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Abstract. Multi-shell clusters can be constructed, on theugtbof G, topology, by using
operations on maps. Cell duals for some of theistustructures were also designed and next
transformed into even more complex clusters. Tapolaf such clusters was analysed by the
aid of a centrality index, computed on layer masiof vertex properties. Vertices were
partitioned into classes of equivalence and ordexbrding to their centrality. Finally, the
vertex classification according to topological dgston was confirmed by the
automorphisms counted by permuting the elemerttseiicorresponding adjacency matrices.

1 Introduction

Symmetry (from Greekovppetpio symmetria "agreement in dimensions, due
proportion, arrangement”) commonly refers to harynof proportions in realization of a
composition [1].The simplest symmetry is the mirror symmetry. Inthematics, symmetry
refers to some operations acting on geometric loerategularities of a mathematical object

that leave the object invariant.



-274-

Molecular geometric symmetry is involved in sevepabperties, such as dipole
moments, IR vibrations>C-NMR signals etc., strongly dependent on the apatiucture of
molecules. Molecular topology reveals a differgmiet of symmetrytopological symmetrgr
constitutional symmetry, withconnectivity being the building principle of molecules.
Topological symmetry expresses equivalence relships among elements of graph:
vertices, bonds, faces or larger subgraphs, imradiism taken from Set and Group Theories.
The geometrical aspects are disregarded [2,3].

In the theory ofGroup action [4,5], a grou@ is said to act on a setif there is a
function gsuch thatp: G X X [7 - X and for any element /7 X, there existsig, ¢ (h,x)) =
@dghx), for allg,h O G, with ge,) = x, e being the identity element &. The mappingpis
called a group action while the set(§) | g 0 G} is called theorbit of x. For a permutation
oonn objects, there is a permutation matiy of dimensions x n, of which elements are
xj = 1 if there is a permutatioiFo(j) and O otherwise. For any permutatiorandt onn
objects,P,P; = P, while the set of all permutation matrices is augr isomorphic to the
symmetry groufs, onn symbols. A permutatioor of the vertices of a gragh(V,E) (V being
the set of vertices arid the set of edges iH) belongs to an automorphism gro@p if one
satisfies the relatio®,AP, = A, whereA is the adjacency matrix of the graph Given
Aut(H) = {a, ..., g}, the matrixSs = [s], with 5; = gi(j) is called a solution matrix fdf;
calculation of these solutions will provide theauabrphism group ofi.

In a graphH(V,E), with the automorphism groufut(H), two vertices,i, jOV are
called equivalentif { ij) | i, ] O Aut(H)}, in words, they belong to the same orbit of
automorphisms.

The automorphic partitionsof the vertex setV(H): vi, Va,..., vin are disjoint, that is
V=V, 0V,0..0V, andV, nV, =0. If the partitioning is provided by a topological
vertex invariantin = Iny, Iny,...,Iny, the invariant orbits/classes may differ from thbits of
automorphism, since no vertex invariant is knownfasoto always discriminate two non-
equivalent vertices in any graph [3]. To detail #mve, two verticesandj of a molecular
graph (with vertices meaning the atoms and edged®dnds in the molecule) are equivalent
(i.e., belong to the sanievariant class I¢ if In; = In;. Recall that a binary relation ~ on a set
A is anequivalence relatiofif and only if it is: reflexive(x ~ X; symmetric K~y = y ~ x)
and transitive X~ yandy ~z= X~ z).These equivalence classes are eventuaifiered

according to some rules.
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A layer matrix [3,6-8] is built on a layer partitiof a vertex in the graptH(V,E), defined as
H(@) ={H(i);, jO0.ecg] and VHH); = ¢ =]

whereecg is the eccentricity of (i.e., the largest distance fromto the other vertices of

graph). The entries in a layer matrixM, collect the vertex propertigs, (a topological,

chemical, or physical property) for all the vertiseof the | layerH(i); with respect to the

