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Abstract

New transformations which preserve the order and size of a graph, but decrease
its matching energy are proposed to compare the matching energy between two
graphs. Let Ψn,m be the set of the (n,m)-graphs, where n and m are the numbers
of vertices and edges, respectively. With the aid of the new method, the graphs
with the minimum matching energy in Ψn,m are deduced for three cases, namely
unicyclic and bipartite unicyclic graphs (m = n), bicyclic graphs (m = n + 1), and
cactus graphs, where a cactus is a graph with all of its blocks being either edges or
cycles.

1 Introduction

Let G = (V (G), E(G)) be a simple graph with vertex set V (G) and edge set E(G). A

k-matching of G is a union of k independent edges in G. We denote m(G, k) the number

of k-matchings in G. It is consistent to define m(G, 0) = 1 and m(G, k) = 0 for k < 0.

The following recursive formula is very important in studying k-matching numbers [1]:

m(G, k) = m(G− e, k) +m(G− u− v, k − 1),

where e = uv ∈ E(G). Recently, Gutman and Wagner [2] define the matching energy of

G using the matching polynomial, which is given by

α(G) =
∑
k≥0

(−1)km(G, k)xn−2k,
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where n = |V (G)| is the order of G. Note that all the zeros of α(G) are real and they are

symmetrical about 0, see Godsil and Gutman [3].

Definition 1.1. Let G be a simple graph of order n. Then the matching energy of G is

defined as

ME(G) =
∑

1≤i≤n

|αi|,

where α1, α2, · · · , and αn denote the zeros of α(G).

Gutman and Wagner [2] pointed out that ME(G) is a quantity of relevance for chem-

ical applications which can be traced back to the 1970s. For more details about the

matching energy, one can refer to [2].

Example 1.2. (i) Let G1 be the connected graph of order 4 obtained by appending

a pendant edge to a cycle of order 3. Then m(G1, 1) = 4, m(G1, 2) = 1 and

m(G1, k) = 0 for k ≥ 3, hence

α(G1) = x4 − 4x2 + 1

has 4 zeros ±
√

2±
√

3, and so ME(G1) = 2
√

6.

(ii) Let G2 be a cycle of order 4. Then m(G2, 1) = 4, m(G2, 2) = 2 and m(G2, k) = 0

for k ≥ 3, hence

α(G2) = x4 − 4x2 + 2

has 4 zeros ±
√

2±
√

2, and so ME(G2) = 2
√

2(2 +
√

2).

Note that the sum of the zeros of α(G) is zero. Similar to the Coulson integral formula

for the energy of a graph, see [4], we have an equivalent definition for the matching energy

of a graph G:

ME(G) =
2

π

∫ +∞

0

1

x2
ln
[∑

k≥0

m(G, k)x2k
]
dx.

This equivalent definition makes comparison of matching energies easier by using matching

numbers directly. Let G1 and G2 be two graphs. If m(G1, k) 6 m(G2, k) holds for all

k > 0, we denote G1 4 G2. Furthermore, if G1 4 G2 and there exists at least one k such

that m(G1, k) < m(G2, k), we have G1 ≺ G2. If m(G1, k) = m(G2, k) holds for all k > 0,
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we write G1 ∼ G2. It follows easily from the definitions that

G1 4 G2 ⇒ME(G1) ≤ME(G2),

G1 ≺ G2 ⇒ME(G1) < ME(G2),

G1 ∼ G2 ⇒ME(G1) = ME(G2),

and there are examples showing that all the converses are false, see [5, 6]. For the graphs

G1 and G2 in Example 1.2, we have G1 ≺ G2 and so ME(G1) < ME(G2).

A theme in the study of matching energy is to determine graphs achieving the extremal

matching energy in a class of graphs. Observe that if H is a subgraph of G then H 4 G,

and so ME(H) ≤ME(G). It follows that

ME(En) ≤ME(G) ≤ME(Kn)

for any graph G of order n, where En is the empty graph of order n (i.e. edgeless graph),

and Kn is the complete graph of order n [2]. The connected unicyclic [7], bicyclic [8],

and tricyclic [9] graphs with the maximum matchings, namely the newly proposed max-

imum matching energy, were determined in the 1980s. Recently, Gutman and Wagner

[2] obtained the connected unicyclic graphs with the minimum and the maximum match-

ing energies. Ji et al. [10] determined the connected bicyclic graphs with the minimum

and the maximum matching energies. Li and Yan [11] characterized the connected graph

with given connectivity κ (resp. chromatic number χ) achieving the maximum matching

energy. In this paper, we focus on the minimum matching energy.

