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Abstract

Graovac and Pisanski [On the Wiener index of a graph, J. Math. Chem. 8
(1991) 53–62] applied an algebraic approach to generalize the Wiener index by
symmetry group of the molecular graph under consideration. The aim of this paper
is to continue this work and present some upper and lower bound for this graph
invariant.

1 Introduction

Throughout this paper graph means simple connected graph. Suppose G is such a graph

and V (G) is its vertex set. The distance between the vertices u, v ∈ V (G), d(u, v), is

defined as the number of edges in a shortest path connecting u and v. The sum of

distances between all pairs of vertices in G is called the Wiener index of G [18]. This

graph invariant found remarkable applications in chemistry [8].

Graovac and Pisanski [7] in a pioneering work applied the symmetry group of the

graph under consideration to generalize the Wiener index. To the best of our knowl-

edge, this paper is the only published paper in mathematics literature that combines the

symmetry and topology of molecules to obtain a good correlation with some physico-

chemical properties of molecules. To explain, we assume that G is a graph with auto-

morphism group Γ = Aut(G). Following [7], we define the distance number of an
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automorphism g, δ(g), to be the average of d(u, g(u)) overall vertices u ∈ V (G) and

δ(G) =
1

|Γ||V (G)|
∑

u∈V (G)

∑
g∈Γ d(u, g(u)). The modified Wiener index of G is de-

fined as:

Ŵ (G) =
1

2
|V (G)|2δ(G) =

|V (G)|
2|Γ|

∑
u∈V (G)

∑
g∈Γ

d(u, g(u)).

Suppose H is a group and X is a non empty set. A group action of H on X is a

function ∗ : H×X → X given by ∗(g, x) = g∗x that satisfies the following two conditions:

1. for each g, h ∈ H and x ∈ X, (gh) ∗ x = g ∗ (h ∗ x);

2. e ∗ x = x, for every x ∈ X.

Suppose H acts on X and g ∈ H. The subset Hx = {gx|g ∈ H} of X is called an

orbit of the action. The action is said to be transitive if it has exactly one orbit. Define

Fix(g) = {x ∈ X|g∗x = x}. If t is the number of orbits then the orbit counting lemma

[16] states that

t =
1

|H|
∑
g∈H

|Fix(g)|.

A graph G is called vertex transitive if the Aut(G) has exactly one orbit on V (G) under

its natural action.

Throughout this paper we use the standard notations of group theory and graph

theory. Suppose G and H are two graphs. The Cartesian product G�H is a graph

with vertex set V (G) × V (H) in such a way that vertices (a, b) and (x, y) are adjacent

if and only if a = x and by ∈ E(H) or b = y and ax ∈ E(H), see [10] for details. Our

notation is standard and taken from the standard books on these topics. The path, cycle

and complete graphs with n vertices are denoted by Pn, Cn and Kn, respectively.

2 Main Results

A graph G is called asymmetric if its automorphism group is trivial. It is easy to see that

the modified Wiener index of a graph G is equal to zero if and only if G is asymmetric.

In [6, Corollary 2.3.3], it is proved that the most of finite graphs are having trivial auto-

morphism group. To explain, we assume that αn and βn denote the number of n−vertex

graphs and n−vertex graphs with trivial automorphism group, respectively. Then,

lim
n→∞

αn

βn
= 1 .

-260-



This means that the modified Wiener index of the most of graphs is zero.

A class function over the complex number C is a function f on a group H, such that

f is constant on the conjugacy classes of H. By [11, p. 152], it is well-known that the set

CF (H,C) of all class functions constitutes a vector space over C.

Suppose G is a connected graph and Γ = Aut(G). For each automorphism g ∈ Γ, we

define δ(g) =
1

|V (G)|
∑

x∈V (G) d(x, g(x)). This defines a mapping δ : Γ→ C. Then,

Ŵ (G) =
|V (G)|2

2|Γ|
∑

g∈Γ δ(g). (1)

Theorem 1. δ is a class function and δ(g) = δ(g−1), for each automorphism g ∈ Γ.

Proof. Suppose g1 and g2 are arbitrary elements of Γ. Then

δ(g1g2) =
1

|V (G)|
∑

x∈V (G)

d(x, g1g2(x)).

Clearly, for each automorphism g ∈ Γ, d(a, b) = d(g(a), g(b)) and g(V (G)) = V (G).

Hence

δ(g1g2) =
1

|V (G)|
∑

x∈V (G)

d(x, g1g2(x))

=
1

|V (G)|
∑

x∈V (G)

d(g−1
1 (x), g2(x))

=
1

|V (G)|
∑

t∈V (G)

d(t, g2g1(t))

= δ(g2g1).