vertexi:
ILM], = > pv,

Vi),
The matrixLM is a collection of the above entries, for all ica$ and layers, up to the graph
diameterd(H):
LM (G)={[LM]y; iOV(G); jO[0,d(H)] }
LM is a non-square matrix, of dimensioNs(d(G)+1); the zero-distance column is just the
column of vertex propertiesThe most simple layer matrix is LC, the layer matoik
counting wherep,=|H(i);|), simply counts the vertices existing on iflelayer located at
distancq toi.
On Layer matrices, an index akntrality C(LM) is calculated; it quantifies the
centrality of vertices of a graph
& veee |
cM), =[Z([LM ) }
k=L

whereecg is the eccentricity off

A multi-shell cluster is a part of the 3D-spaceadrhigher dimension spaces and it is
called in general a polytope. A 3D-polytope is aexif any of its edges shares no more than
two polygons; next, a 4D-polytope is convex if gmtygon shares no more than two cells.
Each convex 4D-polytope is bounded by a set of 3B3.dé the cells are all Platonic solids
of the same type and size, the 4D-polytope is datbgular. There are six regular 4D-
polytopes, also called polychora and written, usigSchléfli’'s symbols as: 5-Cell {3,3,3};
8-Cell {4,3,3}; 16-Cell {3,3,4}; 24-Cell {3,4,3}; 20-Cell {5,3,3} and 600-Cell {3,3,5}. Five
of them can be associated to the Platonic solidgHmusixth, the 24-cell has no close 3D-
equivalent. Among them, 5-Cell and 24-Cell are-defl while the others are pairs: (8-Cell
& 16-Cell); (120-Cell & 600-Cell).

To investigatan-dimensional polytopes, the Schlafli formula [9,Kused
(D f =1- (1

1
i=0
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wheref; are elements of thfevector o, fi,...,f-1). In casen=4, f; represent verticeg edge,
faces f and cells c, respectively, while the above sum of figures ees:
Sun{ )= §- f+ £t— £=0. In casen=3, the above is the well-known Euler-Poincaré
formula [11]: v-e+f = 2(1-g), with g being the genus [12] (i.e. the number of connes)i®f
the surface in which the graph is embedded. Thesmufas are useful to check the
consistency of the attributed structures.

The article is organized as follows: after the idtrctory part, some operations on
maps are defined to be used in the design of rebdlt clusters. The main clusters based on
Ceo topology, namely &o and Gjo are discussed in the third section. The forthiseaeals
with the cell duals and their transform in complelgsters. The fifth section gives the
equivalence classes of vertices/atoms calculatedtwan layer matrices of the graphs
associated to the studied clusters. Conclusionsefacences will end the article.

2 Design of multi-shell clusters

Multi-shell clusters herein studied were designeg @ising map operations, as
implemented in our software CVNET [13]. A map M igdiscretized surface domain and
some operations on maps are known and used to yregi&rent map; the parent (marked by
a subscript zero) and transformed map paramettasteeregular maps (having all vertices
and faces of the same valence/size). The symmetpareits is preserved by running these
operations. For more info, the reader is inviteddasult refs. [14-19]. In the following, only
the herein used operations are described.

Dual (Du): put a point in the center of each face @f thap, next join two such points if
their corresponding faces share a common edgethei (Poincaré) dual DM{. The vertices
of Du(M) represent faces M and vice-versa. In the transformed map, the fahowelations
exist:Du(M); v=f,; e=¢g; f =v,. Dual of the dual returns the original map: Du(M)= M.
Tetrahedron is self-dual while the other Platonidypedra form pairs: Du(Cube) =
Octahedron; Du(Dodecahedron) = Icosahedron. Isis known the Petrie dual. Also, a cage-
dual is known: in the center of a cage put a pa@nt join two such points if the
corresponding cages share a face. If the dual doeaccount for the infinite face/cage, the
dual is called inner dual.

Truncation(Tr): cut off the neighborhood of each vertex bplane close to the vertex,

such that it intersects each edge meeting thexeftancation transformed parameters are:
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Tr(M);v=2¢ = dy; e=3¢; f="f,+v,. This was the main operation used by Archimedes in
building its well-known 13 solids.