Let Ψn,m be the set of connected graphs of order n and size m. In particular, for

m = n, n + 1, n + 2, Ψn,m are the sets of connected unicyclic graphs, connected bicyclic

graphs, and connected tricyclic graphs, respectively. Let Φn,m be the set of connected

cactus graphs of order n and size m, where a cactus is a graph with all of its blocks being

either edges or cycles. Obviously, the graphs in Φn,m have m− n+ 1 edge-disjoint cycles

and Φn,m ⊂ Ψn,m. In particular, Φn,n−1 and Φn,n are the sets of trees and of connected

unicyclic graphs, respectively.

Denote Sn (as shown in Fig. 1(a)) the star graph, Sk
n the graph obtained from Sn by

joining k pairs of independent pendant vertices to form k edge-disjoint triangles, and S+
n

the graph obtained from Sn by joining a pendant vertex to two other pendant vertices.

Gutman and Wagner [2] noted that Sn (resp., S1
n) has the minimum matching energy in

Ψn,n−1 (resp., Ψn,n). Ji et al. [10] showed that S+
n has the minimum matching energy in
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Figure 1: Sn and Sm−n+1
n

Ψn,n+1. We propose a uniform and simpler approach to prove these known results using

graph transforms. Among Ψn,m, Ji and Ma [12] and Xu et al. [13] independently obtained

the graph with the minimum matching energy when n ≤ m ≤ 2(n − 2); So and Wang

[14] derived the graphs with the minimum matching energy when n − 1 ≤ m ≤ 2n − 3

and n(n − 1)/2 − (n − 2) ≤ m ≤ n(n − 1)/2. However the minimum matching energy

(and the graphs achieving such minimum) in Ψn,m is still unknown for 2n − 2 ≤ m ≤

n(n− 1)/2− (n− 1). Nonetheless, we use this approach to deduce a new result: Sm−n+1
n

(as shown in Fig. 1(b)) has the minimum matching energy in Φn,m.

The rest of the paper is organized as follows. In Section 2, we introduce some new

graph transforms that preserve order, size, but decrease matching energy. Some immediate

consequences are observed. Then we use them to determine the graph achieving the

minimum matching energy in the set of connected cactus graphs in Section 3. The results

for connected unicyclic graphs and connected bipartite unicyclic graphs are proved in

Section 4 while those for connected bicyclic graphs in Section 5.

2 Main tools

In this section, we study the consequences of some graph transforms which preserve the

order and size, but decrease the matching numbers and so the matching energy. Lemma

2.1 is a special case of Lemma 5 in [7]. From Lemma 2.1, we get Corollaries 2.2–2.4 directly.

Lemmas 2.5 and 2.7 and Corollaries 2.6 and 2.8 are new results for the comparison of the

matching numbers between two graphs with the same order and size.

Lemma 2.1. [7] Let G be a connected graph and uv ∈ E(G). Let G′ be the graph

obtained from G by first identifying u with v, and then attaching a pendant vertex

to the common vertex u(v). If dG(u), dG(v) ≥ 2 and N(u)∩N(v) = ∅, then G′ ≺ G,

where dG(u) is the degree of u of G and N(u) is the set of neighbors of u.
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Corollary 2.2. If G has the minimum matching energy in Ψn,m and Cl is a cycle of G

which is edge-disjoint with other cycles of G, then l = 3.

Proof: Suppose l ≥ 4. By applying Lemma 2.1 to G on an edge of Cl, we obtain a

new graph G′ having a cycle Cl−1 such that G′ ∈ Ψn,m and G′ ≺ G. This contradicts

the minimality of G.

Corollary 2.3. If G has the minimum matching energy in Ψn,m then a cut-edge of G

must be a pendant edge.

