;

µ

I
= 2.351 ; E = 1.1

V0(x) =
1

x12
− 2

1

x6
; V2(x) = 0.2283V0(x) .

As is described in [1], we take J = 6 and consider excitation of the rotator from the

j = 0 state to levels up to j′ = 2, 4 and 6 giving sets of four, nine and sixteen coupled

differential equations, respectively. Following the procedure obtained by Bernstein [24]

and Allison [22] the potential is considered infinite for values of x less than some x0. The

wave functions then zero in this region and effectively the boundary condition (21) may

be written as

pJjlj′l′(x0) = 0 .

For the approximate solution of the above mentioned problem we have used the fol-

lowing methods:

• the Iterative Numerov method of Allison [22] which is indicated as Method I4,

• the variable-step method of Raptis and Cash [25] which is indicated as Method II,

• the embedded Runge–Kutta Dormand and Prince method 5(4) [16] which is indi-

cated as Method III,

• the embedded Runge–Kutta method ERK4(2) developed in Simos [26] which is

indicated as Method IV,

• the embedded two-step method developed in [1] which is indicated as Method V,

• the new developed embedded two-step method which is indicated as Method VI.

4We note here that Iterative Numerov method developed by Allison [22] is one of the most well-known
methods for the numerical solution of the coupled differential equations arising from the Schrödinger
equation
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Table 1: Coupled Differential Equations. Real time of computation (in seconds)
(RTC) and maximum absolute error (MErr) to calculate |S|2 for the variable–step methods
Method I - Method V. acc=10−6. Note that hmax is the maximum stepsize.

Method N hmax RTC MErr

Method I 4 0.014 3.25 1.2× 10−3

9 0.014 23.51 5.7× 10−2

16 0.014 99.15 6.8× 10−1

Method II 4 0.056 1.55 8.9× 10−4

9 0.056 8.43 7.4× 10−3

16 0.056 43.32 8.6× 10−2

Method III 4 0.007 45.15 9.0× 100

9
16

Method IV 4 0.112 0.39 1.1× 10−5

9 0.112 3.48 2.8× 10−4

16 0.112 19.31 1.3× 10−3

Method V 4 0.448 0.20 1.1× 10−6

9 0.448 2.07 5.7× 10−6

16 0.448 11.18 8.7× 10−6

Method VI 4 0.448 0.15 3.2× 10−7

9 0.448 1.40 4.3× 10−7

16 0.448 10.13 5.6× 10−7

In Table 1 we present the real time of computation required by the methods mentioned

above to calculate the square of the modulus of the S matrix for sets of 4, 9 and 16 coupled

differential equations. We present also the maximum error in the calculation of the square

of the modulus of the S matrix. In Table 1 N indicates the number of equations of the

set of coupled differential equations.

7. CONCLUSIONS

A family of tenth algebraic order two-step methods is studied in this paper. More

specifically, we investigated: (1) the procedure of vanishing of the phase–lag and its first,

second and third derivatives, (2) the comparative error analysis, (3) the stability analysis

and (4) the computational behavior of the new produced method and its effectiveness on

the numerical solution of the radial Schrödinger equation and of the coupled Schrödinger

equations both of which are of high importance for chemistry.
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From the analysis and numerical results presented above, it is easy to see the efficiency

of the new developed method for the approximate solution of the radial Schrödinger

equation and of the coupled Schrödinger equations.

All computations were carried out on a IBM PC-AT compatible 80486 using double

precision arithmetic with 16 significant digits accuracy (IEEE standard).

Appendix A: Formulae for the Derivatives of Tj, j = 0(1)3

T0 = 2

(
1 + v2

(
1

12
+ b0a2v

2
(
−2 a0v

2 + 1
)))

cos (v)− 2

+ v2b0
(
1 + a2v

2
(
4 a0v

2 − 4 a1v
2 − 2

))

