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Abstract

Let G be a simple undirected connected graph possessing a vertex v to which
s > 1 pendent vertices are attached. Let H be a graph of order s. Let G(H) be
the graph obtained from G by adding the edges of H among the pendent vertices
attached to v. Let M(R) be the Laplacian matrix or the signless Laplacian matrix
or the adjacency matrix of a graph R. If the all 1− vector of order s is an eigenvector
of M(H), it is proved that M(G(H)) is orthogonally similar to a 2×2 block diagonal
matrix in which one of the blocks is a diagonal matrix. This result is used to study
the effects on the Energy and Estrada indices when edges are added on the pendent
vertices of a given graph.

1 Introduction

Let G be a simple undirected graph on n vertices. Let D(G) be the diagonal matrix of

order n whose (i, i)−entry is the degree of the i − th vertex of G and let A (G) be the

adjacency matrix of G. The matrices L(G) = D(G)−A(G) and L+ (G) = D (G) +A (G)

are the Laplacian and signless Laplacian matrix of G, respectively. The matrices L(G)

and L+(G) are both positive semidefinite and (0,1n) is an eigenpair of L (G) where 1n is

the all-1 vector of size n. Fiedler [14] proved that G is a connected graph if and only if

the second smallest eigenvalue of L(G) is positive. This eigenvalue is called the algebraic

connectivity of G and it is denoted by a (G). Moreover, it is known that for any bipartite

graph G, the characteristic polynomials of L(G) and L+(G) coincide [3].
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A pendent vertex is a vertex of degree 1. We mention below some already known

results concerning the effects on some graph invariants by adding edges among the pendent

vertices.

Theorem 1. [25], Corollary 4.2. Let G be a connected graph on n vertices. Suppose that

v1, v2, . . . , vs are s pendent vertices of G adjacent to a common vertex v. Let G̃ be a graph

obtained from G by adding any t, 0 ≤ t ≤ s(s−1)
2

, edges among v1, v2, . . . , vs. If a(G) 6= 1

then a(G̃) = a(G).

Theorem 2. [15], Theorem 2.3. Let G be a connected graph on n vertices. Suppose that

v1, v2, . . . , vs are s pendent vertices of G adjacent to a common vertex v. Let G̃ be a graph

obtained from G by adding any t, 0 ≤ t ≤ s(s−1)
2

, edges among v1, v2, . . . , vs. Then the

largest Laplacian eigenvalue of G is also the largest Laplacian eigenvalue of G̃.

Definition 1. Let G be a connected graph of order n possessing a vertex v to which s > 1

pendent vertices are attached. Let H be a graph of order s. Then G(H) denotes the graph

obtained from G and H identifying the vertices of H with the pendent vertices attached

to v.

In [26], the above results as generalized as follows.

Theorem 3. Let G(H) as in Definition 1.

(i) If µ 6= 0 and µ 6= 1 is a Laplacian eigenvalue of G then µ is a Laplacian eigenvalue

of G(H), and

(ii) if µ is a Laplacian eigenvalue of H, µ 6= 0 or µ = 0 with an eigenvector orthogonal

to 1s, then 1 + µ is a Laplacian eigenvalue of G(H).

Definition 2. Let G be a connected graph of order n possessing vertices vi, 1 ≤ i ≤ r,

to which si > 1 pendent vertices are attached. For 1 ≤ i ≤ r, let Hi be a graph order

si. Then G(H1, . . . , Hr) denotes the graph obtained from G and the graphs H1, . . . , Hr

identifying the vertices of Hi with the si pendent vertices attached to vi.

Remark 1. The graph G(H1, H2, . . . , Hr) can be constructed as follows:

• the graph G1 = G(H1) is obtained from G and H1 identifying the vertices of H1 with

the pendent vertices attached to v1, and

• for i = 2, . . . , r, the graph Gi = G(H1, . . . , Hi) is obtained from Gi−1 = G(H1, . . . ,

Hi−1) and Hi identifying the vertices of Hi with the pendent vertices attached to vi.
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At this point, we recall that for a connected graph G of order n the Laplacian-energy-

like invariant of G is

LEL(G) =
n−1∑
i=1

√
µi(G),

the Kirchhoff index of G is

Kf(G) = n

n−1∑
i=1

1

µi(G)

and the Laplacian Estrada index of G is

LEE(G) =
n∑
i=1

eµi(G)

where

µ1 (G) ≥ µ2 (G) ≥ . . . ≥ µn−1 (G) ≥ µn (G) = 0

are the Laplacian eigenvalues of G.