Proof: Suppose that G has a cut-edge e = uv which is not a pendant edge. Hence

u and v are two vertices of degree at least 2 with N(v) ∩ N(u) = ∅. Hence, by

Lemma 2.1, there is a graph G′ ∈ Ψn,m such that G′ ≺ G, i.e., G does not have the

minimum matching energy in Ψn,m, a contradiction.

Corollary 2.4. [2] Sn has the minimum matching energy in Ψn,n−1.

Proof: Let G?
0 ∈ Ψn,n−1 has the minimum matching energy in Ψn,n−1. Since G?

0 is a

tree, all edges are cut-edges. By Corollary 2.3, all edges of G?
0 are pendant edges,

and so G?
0 = Sn.

Lemma 2.5. Let G, H ′ and H ′′ be three disjoint connected graphs, u, v ∈ V (G), u′ ∈

V (H ′), and u′′ ∈ V (H ′′), where |V (H ′)|, |V (H ′′)| ≥ 2. Let Gu,v, Gu and Gv be three

graphs constructed from G, H ′ and H ′′ as follows:

(i) Gu,v is obtained by identifying u with u′, and v with u′′,

(ii) Gu is obtained by identifying u with both u′ and u′′, and

(iii) Gv is obtained by identifying v with both u′ and u′′.

If G− u ∼= G− v, then Gu
∼= Gv and Gu ≺ Gu,v.

Proof. Let dH′(u′) = x and dH′′(u′′) = y. As |V (H ′)|, |V (H ′′)| ≥ 2, we have x, y ≥ 1.

In H ′ (resp., H ′′), the vertices which are adjacent to u′ (resp., u′′) are denoted by

w′1, · · · , w′x (resp., w′′1 , · · · , w′′y). Let e′i = u′w′i with 1 ≤ i ≤ x and e′′j = u′′w′′j with

1 ≤ j ≤ y. The k-matchings of Gu,v can be divided into four groups according to

whether e′i and e′′j are contained or not. The first group does not contain e′i nor

e′′j ; the second group contains e′i but not e′′j ; the third group contains e′′j but not

e′i; and the fourth group contains both e′i and e′′j . Accordingly, the number of the

k-matchings of Gu,v in the t-th group is denoted by nt, where 1 ≤ t ≤ 4.
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Let H ′ − u′ = A0, H
′ − u′ − w′i = Ai with 1 ≤ i ≤ x, H ′′ − u′′ = B0, and

H ′′ − u′′ − w′′j = Bj with 1 ≤ j ≤ y. We get

n1 = m(G ∪ A0 ∪B0, k),

n2 = Σ1≤i≤xm((G− u) ∪ Ai ∪B0, k − 1),

n3 = Σ1≤j≤ym((G− v) ∪ A0 ∪Bj, k − 1),

n4 = Σ1≤i≤x(Σ1≤j≤ym((G− u− v) ∪ Ai ∪Bj, k − 2)).

Therefore, we obtain

m(Gu,v, k) = n1 + n2 + n3 + n4.

For k = 2, we have n4 ≥ 1 since H ′ and H ′′ have at least one edge.

Similarly, the k-matchings of Gu can be divided into three groups according to

whether e′i and e′′j are contained or not, where 1 ≤ i ≤ x and 1 ≤ j ≤ y. The first

group does not contain e′i nor e′′j ; the second group contains e′i but not e′′j ; and the

last group contains e′′j but not e′i. We have

m(Gu, k) = n1 + n2 + n5,

where n5 = Σ1≤j≤ym((G−u)∪A0 ∪Bj, k− 1). As G−u ∼= G− v, we have n3 = n5.

Therefore, Gu
∼= Gv and Gu ≺ Gu,v.

Corollary 2.6. Let G be a connected graph, u, v ∈ V (G). Let Gs,t
u,v, G

s+t
u and Gs+t

v be

three graphs constructed from G as follows:

(i) Gs,t
u,v is obtained by attaching s and t pendant edges to u and v respectively,

(ii) Gs+t
u is obtained by attaching s+ t pendant edges to u, and

(iii) Gs+t
v is obtained by attaching s+ t pendant edges to v.

If G − u ∼= G − v, then Gs+t
u
∼= Gs+t

v and Gs+t
u ≺ Gs,t

u,v, where s and t are positive

integers.