T1 = −576 sin (v) v12a0
2a2

2b0
2 + 576 sin (v) v10a0a2

2b0
2

− 576 v9a1a2
2b0

2 − 144 sin (v) v8a2
2b0

2 + 48 sin (v) v8a0a2b0

+ 576 v7a0a2b0
2 + 576 sin (v) v6a0a2b0 + 96 v7a0a2b0

− 96 v7a1a2b0 − 24 sin (v) v6a2b0 − 1728 v5a1a2b0

− 144 v5a2b0
2 − 288 sin (v) v4b0a2 − 24 v5a2b0 − sin (v) v4

− 24 sin (v) v2 + 144 vb0 − 144 sin (v) + 24 v

T2 = −288− 13824 cos (v) v18a0
3a2

3b0
3 + 36 cos (v) v4

+ 432 cos (v) v2 + 1728 cos (v) + 72 v2 − 10368 cos (v) v14a0a2
3b0

3

+ cos (v) v6 − 20736 cos (v) v10a0a2
2b0

2 − 1728 cos (v) v12a0a2
2b0

2

+ 20736 cos (v) v12a0
2a2

2b0
2 + 1728 cos (v) v14a0

2a2
2b0

2

− 10368 cos (v) v6a0a2b0 − 1728 cos (v) v8a0a2b0 − 72 cos (v) v10a0a2b0

+ 290304 v10a0a1a2
2b0

2 + 11520 v12a0a1a2
2b0

2

+ 41472 v14a0a1a2
3b0

3 + 432 v2b0 + 20736 cos (v) v16a0
2a2

3b0
3

+ 3456 v4b0a2 + 24 v6a2b0 − 864 v8a2
2b0

2 + 20736 v4a2b0
2

− 5184 v8a2
2b0

3 + 144 v6a2b0
2 + 5184 cos (v) v4b0a2

+ 36 cos (v) v8a2b0 + 864 cos (v) v6a2b0 − 1728 b0 + 432 cos (v) v10a2
2b0

2

+ 5184 cos (v) v8a2
2b0

2 − 86400 v6a0a2b0
2 + 1728 cos (v) v12a2

3b0
3

− 1728 v8a0a2b0
2 + 288 v8a1a2b0 + 6912 v12a1a2

3b0
3

+ 31104 v10a0a2
2b0

3 + 1728 v10a1a2
2b0

2
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+ 5184 v10a0a2
2b0

2 − 288 v8a0a2b0 + 103680 v4a1a2b0

− 69120 v12a0
2a2

2b0
3 − 14400 v6a0a2b0 + 9792 v6a1a2b0 − 11520 v12a0

2a2
2b0

2

T3 = −3456 v + 6912 sin (v) v2 + 864 sin (v) v4

+ 20736 sin (v) + 288 v3 + 9953280 v7a1a2
2b0

2

+ 864 sin (v) v12a2
2b0

2 − 165888 sin (v) v6a0a2b0 + 497664 sin (v) v12a0
2a2

2b0
2

− 497664 sin (v) v10a0a2
2b0

2 − 41472 sin (v) v8a0a2b0

+ 20736 sin (v) v6a2b0 + 82944 sin (v) v4b0a2 + 82944 v5a2b0
2

+ 13824 v5a2b0 − 207360 b0a2v
3 − 41472 v11a2

3b0
3

− 248832 v11a2
3b0

4 + 1161216 v5a0a2b0 − 497664 v5a1a2b0

+ 497664 v9a1a2
2b0

2 − 27648 v7a1a2b0 + 124416 sin (v) v8a2
2b0

2

+ 20736 sin (v) v10a2
2b0

2 − 4976640 v3a1a2b0

+ 414720 v7a2
2b0

2 + 3456 v9a2
2b0

2 + 20736 v9a2
2b0

3

+ 2488320 v7a2
2b0

3 + 82944 sin (v) v12a2
3b0

3 − 1244160 v3a2b0
2

+ 6912 sin (v) v14a2
3b0

3 + 20736 sin (v) v16a2
4b0

4

+ 6967296 v5a0a2b0
2 + 1728 v3b0 + 48 sin (v) v10a2b0

+ 1728 sin (v) v8a2b0 + 9953280 v17a0
3a2

3b0
4 + 1658880 v17a0

3a2
3b0

3

− 5971968 v15a0
2a2

3b0
4 − 995328 v15a0

2a2
3b0

3

+ 1990656 v13a0a2
3b0

4 + 829440 v13a0
2a2

2b0
3

+ 331776 v13a0a2
3b0

3 + 138240 v13a0
2a2

2b0
2

+ 34836480 v11a0
2a2

2b0
3 − 995328 v11a1a2

3b0
3

− 20736 vb0 + sin (v) v8 + 48 sin (v) v6 + 5806080 v11a0