Therefore δ(g1g2g
−1
1 ) = δ(g−1

1 g1g2) = δ(g2), which implies that δ is a class function.

Apply our definition to prove δ(g) = δ(g−1). We have

δ(g) =
1

|V (G)|
∑

x∈V (G)

d(x, g(x))

=
1

|V (G)|
∑

x∈V (G)

d(g−1(x), x)

= δ(g−1),

proving the lemma.

Suppose H is a group, V is a vector space over C and ϕ is a homomorphism from H

into GL(V ), the set of all invertible n by n matrices on C, n = dimV . The homomorphism

ϕ is said to be a complex representation of H and the function χ from H into C given by
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χ(g) = trϕ(g), g ∈ H, is called the complex character of H afforded by ϕ. If χ and γ are

two complex class functions on H then their scalar product is defined as

〈χ, γ〉 =
1

|H|
∑
g∈H

χ(g)γ(g).

An irreducible complex character is a complex character χ such that 〈χ, χ〉 = 1.

It is well-known that the set of all irreducible complex characters of H constitute an

orthonormal subset of CF (H,C).

In Theorem 1, we proved that δ is a class function. Since δ(e) = 0, δ is not a character

of H. In the next theorem, we will prove that if n > 1 then the trivial character is a

constituent of δ.

Theorem 2. Suppose G is a connected n−vertex graph, Γ = Aut(G), t1 denotes the

number of orbits of Γ on V (G) and t2 is the number of orbits of Γ on V (G)×V (G) under

natural actions of Γ on V (G) and V (G)× V (G), respectively. Then,

1. 〈δ, δ〉 ≥ 1− 2t1
n

+
t2
n2
,

2. 〈δ, 1G〉 ≥ n− t1
n

, where 1G denotes the trivial character of G.

Proof. Define Fix1(g) and Fix2(g), g ∈ Γ, to be the fixed sets of Γ under two actions,

respectively. Then one can easily prove that Fix2(g) = Fix1(g)×Fix1(g). We now apply

the orbit−counting lemma to prove that

t1 =
1

|Γ|
∑
g∈Γ

|Fix1(g)| & t2 =
1

|Γ|
∑
g∈Γ

|Fix1(g)|2.

Since d is meter, d(x, g(x)) = 0 if and only of g(x) = x. Thus,

δ(g) =
1

n

∑
x∈V (G)

d(x, g(x)) ≥ 1− |Fix1(g)|
n

and so

δ(g)2 ≥ 1− 2|Fix1(g)|
n

+
|Fix1(g)|2

n2
.

Therefore,

< δ, 1G > =
1

|Γ|
∑

g∈Γ δ(g)

≥ 1

|Γ|
∑

g∈Γ(1− |Fix1(g)|
n

)

=
1

|Γ|
(n|Γ| − t1

|Γ|
n

) (by orbit counting lemma)

= n− t1
n
.
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In a similar way,

〈δ, δ〉 =
1

|Γ|
∑
g∈Γ

δ(g)2 ≥ 1− 2t1
n

+
t2
n2
,

which completes the proof.

SupposeG is a graph with V (G) = {v1, . . . , vn} and as usual Γ = Aut(G) = {g1, . . . , gm}.

The matrix D̂ = [d̂ij] is called the modified distance matrix, where d̂ij = d(vi, gj(vi)),

1 ≤ i ≤ n and 1 ≤ j ≤ m. Then the modified Wiener index of G is equal to:

n

2m
× the summation of all entries in D̂.

Notice that δ(gi) is the the average of the row corresponding to gi. Define γ : G −→ C

given by γ(x) =
1

|Γ|
∑

g∈Γ d(x, g(x)).

Theorem 3. Suppose G is a connected n−vertex graph and Γ = Aut(G). Then Ŵ ≥
n

2
(n− t1), where t1 denotes the number of orbits of Γ on V (G). If G is vertex transitive

then the equality is satisfied if and only if G is isomorphic to Kn.

Proof. Apply (1) and the orbit counting lemma, we have:

Ŵ (G) =
|V (G)|2

2|Γ|
∑

g∈Γ δ(g) =
|V (G)|

2|Γ|
∑

g∈Γ

∑
x∈V (G) d(x, g(x))

≥ |V (G)|
2|Γ|

(n|Γ| − t1|Γ|)

=
n

2
(n− t1)

We now assume that G is a vertex transitive graph with n vertices. If G is a complete

graph then it is clear that Ŵ (G) = Ŵ (Kn) =
n(n− 1)

2
, as desired. Suppose W (G) =

Ŵ (G) =
n(n− 1)

2
. By [7, Corollary 3.2], W (Kn) = Ŵ (Kn) =

n(n− 1)

2
and so G is

isomorphic to an n−vertex complete graph.