Proof. Corollary 2.6 directly follows from Lemma 2.5.

Lemma 2.7. Let G be a connected graph and vs, vs−1, vs−2 ∈ V (G), where dG(vs) = 1,

dG(vs−2) ≥ 2, and vs and vs−2 are neighbors of vs−1. If vt ∈ V (G) and vt 6=

vs, vs−1, vs−2, then G+ vtvs−2 ≺ G+ vtvs.
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Proof. Note that

m(G+ vtvs−2, k) = m(G, k) +m(G− vt − vs−2, k − 1), (1)

m(G+ vtvs, k) = m(G, k) +m(G− vt − vs, k − 1). (2)

Let G− vt − vs − vs−1 − vs−2 = H. We have

m(G− vt − vs−2, k − 1) = m(G− vt − vs−2 − vsvs−1, k − 1) +m(H, k − 2), (3)

m(G− vt − vs, k − 1) = m(G− vt − vs − vs−1vs−2, k − 1) +m(H, k − 2). (4)

As dG(vs−2) ≥ 2, G− vt− vs− vs−1vs−2 contains G− vt− vs−2− vsvs−1 as its proper

subgraph. Therefore, we get

m(G− vt − vs−2 − vsvs−1, k − 1) ≤ m(G− vt − vs − vs−1vs−2, k − 1). (5)

Furthermore, as k = 2, the inequality in (5) is strict since dG(vs−2) ≥ 2. Substitution

of (3)–(5) into (1) and (2) yields m(G + vtvs−2, k) ≤ m(G + vtvs, k) for all k ≥ 0

and the inequality is strict for k = 2. Hence, we have G+ vtvs−2 ≺ G+ vtvs.

Corollary 2.8. Let G be a connected graph with two cycles Ca and Cb. Let the vertices

of Ca and Cb be labeled clockwise by u1, u2, · · · , ua and u′1, u
′
2 · · · , u′b, respectively.

If Ca and Cb share a common vertex (say u1 = u′1) and dG(u2) = 2, then the graph

G− u3u2 + u3u
′
b ≺ G.

Proof. Let H = G − u2u3. As dG(u2) = 2, we have dH(u2) = 1. Obviously,

in H, dH(u′b) ≥ 2 and u2 and u′b are neighbors of u1. By Lemma 2.7, we get

H + u3u
′
b ≺ H + u3u2 = G.

In Corollary 2.8, it should be noted that G− u3u2 + u3u
′
b has two cycles which share

a common edge u1u
′
b = u′1u

′
b while G has two cycles which share a common vertex.

Therefore, for such two cyclic graphs, Lemma 2.7 and Corollary 2.8 provide us with

straightforward methods to compare their matching numbers. For example, one can see

the proof of Theorem 5.2 in Section 5. We will use Lemmas 2.1 and 2.5 and Corollaries

2.2, 2.3, 2.6, and 2.8 to derive our results in Sections 3–5.

3 Cactus Graphs

In this section, we characterize that Sm−n+1
n is the graph with the minimum matching

energy in Φn,m. In Φn,m, it is interesting that Lu et al. [15] deduced that Sm−n+1
n is
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the graph with the minimum Randić index; Liu and Lu [16] obtained that Sm−n+1
n is the

extremal cactus for the Wiener index, the Merrifield-Simmons index, the Hosoya index,

and the spectral radius by a unified approach.

Lemma 3.1. Let G0 be the graph with the minimum matching energy in Φn,m.

(i) All the cut-edges of G0 are pendant edges.

(ii) If Cl is an induced cycle of G0 then l = 3.

(iii) For any C3 of G0, only one vertex at C3 is attached by a graph.

Proof. (i) For G0, we suppose that there exists a cut-edge uv that is not a pendant

edge. Namely, dG0(u), dG0(v) ≥ 2. Applying Lemma 2.1 to G0 on uv, we get a new

graph G′0 such that G′0 ∈ Φn,m and G′0 ≺ G0. This contradicts the minimality of

G0.

(ii) Since G0 ∈ Φn,m, all the cycles of G0 are mutually edge-disjoint. By Corollary

2.2, we get that all cycles of G0 have girth 3.

