
On Laplacian and Signless Laplacian
Estrada Indices of Graphs

Shahroud Azami

Parand Branch, Islamic Azad University, Tehran, Iran

(Received October 3, 2014)

Abstract

Let G be a graph with n vertices and µ1, . . . , µn and q1, . . . , qn denote the
Laplacian eigenvalues and signless Laplacian eigenvalues of G, respectively. The
Laplacian Estrada index and signless Laplacian Estrada index of G is defined as
LEE(G) = eµ1 + · · · + eµn and SLEE(G) = eq1 + · · · + eqn . We prove that for any
graph G, SLEE(G) ≥ LEE(G), with equality if and only if G is bipartite. Also, we

show that if G has m edges and t triangles, then SLEE(G) > n+3m+ t+ 4m2

n + 4m3

3n2

and SLEE(G) ≥
√
n2 + 16m2 + 6mn+ 2nt+ 32m3

3n .

1 Introduction

Throughout this paper we consider simple graphs, that is finite and undirected graphs

without loops and multiple edges. If G is a graph with vertex set {1, . . . , n}, the adjacency

matrix of G is an n × n matrix A = A(G) = [aij], where aij = 1 if there is an edge

between the vertices i and j, and 0 otherwise. The Laplacian matrix of G is the matrix

L = L(G) = D −A where D is a diagonal matrix with (d1, . . . , dn) on the main diagonal

in which di is the degree of the vertex i. The signless Laplacian matrix of G is the matrix

Q = Q(G) = D + A. Since L and Q are real symmetric matrices, their eigenvalues are

real numbers. We denote the Laplacian eigenvalues and signless Laplacian eigenvalues of

G by µ1 ≥ µ2 ≥ · · · ≥ µn and q1 ≥ q2 ≥ · · · ≥ qn, respectively. The Laplacian and signless

Laplacian matrix are positive semi-definite matrix, so µi, qi ≥ 0 and the multiplicity of

0 as an eigenvalue of L is equal to the number of connected components of G and the
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multiplicity of 0 as an eigenvalue of Q is equal to the number of bipartite connected

components of G (see [7]). For details on Laplacian eigenvalues of graphs we refer the

reader to [4, 17, 18] and for signless Laplacian see [4, 6, 7].

The Estrada index of G defined by E. Estrada [9, 10, 11] as

EE(G) =
n∑
i=1

eλi ,

where λ1, . . . , λn are the eigenvalues of the adjacency matrix of G. The Estrada index has

already found a remarkable variety of applications. Initially it was used to quantify the

degree of folding of long-chain molecules, especially proteins [9, 10, 11]; for this purpose

the EE-values of pertinently constructed weighted graphs were employed. Another, fully

unrelated, application of EE (of simple graphs) was proposed by Estrada and Rodŕıguez–

Velázquez [13, 14]. They showed that EE provides a measure of the centrality of complex

(communication, social, metabolic, etc.) networks. In addition to this, in [15] a connection

between EE and the concept of extended atomic branching was considered. An application

of the Estrada index in statistical thermodynamic has also been reported [12].

Mathematical properties of the Estrada index were studied in a number of recent works

[5, 19]; for a survey see [8].

Similar to Estrada index, the Laplacian Estrada index of a graph G was introduced in

[16] (see also [21]) as

LEE(G) =
n∑
i=1

eµi . (1)

Various properties of LEE were established in [16, 21].

The signless Laplacian Estrada index of a graph G was introduced in [1] as

SLEE(G) =
n∑
i=1

eqi . (2)

In this paper we show that for any graph, SLEE is always greater than or qual to

LEE. Moreover, we find two lower bounds for the SLEE of a graph in terms of its number

of vertices, the number of edges and the number of triangles.
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2 Laplacian Estrada index vs. signless Laplacian

Estrada index

In this section, we prove that for any graph G, SLEE(G) ≥ LEE(G).