3 Applications

The aim of this section is to apply Theorem 1 and [7, Theorem 5.13] to compute the

modified Wiener index of some known graphs.

In the following example, we calculate the character table of the automorphism group

of some graphs together with their associated class functions. Suppose Zn, Sn and D2n

denote the cyclic group of order n, the symmetric group on n letters and the dihedral

group of order 2n. If H and K are subgroups of a group G such that H is normal,
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H ∩K = {e} and G = HK then we say G is a semidirect product of H by K and in this

case we write G = H : K.

Figure 1: The Petersen Graph.

Example 4. In this example the class function δ together with the modified Wiener index

of eight graphs are computed. These graphs are Petersen graph P5, the dendrimer graph

D[2], the complete graph K4, the complete bipartite graph K3,3 and trees Ti, 1 ≤ i ≤ 4.

It is well-known that the automorphism group of the Petersen graph is isomorphic to the

symmetric group S5. This graph is depicted in Figure 1 and its character table together

with class function δ1 is recorded in Table 1.

Table 1: The Character Table of Aut(P5) ∼= S5 and the Class Function δ1.

1a 2a 2b 6a 3a 4a 5a

χ1 1 1 1 1 1 1 1
χ2 1 −1 1 −1 1 −1 1
χ3 4 −2 0 1 1 0 −1
χ4 4 2 0 −1 1 0 −1
χ5 5 1 1 1 −1 −1 0
χ6 5 −1 1 −1 −1 1 0
χ7 6 0 −2 0 0 0 1

δ1 0 6
5

6
5

6
5

9
5

9
5

3
2

From Table 1, one can see that δ1 =
3

2
χ1 −

3

10
χ5 and Ŵ (P5) = 75. We now consider

the dendrimer graph D[2] that is depicted in Figure 2. Using GAP [17], one can easily

show that Aut(D[2]) ∼= Z2 × S4. On the other hand, from Table 2, we can calculate that

δ2 =
11

5
χ1 −

4

5
χ6 −

1

5
χ10 and Ŵ (D[2]) = 110.

Figure 2: The Dendrimer Graph D[2].
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Table 2: The Character Table of Aut(D[2]) ∼= Z2 × S4 and its Class Function.

1a 2a 2b 2c 2d 4a 2e 4b 3a 6a

χ1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 1 −1 −1 1 1 −1 1 −1
χ3 1 −1 1 −1 1 −1 −1 1 1 −1
χ4 1 1 1 1 −1 −1 −1 −1 1 1
χ5 2 −2 2 −2 0 0 0 0 −1 1
χ6 2 2 2 2 0 0 0 0 −1 −1
χ7 3 −1 −1 3 −1 1 −1 1 0 0
χ8 3 −1 −1 3 1 −1 1 −1 0 0
χ9 3 1 −1 −3 −1 −1 1 1 0 0
χ10 3 1 −1 −3 1 1 −1 −1 0 0

δ2 0 2
5

4
5

6
5 2 2 12

5
12
5 3 3

Table 3: The Character Table of Aut(K4) and its Class Function.

1a 2a 3a 2b 4a

χ1 1 1 1 1 1
χ2 3 −1 0 −1 1
χ3 2 0 −1 2 0
χ4 3 1 0 −1 −1
χ5 1 −1 1 1 −1
δ3 0 1

2
3
4 1 1

It is well-known that the automorphism group of Kn is isomorphic to the symmetric

group Sn and Kn is vertex transitive. By Table 3, δ3 =
3

4
χ1−

1

4
χ4 and Ŵ (K4) = W (K4) =

6. On the other hand, Aut(K3,3) ∼= (S3×S3) : Z2 and from Table 4 we can calculate that

δ4 =
7

6
χ1 +

1

6
χ4 −

1

3
χ9 and Ŵ (K3,3) = 21. This shows that the number of constituents

of the class function δ is independent from the vertex transitivity of the graph under

consideration.

We now consider four trees T1, T2, T3 and T4. A simple calculation by GAP shows

that Aut(T1) ∼= S4, Aut(T2) ∼= D12 and Aut(T3) ∼= Z2 × S4 and Aut(T4) ∼= (S3 × S3) : Z2.

Suppose δ5, δ6, δ7 and δ8 denotes their class function according to Theorem 1, respectively.

