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Abstract. Multi-shell clusters can be constructed, on the ground of C60 topology, by using 
operations on maps. Cell duals for some of the studied structures were also designed and next 
transformed into even more complex clusters. Topology of such clusters was analysed by the 
aid of a centrality index, computed on layer matrices of vertex properties. Vertices were 
partitioned into classes of equivalence and ordered according to their centrality. Finally, the 
vertex classification according to topological description was confirmed by the 
automorphisms counted by permuting the elements in the corresponding adjacency matrices.  
 

1 Introduction 

Symmetry (from Greek συµµετρία symmetria "agreement in dimensions, due 

proportion, arrangement") commonly refers to harmony of proportions in realization of a 

composition [1]. The simplest symmetry is the mirror symmetry. In Mathematics, symmetry 

refers to some operations acting on geometric or other regularities of a mathematical object 

that leave the object invariant. 
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Molecular geometric symmetry is involved in several properties, such as dipole 

moments, IR vibrations, 13C-NMR signals etc., strongly dependent on the spatial structure of 

molecules. Molecular topology reveals a different type of symmetry: topological symmetry or 

constitutional symmetry, with connectivity being the building principle of molecules. 

Topological symmetry expresses equivalence relationships among elements of graph: 

vertices, bonds, faces or larger subgraphs, in a formalism taken from Set and Group Theories. 

The geometrical aspects are disregarded [2,3]. 

 In the theory of Group action [4,5], a group G is said to act on a set X if there is a 

function φ such that φ : G � X →X and for any element x ∈ X, there exists: φ(g, φ (h,x)) = 

φ(gh,x), for all g,h ∈ G, with φ(e,x) = x, e being the identity element of G. The mapping φ is 

called a group action while the set {φ(gx) | g ∈ G} is called the orbit of x. For a permutation 

σ on n objects, there is a permutation matrix Pσ, of dimensions n × n, of which elements are 

xij = 1 if there is a permutation i=σ(j) and 0 otherwise. For any permutation σ and τ on n 

objects, PσPτ = Pστ, while the set of all permutation matrices is a group isomorphic to the 

symmetry group Sn on n symbols. A permutation σ of the vertices of a graph H(V,E) (V being 

the set of vertices and E the set of edges in H) belongs to an automorphism group G  if one 

satisfies the relation Pσ
tAPσ = A, where A is the adjacency matrix of the graph H. Given 

Aut(H) = {σ1, …, σm}, the matrix SG = [sij], with sij = σi(j) is called a solution matrix for H; 

calculation of these solutions will provide the automorphism group of H. 

In a graph H(V,E), with the automorphism group Aut(H), two vertices, i, j∈V are 

called equivalent if { φ(ij ) | i, j ∈ Aut(H)}, in words, they belong to the same orbit of 

automorphisms. 

The automorphic partitions of the vertex set V(H): v1, v2,..., vm are disjoint, that is 

1 2 ...v v vmV V V V= ∪ ∪ ∪  and 
i jv vV V∩ = ∅ . If the partitioning is provided by a topological 

vertex invariant: In = In1, In2,...,Inm, the invariant orbits/classes may differ from the orbits of 

automorphism, since no vertex invariant is known so far to always discriminate two non-

equivalent vertices in any graph [3]. To detail the above, two vertices i and j of a molecular 

graph (with vertices meaning the atoms and edges the bonds in the molecule) are equivalent 

(i.e., belong to the same invariant class IC) if Ini = Inj. Recall that a binary relation ~ on a set 

A is an equivalence relation if and only if it is: reflexive (x ~ x); symmetric ( xyyx ~~ ⇒ ) 

and transitive ( zxzyandyx ~~~ ⇒ ).These equivalence classes are eventually ordered 

according to some rules. 
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A layer matrix [3,6-8] is built on a layer partition of a vertex i in the graph H(V,E), defined as 
   ( ) { ( ) , [0, ] ( ) }j i j ivH i H i j ecc and v H i d j= ∈ ∈ ⇔ =   

where ecci is the eccentricity of i (i.e., the largest distance from i to the other vertices of 

graph). The entries in a layer matrix, LM , collect the vertex properties pv (a topological, 

chemical, or physical property) for all the vertices v of the j th  layer H(i)j with respect to the 

vertex i:  

  
( )

[ ]
j

ij
v G i

vp
∈

= ∑LM ,  

The matrix LM  is a collection of the above entries, for all vertices and layers, up to the graph 

diameter d(H): 

   LM ( G) = { [LM] ij  ;  i ∈∈∈∈ V(G );  j ∈∈∈∈ [0, d(H)] }   

LM is a non-square matrix, of dimensions N×(d(G)+1); the zero-distance column is just the 

column of vertex properties. The most simple layer matrix is LC, the layer matrix of 

counting, where pv=|H(i)j|), simply counts the vertices existing on the j th layer located at 

distance j to i.  