(iii) Choose an arbitrary C3 of G0 and let u and v be two vertices at C3. In G0,

we suppose that u and v are respectively attached by graphs H ′ and H ′′, where

|V (H ′)|, |V (H ′′)| ≥ 2. We denote by u′ and u′′ the vertices of H ′ and H ′′ which

are identified with u and v, respectively. Let G be the graph obtained from G0 by

deleting the vertices in V (H ′) ∪ V (H ′′) \ {u′, u′′}. Obviously, G − u ∼= G − v and

Gu,v in Lemma 2.5 is G0. By applying Lemma 2.5, we get two graphs Gu, Gv ∈ Φn,m

such that Gu
∼= Gv and Gu ≺ Gu,v = G0. This contradicts the minimality of G0.

By Lemma 3.1, we can directly obtain G0 = Sm−n+1
n . Thus, we get Theorem 3.2 as

follows.

Theorem 3.2. For G ∈ Φn,m, ME(Sm−n+1
n ) ≤ ME(G), where the equality holds if and

only if G = Sm−n+1
n .

Remark. If a graph G has no even cycle, then any two odd cycles of G are mutually

edge-disjoint [17]. Thus, the set of graphs without an even cycle is a subset of

Φn,m. For the significance of graphs without an even cycle, one can refer to [18].

Therefore, by Theorem 3.2, we get that Sm−n+1
n is the graph with the minimum

matching energy among graphs without an even cycle.
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4 Unicyclic graphs

Let Un = Ψn,n be the set of connected unicyclic graphs of order n. It should be noted

that Theorem 4.1 as follows has been proved in Gutman and Wagner [2] by a different

method. However, we provide a new and simpler method to derive the same result.

Theorem 4.1. For G ∈ Un with n ≥ 3, ME(S1
n) ≤ ME(G) where the equality holds if

and only if G = S1
n.

Proof. LetG∗0 be the graph with the minimum matching energy in Un. By Corollaries

2.2 and 2.3, the cycle Cl of G∗0 has length l = 3 and all the cut-edges of G∗0 are

pendant edges. Furthermore, by Corollary 2.6, we conclude that all the pendant

edges of G∗0 are attached at the same vertex of C3. Thus, G∗0 = S1
n.

Furthermore, in Theorem 4.2, we use the methods proposed in this paper to ob-

tain the graph with the minimum matching energy in U+
n , where U+

n is the set of

connected bipartite unicyclic graphs of order n.

Theorem 4.2. For G ∈ U+
n with n ≥ 4, ME(C4(n − 4)) ≤ ME(G) with the equality

if and only if G = C4(n − 4), where C4(n − 4) is the graph obtained from C4 by

attaching n− 4 pendant edges to a vertex of C4.

Proof. Let G+
0 be the graph with the minimum matching energy in U+

n . By

the methods similar to Lemma 3.1 (i) and Corollary 2.2, all the cut-edges of G+
0

are pendant edges and the induced cycle Cl of G+
0 has length l = 4. Next, we

prove that all the pendant edges of G+
0 are attached at the same vertex of C4.

Let C4(n1, n2, n3, n4) be the unicyclic graph obtained from C4 by attaching n1, n2,

n3, and n4 pendant edges to u1, u2, u3, and u4, respectively, where ni ≥ 0 and

n1 + n2 + n3 + n4 = n − 4. Note that the vertices of C4 are labeled consecutively

by u1, u2, u3, and u4. Therefore, by Corollary 2.6, we get C4(n1, n2, n3, n4) �

C4(n1, n2 + n4, n3, 0) � C4(n1 + n3, n2 + n4, 0, 0) � C4(n1 + n2 + n3 + n4, 0, 0, 0).

Thus, G+
0 = C4(n− 4).

5 Bicyclic graphs

Let Bn = Ψn,n+1 be the set of connected bicyclic graphs of order n. For G ∈ Bn, G has

either two or three cycles. Let Bn = B1
n ∪ B2

n, where B1
n is the subset of Bn in which the
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n− 5

u1u′2 u3

u′3 u2

(a) A3,3
n

n− 4

u3
u1

u′2

u′3

(b) E3,3
n

u4

u1

u2

u3

(c) P (2, 1, 2)

Figure 2: A3,3
n , E3,3

n , and P (2, 1, 2)

two cycles have no common edges, and B2
n is the subset of Bn in which any two cycles

have at least one common edge.