Table 4: The Character Table of Aut(K3,3) and its Class Function.

1a 2a 2b 3a 6a 2c 4a 6b 3b

χ1 1 1 1 1 1 1 1 1 1
χ2 1 −1 1 1 −1 −1 1 −1 1
χ3 1 −1 1 1 −1 1 −1 1 1
χ4 1 1 1 1 1 −1 −1 −1 1
χ5 2 0 −2 2 0 0 0 0 2
χ6 4 −2 0 1 1 0 0 0 −2
χ7 4 0 0 −2 0 −2 0 1 1
χ8 4 0 0 −2 0 2 0 −1 1
χ9 4 2 0 1 −1 0 0 0 −2
δ4 0 2

3
4
3 1 5

3 1 1 1 2
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Table 5: The Character Table of Aut(T1) and the Class Function δ5.

1a 2a 3a 2b 4a

χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 3 −1 0 −1 1
χ4 2 0 −1 2 0
χ5 3 1 0 −1 −1
δ5 0 4

5
6
5

8
5

8
5

T1 T2 T3 T4

Figure 3: The Graphs T1, T2, T3 and T4.

Table 6: The Character Table of Aut(T2) and its Class Function.

1a 2a 3a 2b 2c 6a

χ1 1 1 1 1 1 1
χ2 1 −1 1 −1 1 −1
χ3 1 −1 1 1 −1 1
χ4 1 1 1 −1 −1 −1
χ5 2 0 −1 −2 0 1
χ6 2 0 −1 2 0 −1
δ6 0 4

7
6
7

4
7

8
7

10
7

Table 7: The Character Table of Aut(T3) and the Class Function δ7.

1a 2a 3a 2b 4a 2c 2d 6a 2e 4b

χ1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 1 1 −1 −1 1 −1 −1 1
χ3 1 −1 1 1 −1 1 −1 1 1 −1
χ4 1 1 1 1 1 −1 −1 −1 −1 −1
χ5 2 0 −1 2 0 −2 0 1 −2 0
χ6 2 0 −1 2 0 2 0 −1 2 0
χ7 3 −1 0 −1 1 −3 1 0 1 −1
χ8 3 −1 0 −1 1 3 −1 0 −1 1
χ9 3 1 0 −1 −1 −3 −1 0 1 1
χ10 3 1 0 −1 −1 3 1 0 −1 −1
δ7 0 1

2
3
4 1 1 1

2 1 5
4

3
2

3
2

Suppose OT1 , OT2 , OT3 and OT4 denote the orbits of the automorphism groups of these
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trees, respectively. Our calculations with GAP show that

OT1 = [[1], [2, 4, 3, 5]],

OT2 = [[1], [2, 3], [4], [5, 7, 6]],

OT3 = [[1], [2], [3, 4], [5, 7, 6, 8]],

OT4 = [[1, 4, 5, 7, 6, 8], [2, 3]].

From Tables 5, 6, 7 and 8, we can calculate that Ŵ (T1) = 15, Ŵ (T2) = 21, Ŵ (T3) = 32

and Ŵ (T4) = 56 and the class functions δ5, δ6, δ7 and δ8 can be computed as follows:

δ5 =
6

5
χ1 −

2

5
χ5,

δ6 =
6

7
χ1 −

2

7
χ4 −

2

7
χ6,

δ7 = χ1 −
1

4
χ4 −

1

4
χ10,

δ8 =
7

4
χ1 −

3

4
χ4 −

1

4
χ9.

Table 8: The Character Table of Aut(T4) and the Class Function δ8.

1a 2a 2b 3a 6a 2c 4a 6b 3b

χ1 1 1 1 1 1 1 1 1 1
χ2 1 −1 1 1 −1 −1 1 −1 1
χ3 1 −1 1 1 −1 1 −1 1 1
χ4 1 1 1 1 1 −1 −1 −1 1
χ5 2 0 −2 2 0 0 0 0 2
χ6 4 −2 0 1 1 0 0 0 −2
χ7 4 0 0 −2 0 −2 0 1 1
χ8 4 0 0 −2 0 2 0 −1 1
χ9 4 2 0 1 −1 0 0 0 −2
δ8 0 1

2 1 3
4

5
4

5
2

5
2

5
2

3
2

Our calculations given Example 4, and some other calculations with GAP [17] and

MAGMA [1] suggest the following conjecture:

Conjecture 5: For each graph G, the class function δ is a rational combination of the

trivial character χ1 and at most two other irreducible characters of Aut(G).