 On Layer matrices, an index of centrality C(LM ) is calculated; it quantifies the 

centrality of vertices of a graph 
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where ecci is the eccentricity of i. 

A multi-shell cluster is a part of the 3D-space or of higher dimension spaces and it is 

called in general a polytope. A 3D-polytope is convex if any of its edges shares no more than 

two polygons; next, a 4D-polytope is convex if any polygon shares no more than two cells. 

Each convex 4D-polytope is bounded by a set of 3D cells. If the cells are all Platonic solids 

of the same type and size, the 4D-polytope is called regular. There are six regular 4D-

polytopes, also called polychora and written, using the Schläfli’s symbols as:  5-Cell {3,3,3}; 

8-Cell {4,3,3}; 16-Cell {3,3,4}; 24-Cell {3,4,3}; 120-Cell {5,3,3} and 600-Cell {3,3,5}. Five 

of them can be associated to the Platonic solids but the sixth, the 24-cell has no close 3D-

equivalent. Among them, 5-Cell and 24-Cell are self-dual while the others are pairs: (8-Cell 

& 16-Cell); (120-Cell & 600-Cell). 

To investigate n-dimensional polytopes, the  Schläfli formula [9,10] is used 
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where fi are elements of the f-vector (f0, f1,…,fn−1). In case n=4, fi represent vertices v, edges e, 

faces f and cells c, respectively, while the above sum of figures becomes: 

0 1 2 3( ) 0iSum f f f f f= − + − = . In case n=3, the above is the well-known Euler-Poincaré 

formula [11]: v-e+f = 2(1-g), with g being the genus [12] (i.e. the number of connections) of 

the surface in which the graph is embedded. These formulas are useful to check the 

consistency of the attributed structures.  

The article is organized as follows: after the introductory part, some operations on 

maps are defined to be used in the design of multi-shell clusters. The main clusters based on 

C60 topology, namely C750 and C810 are discussed in the third section. The forth section deals 

with the cell duals and their transform in complex clusters. The fifth section gives the 

equivalence classes of vertices/atoms calculated on two layer matrices of the graphs 

associated to the studied clusters. Conclusions and references will end the article. 

 

2 Design of multi-shell clusters 

Multi-shell clusters herein studied were designed by using map operations, as 

implemented in our software CVNET [13]. A map M is a discretized surface domain and 

some operations on maps are known and used to modify a parent map; the parent (marked by 

a subscript zero) and transformed map parameters refer to regular maps (having all vertices 

and faces of the same valence/size). The symmetry of parents is preserved by running these 

operations. For more info, the reader is invited to consult refs. [14-19]. In the following, only 

the herein used operations are described. 

Dual (Du): put a point in the center of each face of the map, next join two such points if 

their corresponding faces share a common edge. It is the (Poincaré) dual Du(M). The vertices 

of Du(M) represent faces in M and vice-versa. In the transformed map, the following relations 

exist: Du(M); 0v f= ; 0e e= ; 0f v= . Dual of the dual returns the original map: Du(Du(M)) = M. 

Tetrahedron is self-dual while the other Platonic polyhedra form pairs: Du(Cube) = 

Octahedron; Du(Dodecahedron) = Icosahedron. It is also known the Petrie dual. Also, a cage-

dual is known: in the center of a cage put a point and join two such points if the 

corresponding cages share a face. If the dual does not account for the infinite face/cage, the 

dual is called inner dual. 

Truncation (Tr): cut off the neighborhood of each vertex by a plane close to the vertex, 

such that it intersects each edge meeting the vertex. Truncation transformed parameters are: 
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Tr(M); 0 0 02v e d v= = ; 03e e= ; 0 0f f v= + . This was the main operation used by Archimedes in 

building its well-known 13 solids.  

Polygonal mapping (Pn): Add a new vertex in the center of each face. Put n-3 points on the 

boundary edges. Connect the central point with one vertex on each edge (the end points 

included). Thus, the parent face is covered by triangles (n=3), quadrilaterals (n=4) and 

pentagons (n=5). The P3 operation is also called stellation or triangulation. The transformed 

map parameters are: Pn(M); 0 0 0( 3)v v n e f= + − + ; 0e ne= ; 0 0f s f= .   