Polygonal mappingP,): Add a new vertex in the center of each face.rP8ipoints on the
boundary edges. Connect the central point with wertex on each edge (the end points
included). Thus, the parent face is covered by gtem (n=3), quadrilaterals (n=4) and
pentagons (n=5). The;®peration is also called stellation or trianguati The transformed

map parameters are;(M); v=y,+(n-3)g+ f; e=ng; f=gf,.

3 Cyorelated clusters: Gsgand Cgg

We start our discussion with introducing two clusteonsisting of & units: Gso and
Csi0o They can be designed onso,) graph using operations on maps, by a procedure
recently developed by Diudea [10,20,21]. For ttiig, following sequence of operations was
used: Trs(RCe0)).330; S$(Cs0).420; Trs(R(Cen)) @S(Cos0).750. Structure o =
Coo((C20)60). 750 is a “spongy” one, with the central hollow eiact topology of
Trs(Px(Ce0))-330.

Cso((C20)60). 750
Trs(Px(Co0)) @(S(Ce0)420).750

Ceo Trs(P4(Cs0)-330 S(Ce0)-420
Figure 1. Multi-shell structures on 750 atoms



Cs0@Cs0((C20)60).810
Cs0@((Co0)123(C24)20) @ (Co0)60.810

Cas Coo @((Ca0)121(C24)20)-390 Goo(DOgo). 750

Figure 2. Multi-shell structures on 810 atoms

Formally, every point in the graph ofsfll;) is changed by a cage,§ notation
Ceo((Co0)s0) means 60xgy within the topology of &) [20]. When the hollow
Trs(Py(Ce0)).330 is “endohedrally” functionalized (a term ¢ak from nanoscience) by
connecting inside the fullerene grapheo@), a double-shell cluster is designed:
Coo(@((C20)12,(C24)20)-390. If Gyo is inserted in &, the filled structure §=Ceo@ Cr50.810=
Cs0@((C20)12;(C24)20)@(Ca0)60.-810 is achieved. The structures involved in the vabo
molecular design are illustrated at the bottomigtifes 1 and 2.

4 Cell dual

Put a vertex in the centre of each cell composirgiracture and join such points if the
original cells shared a face — thus the cell duali€obtained. Vertices of CD represent cells

in the original structure and vice-versa. The ceidld for Gso and G are illustrated in
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Figure 3. The cell dual of Gis a P-centred-& cage, P°@Cs0.61 (Figure 3, left); if neglect
the internal hollow, the dual is simplified to COgg=Cso.

Figure 3. Cell duals: CD( Go= P**@Cs, 61(left) ; CD(G1o) = Cos= P*?@Du(Gso) @C0.93 (middle) and
its stellate Gs=St( P*2@(Du(Gso) @ Co0.93).125= St(P*@(St(St(D0)32)93T).125

Structures like IcoP.13=B@Ico0.13 are cell duals of e.g., CR§=
CD(C0@(CG0)12), Or of any structure that joins 12 cells in thesymmetry. Note that some
13-atom clusters: MaMb12 or M13, M=Fe, Pd, Ru, Rbws giant magnetic moments [22].

The cell dual CD(@ig) is a more complicated object (Figure 3, middie)an be
written as G==P~*’@Du(Gs) @Cs093, where P® is the central point of CD, with the
superscript (as the power symbol) meaning the ativily of this point P). Let continuede
by capping/stellating/triangulating the fadesndfs of its external shell, having the topology
of Ceo; next, join by a path the two apices of each kapyid thus formed (and implicitly the
central P2 point), thus obtaining the cluster£=St( P*%@(Du(Gso)@ Cs0.93).125(Figure
3, right). It can also be obtained by the sequétte?*@(St(St(Do)32)93T).125, where “T”
means the joining of rays of the 93-star to forndigonal tetrahedra. In the name of
structures, the last number is the atoms number;sifucture name is written as a sequence
of map operations, the atoms number is preserved,ah ease identification of the
steps/shells added. Figure counting for these ersisare given in Table 1. Note that
structures having zero sum of their figures repred®-objects [10,23].