Some results on LEL(G) are given in [23], [27] and [4], on Kf(G) in [28], [29], [32], [33]

and [34], and on LEE(G) in [13], [30] and [31].

The effects on the Laplacian-Energy-Like invariant and on the Kirchhoff index by

adding edges among the pendent vertices were studied in [26] and the corresponding

results are

Theorem 4. Let G(H1, . . . , Hr) as in Definition 2. For 1 ≤ i ≤ r, let

µ1 (Hi) ≥ µ2 (Hi) ≥ . . . ≥ µsi−1 (Hi) ≥ µsi (Hi) = 0

be the Laplacian eigenvalues of Hi. Then

LEL(G(H1, . . . , Hr))− LEL(G) =
r∑
i=1

si∑
j=1

√
1 + µj (Hi)−

r∑
i=1

si

and

Kf(G(H1, . . . , Hr))−Kf(G) = n(
r∑
i=1

si∑
j=1

1

1 + µj (Hi)
−

r∑
i=1

si).

We recall that the energy of G is

E(G) =
n∑
i=1

|λi(G)|

and the Estrada index of G is

EE(G) =
n∑
i=1

eλi(G)
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where

λ1 (G) ≤ λ2 (G) ≤ . . . ≤ λn−1 (G) ≤ λn (G)

are the eigenvalues of A(G).

Some results on EE(G) are in [6] - [12].

The notion of the energy of a graph was introduced by Gutman in 1978 as the sum

of the absolute values of its adjacency eigenvalues, it is studied in Chemistry and used

to approximate the total π-electron energy of a molecule [16, 17]. There are many con-

tributions on the energy of a graph and still is a subject of research. A few of these

contributions are [18]- [20]. More on the chemical background of graph energy can be

found in Chapter 2 of the book Graph Energy by X. Li, Y. Shi and I. Gutman [22]. This

book provides a comprehensive survey of all results and common proof methods on graph

energies together with a complete reference section.

We recall now that the signless Laplacian Estrada index of G is defined as

SLEE(G) =
n∑
i=1

eµ
+
i (G)

where

µ+
1 (G) ≤ µ+

2 (G) ≤ . . . ≤ µ+
n−1 (G) ≤ µ+

n (G)

are the signless Laplacian eigenvalues of G. Results on SLEE(G) can be found in [1], [2],

[5] and [21].

Let M(R) be the Laplacian matrix or the signless Laplacian or the adjacency matrix

of a graph R.

In Section 2, we prove that if the all 1−vector of order s is an eigenvector of M(H)

then M(G(H)) is orthogonally similar to a 2 × 2 block diagonal matrix in which one of

the blocks is a diagonal matrix. In Section 3, we apply this result to study the effect on

the Laplacian Estrada index. Section 4 is devoted to study the effects on the energy and

on the Estrada index. Finally, in Section 5, we study the effect on the signless Laplacian

Estrada index. In Sections 4 and 5, it is assumed that the edges added among the pendent

vertices of G are the edges of regular graphs.

In this paper, the zero matrix and the identity matrix of the appropriate orders are

denoted by 0 and I, respectively. Furthermore, Im is the identity matrix of order m,

det(A) and tr(A) are the determinant and trace of a square matrix A, respectively, and

AT is the transpose of A.
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2 A result on graphs constructed by adding edges on

pendent vertices

Consider G(H) as in Definition 1. Let M(R) be the Laplacian matrix or the signless

Laplacian or the adjacency matrix of a graph R. Throughout this paper

σ =

{
−1 if M is the Laplacian matrix,
1 if M is the signless Laplacian or the adjacency matrix

and

δ =

{
0 if M is the adjacency matrix
1 if M is the Laplacian or the signless Laplacian matrix

In this section, we assume that

µ1(M(H)), µ2(M(H)), . . . , µs(M(H))

are the eigenvalues of M(H) and that

x1,x2, . . . ,xs−1,xs =
1√
s
1s

is an orthonormal basis of eigenvectors of M(H) in which, for i = 1, . . . , s,

M(H)xi = µi(M(H))xi. (1)

In particular

M(H)1s = µs(M(H))1s. (2)

We observe that (2) holds when M(H) = L(H) and when M(H) = L+(G) or M(H) =

A(H) if H is a regular graph.

Let

X =
[

x1 x2 · · · xs−1
1√
s
1s
]

where the columns of X are the eigenvectors of M(H) as in (1).

Let

S =

 X
1

In−s−1

 .
Clearly, X and S are both orthonormal matrices.