 

3 C60-related clusters: C750 and C810 

We start our discussion with introducing two clusters consisting of C20 units: C750 and 

C810. They can be designed on C60(Ih) graph using operations on maps, by a procedure 

recently developed by Diudea [10,20,21]. For this, the following sequence of operations was 

used: Trs(P4(C60)).330; S2(C60).420; Trs(P4(C60))@S2(C60).750. Structure C750 = 

C60((C20)60).750 is a “spongy” one, with the central hollow of exact topology of 

Trs(P4(C60)).330. 

 

C60((C20)60).750 

Trs(P4(C60))@(S2(C60)420).750 

   
C60 Trs(P4(C60).330 S2(C60).420 

Figure 1. Multi-shell structures on 750 atoms 
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C60@C60((C20)60).810 

C60@((C20)12;(C24)20)@(C20)60.810 

 

   

C24 C60(@((C20)12;(C24)20).390 C60(Do60).750 

 

Figure 2. Multi-shell structures on 810 atoms 

 

Formally, every point in the graph of C60(Ih) is changed by a cage C20; notation 

C60((C20)60) means 60×C20 within the topology of C60(Ih) [20]. When the hollow 

Trs(P4(C60)).330 is “endohedrally” functionalized (a term taken from nanoscience) by 

connecting inside the fullerene graph C60(Ih), a double-shell cluster is designed: 

C60(@((C20)12;(C24)20).390. If C60 is inserted in C750, the filled structure C810=C60@C750.810= 

C60@((C20)12;(C24)20)@(C20)60.810 is achieved. The structures involved in the above 

molecular design are illustrated at the bottom of Figures 1 and 2.  

 

4 Cell dual 

Put a vertex in the centre of each cell composing a structure and join such points if the 

original cells shared a face – thus the cell dual CD is obtained. Vertices of CD represent cells 

in the original structure and vice-versa. The cell duals for C750 and C810 are illustrated in 
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Figure 3. The cell dual of C750 is a P-centred-C60 cage, P^60@C60.61 (Figure 3, left); if neglect 

the internal hollow, the dual is simplified to CD(C750)=C60. 

   
Figure 3. Cell duals:  CD( C750)= P^60@C60 .61(left) ; CD(C810) = C93= P^32@Du(C60)@C60.93  (middle) and 

its stellate C125=St( P^32@(Du(C60)@C60.93).125= St(P^32@(St(St(Do)32)93T).125 

 

Structures like IcoP.13=P^12@Ico.13 are cell duals of e.g.,  CD(C130)= 

CD(C20@(C20)12), or of any structure that joins 12 cells in the Ih symmetry. Note that some 

13-atom clusters: MaMb12 or M13, M=Fe, Pd, Ru, Rh show giant magnetic moments [22].  

The cell dual CD(C810) is a more complicated object (Figure 3, middle); it can be 

written as C93=P^32@Du(C60)@C60.93, where P^32 is the central point of CD, with the 

superscript (as the power symbol) meaning the connectivity of this point P). Let continue C93 

by capping/stellating/triangulating the faces f5 and f6 of its external shell, having the topology 

of C60; next, join by a path the two apices of each bipyramid thus formed (and implicitly the 

central P^32 point), thus obtaining the cluster C125 =St( P^32@(Du(C60)@C60.93).125 (Figure 

3, right). It can also be obtained by the sequence St(P^32@(St(St(Do)32)93T).125, where “T” 

means the joining of rays of the 93-star to form additional tetrahedra. In the name of 

structures, the last number is the atoms number; if a structure name is written as a sequence 

of map operations, the atoms number is preserved, for an ease identification of the 

steps/shells added. Figure counting for these clusters are given in Table 1. Note that 

structures having zero sum of their figures represent 4D-objects [10,23]. 

 Truncate now all the vertices of C125 cluster to obtain the cluster C1208 (Figure 4) . 