We consider the Laplacian and signless Laplacian spectral moments of graphs G which

are
n∑
i=1

µki = tr(Lk),
n∑
i=1

qki = tr(Qk).

By the the Taylor expansion of the exponential function ex, we have

LEE(G) =
∞∑
k=0

tr(Lk)

k!
, (3)

SLEE(G) =
∞∑
k=0

tr(Qk)

k!
. (4)

We need the following well-known result (see [6, 7]).

Lemma 1. For any graph G, L(G) and Q(G) are similar (have the same eigenvalues) if

and only if G is bipartite.

We know that a graph G is non-bipartite if and only if there exists some closed walk of

odd length in G. Also the number of closed walks of length k in G is equal to tr(Ak) (see

[4]). So we have the following lemma.

Lemma 2. A graph G is non-bipartite if and only if there exits some odd integer s such

that tr(As) > 0.

Theorem 1. For any graph G,

SLEE(G) ≥ LEE(G),

equality holds if and only if G is bipartite.

Proof. The terms appearing in the expansion of (D + A)k are the same as those in

the expansion of (D − A)k, the only difference is that all the signs of the terms in the

expansion of (D + A)k are positive, but some of the terms in the expansion of (D − A)k

have negative signs. Since D and A are matrices with non-negative entries, for any k ≥ 0

we have

tr(Qk) = tr
(
(D + A)k

)
≥ tr

(
(D − A)k

)
= tr(Lk).
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Therefore,

SLEE(G) =
∞∑
k=0

tr(Qk)

k!
≥

∞∑
k=0

tr(Lk)

k!
= LEE(G).

If G is bipartite, then by Lemma 1, L and Q are similar and so SLEE(G) = LEE(G). If

G is not bipartite, by Lemma 2, there is an odd integer s such that tr(As) > 0. Hence,

tr(Qs) = tr ((D + A)s) = tr(Ds)+· · ·+tr(As) > tr(Ds)+· · ·−tr(As) = tr ((D − A)s) = tr(Ls).

Therefore, by (3) and (4), SLEE(G) > LEE(G). �

3 Lower bounds for signless Laplacian Estrada index

In this section we obtain two lower bounds for the SLEE(G) in terms of the number of

vertices, the number of edges and the number of triangles of G.

We recall Holder inequality. Let a1, . . . , an, b1, . . . , bn be non-negative real numbers,

p, q > 1 and 1
p

+ 1
q

= 1. Then

n∑
i=1

aibi ≤

(
n∑
i=1

api

) 1
p
(

n∑
i=1

bqi

) 1
q

.

Lemma 3. (See [6, 7]) Let G be graph with n vertices, m edges, t triangles and degree

sequence d1, . . . , dn. Then

tr(Q) = 2m, (5)

tr(Q2) = 2m+
n∑
i=1

d2i , (6)

tr(Q3) = 6t+ 3
n∑
i=1

d2i +
n∑
i=1

d3i . (7)

Theorem 2. Let G be graph with n vertices, m ≥ 1 edges and t triangles. Then

SLEE(G) > n+ 3m+ t+
4m2

n
+

4m3

3n2
.

Proof. Let d1, . . . , dn be the degree sequence of G. Since m ≥ 1, for all k, tr(Qk) > 0,

so by (4),

SLEE(G) > n+ tr(Q) +
tr(Q2)

2
+

tr(Q3)

6
. (8)
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By Holder inequality for p = q = 2, we have 2m =
∑n

i=1 di ≤
√
n (
∑n

i=1 d
2
i )

1
2 . Hence,

n∑
i=1

d2i ≥
4m2

n
. (9)

Again, by Holder inequality for p = 3 and q = 3
2
, we have 2m =

∑n
i=1 di ≤ n

2
3 (
∑n

i=1 d
3
i )

1
3 .

Hence,
n∑
i=1

d3i ≥
8m3

n2
. (10)

By (8), (9), (10) and Lemma 3 we have

SLEE(G) ≥ n+ 2m+
1

2

(
2m+

4m2

n

)
+

1

6

(
6t+ 3

4m2

n
+

8m3

n2

)
= n+ 3m+ t+

4m2

n
+

4m3

3n2
.