The graphs G and G(H) have the same set of vertices. We recall that G is a graph

possessing a vertex v to which s pendent vertices are attached. We label the vertices of

G as follows: the labels 1, 2, . . . , s are for the pendents attached to v, the label s + 1 is

for the vertex v and the labels s+ 2, . . . , n are for the remaining vertices of G. Let di be
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the degree of the vertex i of G. In particular, the degree of v is denoted by d(v). For the

given labeling, M(G) and M(G(H)) become

M(G) =

 δIs σ1s 0
σ1Ts δd(v) aT

0 a B

 (3)

and

M(G(H)) =

 δIs +M(H) σ1s 0
σ1Ts δd(v) aT

0 a B

 (4)

for some common column vector a of size n− s−1 and some common square matrix B of

order n− s−1. The vector a and the matrix B are both independent of H. The diagonal

entries of B are δdi, s + 2 ≤ i ≤ n. The components of a and the off-diagonal entries of

B are σ if the corresponding vertices of G are adjacent and 0 otherwise.

Theorem 5. Let G(H) as in Definition 1. Then

STM(G(H))S =



 δ + µ1(M(H))
. . .

δ + µs−1(M(H))

  δ + µs(M(H)) σ
√
s 0

σ
√
s δd(v) aT

0 a B




(5)

and

STM(G)S =



 δ
. . .

δ

  δ σ
√
s 0

σ
√
s δd(v) aT

0 a B




(6)

The vector a and the matrix B are as above mentioned.

Proof. We use (4) to compute

STM(G(H))S

=

 XT

1
In−s−1

 δIs +M(H) σ1s 0
σ1Ts δd(v) aT

0 a B

 X
1

In−s−1


=

 δIs +XTM(H)X σXT1s 0
σ1TsX δd(v) aT

0 a B



=




δ + µ1(M(H))

. . .

δ + µs−1(M(H))
δ + µs(M(H))




0
...
0

σ
√
s

[
0 · · · 0 σ

√
s
]

δd(v) aT

0 a B


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=



 δ + µ1(M(H))
. . .

δ + µs−1(M(H))

  δ + µs(M(H)) σ
√
s 0

σ
√
s δd(v) aT

0 aT B




.

Thus (5) is obtained. Similarly, the computation of the product STM(G)S with M(G)

as in (3) yields to (6).

3 Application to the Laplacian Estrada index

Let G(H) as in Definition 1. Here we consider M(G) = L(G). Then δ = 1 and σ = −1.

Applying Theorem 5, we obtain

Theorem 6. Let G(H) as in Definition 1. Let

µ1(H) ≥ µ2(H) ≥ . . . ≥ µs(H) = 0

be the Laplacian eigenvalues of H. Then

STL(G(H))S =



 1 + µ1(H)
. . .

1 + µs−1(H)

  1 −
√
s 0

−
√
s d(v) aT

0 a B




and

STL(G)S =



 1
. . .

1

  1 −
√
s 0

−
√
s d(v) aT

0 a B




for some common column vector a of size n− s− 1 and some common square matrix B

of order n − s − 1 both independent of H. The diagonal entries of B are the degrees of

the vertices i, s + 2 ≤ i ≤ n. The components of a and the off-diagonal entries of B are

−1 if the corresponding vertices of G are adjacent and 0 otherwise.

Corollary 1. Let G(H) as in Definition 1. Then

det (λI − L(G(H))) = λPH (λ)R(λ) (7)
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and

det (λI − L(G)) = λ(λ− 1)s−1R(λ) (8)

where

PH (λ) =
s−1∏
i=1

(λ− (1 + µi(H))) (9)

and R(λ) is a polynomial of degree n− s such that R(0) 6= 0.

Proof. From Theorem 6, the characteristic polynomial of L(G(H)) is

det (λI − L(G(H))) = PH(λ)S(λ) (10)

with PH(λ) is as in (9) and the characteristic polynomial of L(G) is

det (λI − L(G)) = (λ− 1)s−1S(λ) (11)

where S(λ) is the characteristic polynomial of the matrix 1 −
√
s 0

−
√
s d(v) aT

0 a B

 .
Since G(H) and G are connected graphs, 0 is a simple eigenvalue of L(G(H)) and L(G).

Hence S(λ) = λR(λ) where R(λ) is a polynomial of degree n − s such that R(0) 6= 0.

Replacing in (10) and (11), we obtain (7) and (8).