Structure elucidation in such multi-shell clusters is not a trivial task. At least three names can 

be written for each structure: (i) identify the main substructures, appearing entangled herein; 

(ii) count all the smallest cells/figures filling the space of cluster and (iii) specify the way of 

its drawing (by map operations). The endohedral @ symbol was used to suggest the 

concentric shells, even not clear delimitation of shell is possible in all cases. When the 

envelope of structure is well-defined (i.e. a fullerene) it is added at the end of name, before 

the number of atoms. 
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 In case of complex structures, the component figures/shapes are illustrated at the 

bottom of main structure. A particular mention deserves the cluster C84, related to the 

celebrate Samson’s cluster (on 104 atoms, with 20 atoms located in the center of the 

truncated tetrahedra TT of C84). It was found in Al-Cu-Li intermetallics [24,25].  

The cluster C1208 can be seen as an entanglement of three clusters: C244, C84 and C100, 

each of them being designed by truncation of the corresponding body-centered small clusters 

(see the bottom structures in Figure 4). We believe that, what we rationalize by geometrical 

operations used in drawing these objects, to happen in real, at high pressure/high temperature, 

as in case of synthetic diamond and other diamond like carbon hard phases. Also, it was 

suggested that domains of the 4D-space coexist with 3D-space in complex minerals. 
 

 
C244@((C84)12;(C100)20)@C540(Ih).1208 

Du(C60)@[(2TT)60;(St(Ap5)12;St(Ap6)20]@[(E@TT5)12;(E@TT6)20;(Py5)12;(Py6)20;(J52)60)]@C540(Ih).1208 

Tr(C125).1208 = C1208 

       
C84=Tr(IcoP).84     C100=Tr(P@St(Ap6)).100 C244=Tr(C 33).244 

Du(C60)@(TT12;TT 20)@C180(Ih).244 

      

P@St(Ap5).13=IcoP.13    P@St(Ap6).15 C33=P^32@St(Do).33 
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Figure 4. C1208 and its related structures 
 

Table 1. Euler-Schläfli formula for some of the studied clusters 

Cluster v e f3 f5 f6 f c1 c2 c3 c4 c5 c f∑  
Mk;[M] 

Du(C60).32  32 90 60 0 0 60 0 0 0 0 0 0 2 ((3^5)12;(3
^6)20)=St(Do)32 

C180(Ih) 180 270 0 12 80 92 0 0 0 0 0 0 2 (5.6^2)60;(6^3)120 

C540(Ih) 540 810 0 12 260 272 0 0 0 0 0 0 2 (5.6^2)60;(6^3)480 

P@St(Ap5).13 13 42 50 0 0 50 20 0 0 0 1 21 0 T;0;0;0;[St(Ap5)=Ico.12] 

C84 84 192 80 12 50 142 20 12 0 0 2 34 0 TT; Py5;0;0;[Ico;C60(Ih)] 

P@St(Ap6).15 15 50 60 0 0 60 24 0 0 0 1 25 0 T;0;0;0;(St(Ap6)) 

C100 100 230 96 12 62 170 24 12 2 0 2 40 0 

TT; Py5;Py6;0; 

[St(Ap6);C72(D6d)] 

C33 33 122 150 0 0 150 60 0 0 0 1 61 0 T;0;0; 0;(St(Do)32) 

Tr(C33).244  244 572 240 12 170 422 60 12 20 0 2 94 0 

TT;Py5;Py6 ;0; 

[(Du(C60)32;C180] 

C125  125 604 870 0 0 870 390 0 0 0 1 391 0 T;0;0;0; ( St(C60)92) 

C1208  1208 3214 1560 12 950 2522 390 24 40 60 2 516 0 TT; (Py5;St(Ap5); 

( Py6;St(Ap6); J52*; 

[Du(C60)32;C540] 1208 3214 1560 12 890 2462 390 24 40 0 2 456 0 

* TT=Truncated Tetraderon; Johnson object J52; Pyk=Pyramid on k- basis; Apk=Antiprism on k-basis. 

  

5 CENTRALITY BY LAYER MATRIX OF VERTICES  

Centrality of vertices was evaluated by the C-index values, computed on both the 

layer matrix of rings surrounding each vertex, LR and layer matrix of distance sum LDS. 

Data are presented in Tables 2 to 5, in descending values of centrality. 

 

Table 2. Symmetry of C750: Automorphism group = C2 × A5 = Ih ; |Ih| = 120.  