�

For a graph with signless Laplacian eigenvalues q1, q2, . . . , qn, with m edges and t

triangles, from the above proof we see that

n∑
i=1

q2i ≥ 2m+
4m2

n
, (11)

n∑
i=1

q3i ≥ 6t+
12m2

n
+

8m3

n2
. (12)

By the Taylor’s theorem, for any real x 6= 0, there is a real η between x and 0 such

that ex = 1 + x+ x2

2!
+ x3

3!
+ eη x

4

4!
. So we have the following.

Lemma 4. For any real x 6= 0, one has ex > 1 + x+ x2

2!
+ x3

3!
.

Theorem 3. Let G be graph with n vertices, m edges and t triangles. Then

SLEE(G) >

√
n2 + 16m2 + 6mn+ 2nt+

32m3

3n
.

Proof. Suppose that q1, q2, . . . , qn are the signless Laplacian eigenvalues of G. Using
Lemma 4 we have

SLEE(G)2 =
n∑
i=1

n∑
j=1

eqi+qj

>
n∑
i=1

n∑
j=1

(
1 + qi + qj +

(qi + qj)
2

2
+

(qi + qj)
3

6

)

=
n∑
i=1

n∑
j=1

(
1 + qi + qj + q2i /2 + q2j /2 + qiqj + q3i /6 + q3j /6 + q2i qj/2 + qiq

2
j /2
)
.
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Now, by (5),

n∑
i=1

n∑
j=1

(qi + qj) = n
n∑
i=1

qi + n
n∑
j=1

qj = 4mn,

n∑
i=1

n∑
j=1

qiqj =

(
n∑
i=1

qi

)2

= 4m2.

By (11),

n∑
i=1

n∑
j=1

(q2i /2 + q2j /2) =
n

2

n∑
i=1

q2i +
n

2

n∑
j=1

q2j ≥ 2mn+ 4m2,

n∑
i=1

n∑
j=1

(q2i qj/2 + qiq
2
j /2) =

1

2

n∑
i=1

q2i ·
n∑
j=1

qj +
1

2

n∑
i=1

qi ·
n∑
j=1

q2j ≥ 4m2 +
8m3

n
.

Similarly by (12),
n∑
i=1

n∑
j=1

(q3i /6 + q3j /6) ≥ 2nt+ 4m2 +
8m3

3n
.

Combining the above relations, we have

SLEE(G)2 > n2 + 4mn+ 4m2 + 2mn+ 4m2 + 4m2 +
8m3

n
+ 2nt+ 4m2 +

8m3

3n

= n2 + 16m2 + 6mn+ 2nt+
32m3

3n
.

�
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[7] D. Cvetković, P. Rowlinson, S. K. Simić, Signless Laplacians of finite graphs, Lin.

Algebra Appl. 423 (2007) 155–171.
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Int. J. Quantum Chem. 106 (2006) 823–832.

[16] G. H. Fath–Tabar, A. R. Ashrafi, I. Gutman, Note on Estrada and L-Estrada indices

of graphs, Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math.) 139 (2009) 1–16.

[17] R. Grone, R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discr. Math.

7 (1994) 221–229.

[18] R. Grone, R. Merris, V. S. Sunder, The Laplacian spectrum of a graph, SIAM J.

Matrix Anal. Appl. 11 (1990) 218–238.

-417-



[19] I. Gutman, Lower bounds for Estrada index, Publ. Inst. Math. (Beograd) 83 (2008)

1–7.

[20] A. Khosravanirad, A lower bound for Laplacian Estrada index of a graph, MATCH

Commun. Math. Comput. Chem 70 (2013) 175–180.

[21] J. Li, W. C. Shiu, A. Chang, On the Laplacian Estrada index of a graph, Appl. Anal.

Discr. Math. 3 (2009) 147–156.

-418-