Theorem 7. Let G(H) as in Definition 1. Then

LEE(G(H))− LEE(G) = (LEE(H)− s)e. (12)

Proof. Let

µ1 (H) ≥ µ2 (H) ≥ . . . ≥ µs−1 (H) ≥ µs (H) = 0

be the Laplacian eigenvalues of H. As we already mentioned, the Laplacian Estrada index

of a graph G is

LEE(G) =
∑n

i=1 e
µi(G).

We apply Corollary 1. From (7) and (8), we obtain

LEE(G(H)) = 1 +
s−1∑
j=1

e1+µj(H) +
∑

µ:R(µ)=0

eµ. (13)

and

LEE(G) = 1 + (s− 1)e+
∑

µ:R(µ)=0

eµ. (14)
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Subtracting (14) from (13), we get

LEE(G(H))− LEE(G) =
s∑
j=1

e1+µj(H) − se = (LEE(H)− s)e.

Thus (12) is obtained.

Theorem 8. Let G(H1, . . . , Hr) as in Definition 2. Then

LEE(G(H1, . . . , Hr))− LEE(G) = e

r∑
i=1

(LEE(Hi)− si).

Proof. We recall that Gr = G(H1, . . . , Hr) can be constructed as in Remark 1. By

repeated application of Theorem 7, we have

LEE(G1)− LEE(G) = (LEE(H1)− s1)e,

LEE(G2)− LEE(G1) = (LEE(H2)− s2)e,
...

LEE(Gr−1)− LEE(Gr−2) = (LEE(Hr−1)− sr−1)e

and

LEE(Gr)− LEE(Gr−1) = (LEE(Hr)− sr)e.

Add these equalities together and the result follows.

4 Application to the energy and Estrada index

Let M be an m× n complex matrix. Let q = min {m,n} . Let

σ1 (B) ≥ σ2 (B) ≥ ... ≥ σq (B)

be the singular values of M. Nikiforov [24] defines the energy of M , denoted by E(M), as

E(M) =

q∑
j=1

σj (B) .

Since A (G) is a real symmetric matrix, its singular values are the modulus of its eigen-

values. Then E(G) = E(A(G)).

At this point, we recall that given a natural number k such that 1 ≤ k ≤ n, the Ky

Fan k− norm of a matrix X of order n × n is defined to be the sum of the k largest

singular values of X, that is,
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‖X‖k =
∑k

i=1 σi(X).

In particular, ‖X‖n = E(X).

Let G(H) as in Definition 1. In this section, M(G) = A(G). Then δ = 0 and σ = 1.

Applying Theorem 5, we obtain

Theorem 9. Let H be a regular of degree h. Let G(H) as in Definition 1. Let

λ1(H) ≤ λ2(H) ≤ . . . ≤ λs(H) = h

be the adjacency eigenvalues of H. Then

STA(G(H))S =



 λ1(H)
. . .

λs−1(H)

  h
√
s 0√

s 0 aT

0 a B




(15)

and

STA(G)S =



 0
. . .

0

  0
√
s 0√

s 0 aT

0 a B




(16)

for some common column vector a of size n−s−1 and some common square matrix B of

order n− s− 1 both independent of H. The diagonal entries of B are 0. The components

of a and the off-diagonal entries of B are 1 if the corresponding vertices of G are adjacent

and 0 otherwise.

Theorem 10. Let H be a regular graph of degree h. Let G(H) as in Definition 1. Then

E(G(H))− E(G) ≤ E(H).

Proof. We apply Theorem 9. From (15) and (16), using the fact that the singular values

are invariant under unitary transformations, we obtain

E(G(H)) = E(A(G(H))) =
s−1∑
i=1

|λi(H)|+ E(C) (17)

where

C =

 h
√
s 0√

s 0 aT

0 a B


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and

E(G) = E(A(G)) = E(D)

where

D =

 0
√
s 0√

s 0 aT

0 a B

.

We have

C = D + F

where

F =

 h 0 0
0 0 0
0 0 0

.

Hence E(C) = ‖C‖n−s+1 ≤ ‖D‖n−s+1 + ‖F‖n−s+1 = E(D) + h = E(G) + h. We use this

inequality in (17) to obtain

E(G(H))− E(G) ≤
s−1∑
i=1

|λi(H)|+ h =
s∑
i=1

|λi(H)| = E(H).

The proof is complete.

Theorem 11. For i = 1, . . . , r, let Hi be a regular graph of degree hi. Let G(H1, . . . , Hr)

as in Definition 2. Then

E(G(H1, . . . , Hr))− E(G) ≤
r∑
i=1

E(Hi).

Proof. The result follows easily from Remark 1 and repeated application of Theorem 10.