Let Pn be a path with n vertices. The vertices of Pn are labeled consecutively by

v1, v2, · · · , vn.

We denote by B(a, b, c) the bicyclic graph obtained by identifying a vertex of Ca with

v1 of Pc and identifying a vertex of Cb with vc of Pc, where a, b ≥ 3 and c ≥ 1. Specifically,

B(a, b, 1) is the bicyclic graph obtained by identifying u1 of Ca with u′1 of Cb, where the

vertices of Cb are labeled consecutively by u′1, u
′
2, · · · , u′b .

We denote by P (l, s, t) the bicyclic graph obtained by identifying u1 and ul+1 of Cl+t

with v1 and vs+1 of Ps+1, respectively, where l, t ≥ 2, s ≥ 1 and l, t ≥ s. Namely, in

P (l, s, t), u1 and ul+1 of Cl+t are connected by a unique path Ps+1 of length s.

For a graph G ∈ Bn, the base of G, denoted by Ĝ, is the minimal connected bicyclic

subgraph of G. Namely, Ĝ is the bicyclic graph containing no pendant vertex and G can

be obtained from Ĝ by attaching trees to some vertices of Ĝ. Obviously, Ĝ = B(a, b, c) if

G ∈ B1
n and Ĝ = P (l, s, t) if G ∈ B2

n.

Let A3,3
n (resp., E3,3

n ) be the graph obtained from B(3, 3, 1) (resp., P (2, 1, 2) ) by

attaching n− 5 (resp., n− 4 ) pendant edges to the vertex with the maximum degree of

B(3, 3, 1) (resp., P (2, 1, 2) ). A3,3
n , E3,3

n and P (2, 1, 2) are shown in Fig. 2.

Hereinafter, we denote by H1
0 and H2

0 the graphs with the minimum matching energies

in B1
n and in B2

n, respectively.

Lemma 5.1. (i). H1
0 = A3,3

n for n ≥ 5.

(ii) H2
0 = E3,3

n for n ≥ 5.

Proof. (i) By Corollaries 2.2 and 2.3, we get Ĥ1
0 = B(3, 3, 1). By the methods

similar to the proof for Lemma 3.1 (iii), we obtain that for any C3 of H1
0 , only one

vertex at C3 is attached by a graph. Therefore, H1
0 = A3,3

n .
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(ii) Let Ĥ2
0 = P (l, s, t). By Lemma 2.1, we get l = t = 2 and s = 1. Thus, we have

Ĥ2
0 = P (2, 1, 2). Let G ∈ B2

n with Ĝ = P (2, 1, 2) (as shown in Fig. 2(c)). Let e be

u1u3 of P (2, 1, 2). We have

m(G, k) = m(G− u1u3, k) +m(G− u1 − u3, k − 1).

Since G − u1u3 ∈ U+
n , by the proof of Theorem 4.2, for all k ≥ 1, m(G − u1u3, k)

reaches its minimum number of k-matchings as G−u1u3 = C4(n− 4), where n ≥ 5.

Furthermore, m(G− u1− u3, k− 1) reaches its minimum number of k-matchings as

G− u1 − u3 is a union of isolated vertices. Therefore, we have H2
0 = E3,3

n .

Theorem 5.2. For G ∈ Bn and n ≥ 4, ME(E3,3
n ) ≤ ME(G) with the equality if and

only if G = E3,3
n .

Proof. For n = 4, Bn has only one graph E3,3
4 . Let n ≥ 5. Since E3,3

n = A3,3
n −

u3u2 + u3u
′
3, by Corollary 2.8, we have E3,3

n ≺ A3,3
n . Furthermore, by Lemma 5.1,

we obtain ME(E3,3
n ) ≤ME(G) for all G ∈ Bn.

It should be noted that Theorem 5.2 has been proved in [10] using a different method,

namely the induction on n. The method used in this paper is simpler.
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[4] I. Gutman, M. Mateljević, Note on the Coulson integral formula, J. Math. Chem. 39

(2006) 259–266.
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