Truncate now all the vertices of;£ cluster to obtain the cluster£gs (Figure 4) .
Structure elucidation in such multi-shell clustisrsiot a trivial task. At least three names can
be written for each structure: (i) identify the maubstructures, appearing entangled herein;
(i) count all the smallest cells/figures fillinhe space of cluster and (iii) specify the way of
its drawing (by map operations). The endohedral @bsy was used to suggest the
concentric shells, even not clear delimitation bélkis possible in all cases. When the
envelope of structure is well-defined (i.e. a frélee) it is added at the end of name, before
the number of atoms.
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In case of complex structures, the component digfshapes are illustrated at the
bottom of main structure. A particular mention dees the cluster &, related to the
celebrate Samson’s cluster (on 104 atoms, with @@ located in the center of the
truncated tetrahedra TT o&4}. It was found in Al-Cu-Li intermetallics [24,25].

The cluster Goscan be seen as an entanglement of three clu§iarsCss and Gog,
each of them being designed by truncation of threesponding body-centered small clusters
(see the bottom structures in Figure 4). We beltbag, what we rationalize by geometrical
operations used in drawing these objects, to happesal, at high pressure/high temperature,
as in case of synthetic diamond and other diaméd darbon hard phases. Also, it was
suggested that domains of the 4D-space coexist3fitBpace in complex minerals.

C244@((C84)12,(C100)20) @Csacf(1 n).1208
Du(Co)) @[(2TT)so; (St(APs)12: StAPe) 2] @ [(E@ T T5) 12, (E@ T To)20; (PYs) 12:(PY6) 20, (352)0)| @ Coael 1) 1208
Tr(C12s).1208 = Gaog

Cuo=Tr(P@St(Ape)).100 GumTr(C).244
Du(Ce@(TT15TT 20)@CisdlI1).244

P@St(Ap).13=IcoP.13 P@SH(AP.15 G=P " @St(D0).33



-281-

Figure 4. Gygand its related structures

Table 1.Euler-Schiafli formula for some of the studied ¢ars

Cluster v e Ei fs fo f 6 & G & & ¢ Xt MM
Du(Ceo).32 32 90 60 0 0 60 0 0o 0 0 0 O 2 08:(39):20=St(Do)32
Cialln) 180 270 0 12 80 92 0 o 0 0 0 O 2 (380;(6%)120
Csadln) 540 810 0 12 260 272 0 o 0 0 0 o0 2 Ben;6°)480
P@St(Ap).13 13 42 50 0 0 50 20 0 0 0 1 21 0 T;0;0,0;[SHA0.12]
Cea 84 192 80 12 50 142 20 122 0 0 2 34 0 TT®P;[lco;Culln)]
P@St(Ap).15 15 50 60 0 0 60 24 0 0 0 1 25 0 T;0;0;0;(SEAP
TT; Pys;Pys;0;
Cioo 100 230 9% 12 62 170 24 12 2 0 2 40 0 [St(Aps);C72(Dsd]
Cas 33 122 150 0 0 150 60 0 0 0 1 61 0 T0:0; 0;(SYEPp
TT;Pys:PYs ;0;
Tr(Css).244 244 572 240 12 170 422 60 12 20 0O 2 94 0[(Du(Cs0)32;Cisd
Cuss 125 604 870 O 0 870 390 0 0 0 1 391 0 T0,08C0)92)
Crzos 1208 3214 1560 12 950 2522 390 24 40 60 2 516 O'T; (Pys; St(Aps);

( Pys;St(Aps); J52%;
1208 3214 1560 12 890 2462 390 24 40 0 2 456 0[Du(Cs0)32;Gsad

* TT=Truncated Tetraderon; Johnson object J52=Pyramid on k- basis; ApAntiprism on k-basis.

5 CENTRALITY BY LAYER MATRIX OF VERTICES

Centrality of vertices was evaluated by the C-indekues, computed on both the
layer matrix of rings surrounding each vertex, LRI dayer matrix of distance sum LDS.
Data are presented in Tables 2 to 5, in descendihgs of centrality.

Table 2. Symmetry of g5 Automorphism group = £x As = Iy ; |I)] = 120.