2a2

2b0
2

− 248832 v11a0a2
2b0

3 − 41472 v11a0a2
2b0

2

+ 6912 v11a1a2
2b0

2 − 16920576 v9a0a2
2b0

3

− 96 sin (v) v12a0a2b0 − 82944 sin (v) v12a0a2
2b0

2

− 3456 sin (v) v14a0a2
2b0

2 + 82944 sin (v) v14a0
2a2

2b0
2

− 497664 sin (v) v14a0a2
3b0

3 + 3456 sin (v) v16a0
2a2

2b0
2

− 41472 sin (v) v16a0a2
3b0

3 + 995328 sin (v) v16a0
2a2

3b0
3

+ 82944 sin (v) v18a0
2a2

3b0
3 − 165888 sin (v) v18a0a2

4b0
4
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− 663552 sin (v) v18a0
3a2

3b0
3 − 55296 sin (v) v20a0

3a2
3b0

3

+ 497664 sin (v) v20a0
2a2

4b0
4 − 663552 sin (v) v22a0

3a2
4b0

4

+ 331776 sin (v) v24a0
4a2

4b0
4 − 69672960 v9a0a1a2

2b0
2

− 5640192 v11a0a1a2
2b0

2 − 138240 v13a0a1a2
2b0

2

− 663552 v15a0a1a2
3b0

3 − 55738368 v15a0
2a1a2

3b0
3

− 1658880 v17a0
2a1a2

3b0
3 − 1990656 v17a0a1a2

4b0
4

− 3981312 v19a0
2a1a2

4b0
4 − 3456 sin (v) v10a0a2b0

− 2820096 v9a0a2
2b0

2 + 3456 v9a0a2b0
2 + 576 v9a0a2b0 − 576 v9a1a2b0 .

Appendix B: Formulae for the Derivatives of pn

Formulae of the derivatives which presented in the formulae of the Local Truncation

Errors:

p(2)n = (V (x)− Vc +G) p(x)

p(3)n =

(
d

dx
g (x)

)
p (x) + (g (x) +G)

d

dx
p (x)

p(4)n =

(
d2

dx2
g (x)

)
p (x) + 2

(
d

dx
g (x)

)
d

dx
p (x) + (g (x) +G)2 p (x)

p(5)n =

(
d3

dx3
g (x)

)
p (x) + 3

(
d2

dx2
g (x)

)
d

dx
p (x)

+ 4 (g (x) +G) p (x)
d

dx
g (x) + (g (x) +G)2

d

dx
p (x)

p(6)n =

(
d4

dx4
g (x)

)
p (x) + 4

(
d3

dx3
g (x)

)
d

dx
p (x)

+ 7 (g (x) +G) p (x)
d2

dx2
g (x) + 4

(
d

dx
g (x)

)2

p (x)

+ 6 (g (x) +G)

(
d

dx
p (x)

)
d

dx
g (x) + (g (x) +G)3 p (x)

p(7)n =

(
d5

dx5
g (x)

)
p (x) + 5

(
d4

dx4
g (x)

)
d

dx
p (x)
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+ 11 (g (x) +G) p (x)
d3

dx3
g (x) + 15

(
d

dx
g (x)

)
p (x)

+
d2

dx2
g (x) + 13 (g (x) +G)

(
d

dx
p (x)

)
d2

dx2
g (x)

+ 10

(
d

dx
g (x)

)2
d

dx
p (x) + 9 (g (x) +G)2 p (x)

+
d

dx
g (x) + (g (x) +G)3

d

dx
p (x)

p(8)n =

(
d6

dx6
g (x)

)
p (x) + 6

(
d5

dx5
g (x)

)
d

dx
p (x)

+ 16 (g (x) +G) p (x)
d4

dx4
g (x) + 26

(
d

dx
g (x)

)
p (x)

+
d3

dx3
g (x) + 24 (g (x) +G)

(
d

dx
p (x)

)
d3

dx3
g (x)

+ 15

(
d2

dx2
g (x)

)2

p (x) + 48

(
d

dx
g (x)

)

+

(
d

dx
p (x)

)
d2

dx2
g (x) + 22 (g (x) +G)2 p (x)

+
d2

dx2
g (x) + 28 (g (x) +G) p (x)

(
d

dx
g (x)

)2

+ 12 (g (x) +G)2
(

d

dx
p (x)

)
d

dx
g (x) + (g (x) +G)4 p (x)

· · ·
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