We search now for the effect on the Estrada index. Previously, we recall some well

known facts:

• If A is a square matrix then

eA =
∑∞

k=0
1
k!
Ak

• For a graph G

EE(G) = tr(eA(G))

• If A and B are similar matrices then tr(A) = tr(B).
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Theorem 12. Let H be a regular graph of degree h. Let G(H) as in Definition 1. Then

EE(G(H))− EE(G) ≥ EE(H)− (s− 1). (18)

Proof. Let C, D and F be as in the proof of Theorem 10. From Theorem 9, we get

EE(G(H)) =
s−1∑
i=1

eλi(H) + tr(eC) (19)

and

EE(G) = s− 1 + tr(eD). (20)

From the series-expansion of eC , we have

eC =
∞∑
k=0

1

k!
Ck =

∞∑
k=0

1

k!
(D + F )k =

∞∑
k=0

1

k!
(Dk + . . .+ F k).

Since D and F are nonnegative matrices, it follows that

tr(eC) ≥ tr(
∞∑
k=0

1

k!
Dk) + tr(

∞∑
k=0

1

k!
F k).

Hence

tr(eC) ≥ tr(eD) +
∞∑
k=0

1

k!
hk = tr(eD) + eh.

Using this inequality in (19), we get

EE(G(H)) ≥
s−1∑
i=1

eλi(H) + tr(eD) + eh = EE(H) + tr(eD). (21)

Finally, from (20) and (21), the inequality (18) follows.

From Remark 1 and repeated application of Theorem 12, one can prove

Theorem 13. For i = 1, . . . , r, let Hi be a regular graph of degree hi. Let G(H1, . . . , Hr)

as in Definition 2. Then

EE(G(H1, . . . , Hr))− EE(G) ≥
r∑
i=1

(EE(Hi)− si) + r.

5 Application to the signless Laplacian Estrada index

Let G(H) as in Definition 1. In this section, M(G) = L+(G). Then δ = 1 and σ = 1.

Applying Theorem 5, we obtain
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Theorem 14. Let H be a regular of degree h. Let G(H) as in Definition 1. Then

STL+(G(H))S =



 1 + µ+
1 (H)

. . .

1 + µ+
s−1(H)

  1 + 2h
√
s 0√

s d(v) aT

0 a B




and

STL+(G)S =



 1
. . .

1

  1
√
s 0√

s d(v) aT

0 a B




for some common column vector a of size n− s− 1 and some common square matrix B

of order n − s − 1 both independent of H. The diagonal entries of B are the degrees of

the vertices i, s + 2 ≤ i ≤ n. The components of a and the off-diagonal entries of B are

1 if the corresponding vertices of G are adjacent and 0 otherwise.

Theorem 15. Let H be a regular graph of degree h. Let G(H) as in Definition 1. Then

SLEE(G(H))− SLEE(G) ≥ eSLEE(H)− e2h(e− 1)− (s− 1)e.

Proof. From Theorem 14, we get

SLEE(G(H)) =
s−1∑
i=1

e1+µ
+
i (H) + tr(eC) (22)

and

SLEE(G) = (s− 1)e+ tr(eD) (23)

where

C =

 1 + 2h
√
s 0√

s d(v) aT

0 a B


and

D =

 1
√
s 0√

s d(v) aT

0 a B



-355-



We have C = D+F where F =

 2h 0 0
0 0 0
0 0 0

. From the series-expansion of eC and using

the fact that D and F are nonnegative matrices, we get

tr(eC) ≥ tr(
∞∑
k=0

1

k!
Dk) + tr(

∞∑
k=0

1

k!
F k).

Hence

tr(eC) ≥ tr(eD) +
∞∑
k=0

1

k!
(2h)k = tr(eD) + e2h.

Using this inequality in (22), we get

SLEE(G(H)) ≥
s−1∑
i=1

e1+µ
+
i (H) + tr(eD) + e2h.

Therefore

SLEE(G(H)) ≥ e

s∑
i=1

eµ
+
i (H) − e1+2h + tr(eD) + e2h.

Then

SLEE(G(H)) ≥ eSLEE(H)− e2h(e− 1) + tr(eD). (24)

Finally, from (24) and (23), Theorem (15) follows.

From Remark 1 and repeated application of Theorem 15, one can prove

Theorem 16. For i = 1, . . . , r, let Hi be a regular graph of degree hi. Let G(H1, . . . , Hr)

as in Definition 2. Then

SLEE(G(H1, . . . , Hr))− SLEE(G) ≥ e

r∑
i=1

SLEE(Hi)− (e− 1)
r∑
i=1

e2hi − e
r∑
i=1

(si − 1).
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