Class Centrality signature No. Vertices  Vertex degr Atom type
LR (5;6) LDS

1 0.042553749 0.045317 60 4 575
2 0.042540566 0.045304 30 4 575
3 0.040874143 0.04354 60 3 513
4 0.040324963 0.043067 60 4 5”6

5 0.040321521 0.043064 60 4 5"5.6

6 0.040318411 0.043061 60 4 575.6
7 0.038098096 0.040826 60 4 515
8 0.038077613 0.040805 60 4 575
9 0.038052559 0.040778 60 4 575
10 0.036396602 0.039075 60 3 573
11 0.036389945 0.039038 60 3 573
12 0.036339840 0.039019 120 3 513
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Table 3 Symmetry of &g Automorphism group £x Ag

Class Centrality signature No. Vertices Vertex degree Atom type
LR (5;6) LDS

1 0.058307707 0.061944 60 4 574.6"2
2 0.053567723 0.057187 60 4 576
3 0.052795484 0.056484 60 4 56
4 0.052766514 0.056459 30 4 56
5 0.048754347 0.052421 60 4 5"5.6
6 0.048749058 0.052417 60 4 56
7 0.048732339 0.052403 60 4 575.6
8 0.045198403 0.048845 60 4 575
9 0.045195080 0.048842 60 4 575
10 0.045179071 0.048829 60 4 575
11 0.042428574 0.046021 60 3 573
12 0.042373172 0.045972 120 3 573
13 0.039828281 0.043380 60 3 573

Table 4. Symmetry of £, Automorphism group = £x As

Class Centrality signature LR (3,6) No. Vertices  rtér degree Atom type
1 0.0837441494075746 12 6 375.6"10
2 0.0832240289226498 20 7 376.5"3.6"9
3 0.0679636030600054 12 6 375.6"5
4 0.0675306046381466 20 7 3"6.6"6
5 0.0560796687460724 60 4 372.5.6"3
6 0.0557098367436541 60 4 312.6M
7 0.0557092598622740 60 4 372.6"

Table 5. Symmetry of Gog Automorphism group = £x Ag

Class Centrality signature LR (3,6) No. Vertices rtée degree Atom type
1 0.0692967724225917 12 6 375.6"10
0.0691365154423208 20 7 3"6.5"3.6"9
3 0.0619497820844220 12 6 315.5"5.6"5
4 0.0618024674066362 20 7 3"6.5"6.6"6
5 0.0557957706506803 60 6 3"5.5"5.6"5
6 0.0556613506327981 60 6 315.5"4.6"6
7 0.0556608929712865 60 6 3"5.5"4.6"6
8 0.0505563870936009 60 6 3"5.5"5.6"5
9 0.0504284365686111 120 6 3"5.5"4.6"6
10 0.0460693873679426 12 6 375.5"5.6"5
11 0.0460485352602655 60 6 375.5"2.6"5
12 0.0459536270202304 20 7 3"6.5"6.6"6
13 0.0459430688968205 120 6 315.5"2.6"5
14 0.0451843719178823 60 5 373.5"2.6"4
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15 0.0451485654894074 120 5 373.5"2.6"4
16 0.0421607708595767 12 6 3"5.6"5
17 0.0421402682758050 60 4 312.5.6"3
18 0.0420471142414957 20 7 3"6.6"6
19 0.0420415003258929 120 4 372.5.6"3
20 0.0387298595614090 60 4 312.5.6"3
21 0.0386382508751928 120 4 3"2.6"4

The same partition of vertices in classes of eqaivag resulted according to the two
versions of C-index; these classes were confirmeddunting the automorphisms on the
adjacency matrix of the molecular graphs by the G2 program.

The graphs associated to the clusters herein distussre designed by the aid of
CVNET [13] while their topology studied by Nano-SkfR7] and Topo Cluj [28] programs.

6 Conclusions

Multi-shell clusters related to thesgfullerene have been designed by using some opesati

on maps, as implemented in the CVNET software progfaefl duals of some of the studied
structures were also built up and next transformmethore complex clusters. Topology of
these clusters was evaluated with respect to vegefality: the C-index was computed on
two types of layer matrices (LR and LDS matrix). W&t were partitioned in classes of
equivalence and ordered according to their centralihe vertex classification achieved by
topological description was confirmed by the autgohésms calculation.
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