Class Centrality signature No. Vertices Vertex degree Atom type 
LR (5;6) LDS 

1 0.042553749 0.045317 60 4 5^5 

2 0.042540566 0.045304 30 4 5^5 

3 0.040874143 0.04354 60 3 5^3 

4 0.040324963 0.043067 60 4 5^6 

5 0.040321521 0.043064 60 4 5^5.6 

6 0.040318411 0.043061 60 4 5^5.6 

7 0.038098096 0.040826 60 4 5^5 

8 0.038077613 0.040805 60 4 5^5 

9 0.038052559 0.040778 60 4 5^5 

10 0.036396602 0.039075 60 3 5^3 

11 0.036389945 0.039038 60 3 5^3 

12 0.036339840 0.039019 120 3 5^3 
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Table 3 Symmetry of C810: Automorphism group C2 × A5 

Class Centrality signature No. Vertices Vertex degree Atom type 

LR (5;6) LDS 
1 0.058307707 0.061944 60 4 5^4.6^2 

2 0.053567723 0.057187 60 4 5^6 

3 0.052795484 0.056484 60 4 5^6 

4 0.052766514 0.056459 30 4 5^6 

5 0.048754347 0.052421 60 4 5^5.6 

6 0.048749058 0.052417 60 4 5^6 

7 0.048732339 0.052403 60 4 5^5.6 

8 0.045198403 0.048845 60 4 5^5 

9 0.045195080 0.048842 60 4 5^5 

10 0.045179071 0.048829 60 4 5^5 

11 0.042428574 0.046021 60 3 5^3 

12 0.042373172 0.045972 120 3 5^3 

13 0.039828281 0.043380 60 3 5^3 
 
 
Table 4.  Symmetry of C244: Automorphism group = C2 × A5 

Class Centrality signature LR (3,6) No. Vertices Vertex degree Atom type 

1 0.0837441494075746 12 6 3^5.6^10 

2 0.0832240289226498 20 7 3^6.5^3.6^9 

3 0.0679636030600054 12 6 3^5.6^5 

4 0.0675306046381466 20 7 3^6.6^6 

5 0.0560796687460724 60 4 3^2.5.6^3 

6 0.0557098367436541 60 4 3^2.6^4 

7 0.0557092598622740 60 4 3^2.6^4 
 

 

Table 5. Symmetry of C1208: Automorphism group = C2 × A5 

Class Centrality signature LR (3,6) No. Vertices Vertex degree Atom type 

1 0.0692967724225917 12 6 3^5.6^10 

2 0.0691365154423208 20 7 3^6.5^3.6^9 

3 0.0619497820844220 12 6 3^5.5^5.6^5 

4 0.0618024674066362 20 7 3^6.5^6.6^6 

5 0.0557957706506803 60 6 3^5.5^5.6^5 

6 0.0556613506327981 60 6 3^5.5^4.6^6 

7 0.0556608929712865 60 6 3^5.5^4.6^6 

8 0.0505563870936009 60 6 3^5.5^5.6^5 

9 0.0504284365686111 120 6 3^5.5^4.6^6 

10 0.0460693873679426 12 6 3^5.5^5.6^5 

11 0.0460485352602655 60 6 3^5.5^2.6^5 

12 0.0459536270202304 20 7 3^6.5^6.6^6 

13 0.0459430688968205 120 6 3^5.5^2.6^5 

14 0.0451843719178823 60 5 3^3.5^2.6^4 

-282-



15 0.0451485654894074 120 5 3^3.5^2.6^4 

16 0.0421607708595767 12 6 3^5.6^5 

17 0.0421402682758050 60 4 3^2.5.6^3 

18 0.0420471142414957 20 7 3^6.6^6 

19 0.0420415003258929 120 4 3^2.5.6^3 

20 0.0387298595614090 60 4 3^2.5.6^3 

21 0.0386382508751928 120 4 3^2.6^4 
 

The same partition of vertices in classes of equivalence resulted according to the two 

versions of C-index; these classes were confirmed by counting the automorphisms on the 

adjacency matrix of the molecular graphs by the GAP [26] program. 

The graphs associated to the clusters herein discussed were designed by the aid of 

CVNET [13] while their topology studied by Nano-Studio [27] and Topo Cluj [28] programs.  

 

6 Conclusions 
Multi-shell clusters related to the C60 fullerene have been designed by using some operations 

on maps, as implemented in the CVNET software program. Cell duals of some of the studied 

structures were also built up and next transformed in more complex clusters. Topology of 

these clusters was evaluated with respect to vertex centrality: the C-index was computed on 

two types of layer matrices (LR and LDS matrix). Vertices were partitioned in classes of 

equivalence and ordered according to their centrality. The vertex classification achieved by 

topological description was confirmed by the automorphisms calculation.  
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