For the sake of completeness, we mention here a result of Graovac and Pisanski [7]

about modified Wiener index of the Cartesian product of graphs.

Theorem 6. (Graovac and Pisanski [7, Theorem 5.13]) Suppose G and H are connected

graphs such that each orbit of the action of Aut(G ×H) on V (G) × V (H) has the form

A × B, where A is an orbit for the action of Aut(G) on V (G) and B is an orbit for the
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action of Aut(H) on V (H). Then

Ŵ (G�H) = |V (G)|2Ŵ (H) + |V (H)|2Ŵ (G).

If S is a q−element set and d is a positive integer then the Hamming graph H(d, q) is

defined to be the graph with vertex set Sd. Two vertices of H(d, q) are adjacent if and only

if they differ in precisely one coordinate. It is well-known that the Hamming graph H(d, q)

is isomorphic to the Cartesian product of d complete graphs Kq. A Hamming graph with

q = 2 is called a hypercube, denoted by Qd. Since the Hamming graph is vertex transitive,

the Wiener and modified Wiener indices coincide in this case. A tedious calculations show

that Ŵ (Kn1� · · ·�Knr) =
∑r

i=1

(
ni

2

)n1n2 · · ·nr

ni

. By substituting n1 = n2 = · · · = nr = q

and d = r, we have Ŵ (H(d, q)) = d
(
q
2

)
qd−1 and Ŵ (Qd) = d2d−1.

A C4−grid is a Cartesian product of two paths. The Cartesian product of a path and

a cycle and two cycles are called C4−nanotube and C4−nanotorus, respectively. In the

following, the modified Wiener indices of these graphs are calculated.

Example 7. In this example the modified Wiener index of a C4−grid, C4−nanotube and

C4−nanotorus are computed. We recall that the symmetry group of a path Pn is a cyclic

group of order two with the following non identity element g:

g =


(1 n)(2 n− 1) · · · (n− 1

2

n+ 3

2
) n is odd

(1 n)(2 n− 1) · · · (n
2

n+ 2

2
) n is even

On the other hand, the group of all symmetries of a regular polygon, including both

rotations and reflections is isomorphic to a dihedral group of order 2n, denote by D2n.

We mention here that there is a typographical error in [7, Example 5.6] for computing

Ŵ (Pn). One can easily prove that:

Ŵ (Pn) = Ŵ (Cn) =


n3

8
n is even

n3 − n
8

n is odd

(2)

Apply (2) and [7, Theorem 5.13] to prove the following equality:
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Ŵ (Cm�Pn) = Ŵ (Pm�Pn) = Ŵ (Cm�Cn)

= |V (Cm)|2Ŵ (Cn) + |V (Cn)|2Ŵ (Cm)

=



m2n2

8
(n+m) m and n are even

mn

8
(mn2 + n(m2 − 1)) m is odd and n is even

mn

8
(m(n2 − 1) + nm2) n is odd and m is even

mn

8
(m(n2 − 1) + n(m2 − 1)) m and n are odd

A cubic graph G is called 3−connected, if there does not exist a set of two ver-

tices whose removal disconnects the graph. A fullerene graph is a planar, cubic and

3−connected graph such that all faces are pentagons or hexagons. The importance

of fullerene graphs is for its applications in fullerene chemistry. The fullerene era was

started after pioneering work of Kroto and his team [14]. The mathematical properties

of fullerene graphs are a new branch of nanoscience started by pioneering work of Fowler

and his team [4, 15]. We encourage the interested readers to consult papers [12, 13] and

references therein for more information on this topic.
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Figure 4: The Fullerene Graph C70.

Example 8. Datta, Banerje and Mukherjee [2], constructed the IPR fullerenes C50+10n,

n ≥ 1, with exactly 50 + 10n carbon atoms. In this example, the modified Wiener index

this class of fullerenes is calculated, see Figures 4 and 5. We first notice that the symmetry
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Figure 5: The Fullerene Graph C80.

group of the fullerene C50+10n has D5h point group symmetry and so it is isomorphic to

the dihedral group D20.

We first label this fullerene graph by a method given by Fripertinger [5]. We apply

HyperChem [9] and TopoCluj [3] to calculate the adjacency and distance matrices of

molecular graphs. Suppose permutations A1, A2 and A3 are defined as follows:

A1 := (2, 5)(3, 4)(7, 10)(8, 9)(11, 20)(12, 19)(13, 18)(14, 17)(15, 16) · · · (10n + 31, 10n + 40)

(10n + 32, 10n + 39)(10n + 33, 10n + 38)(10n + 34, 10n + 37)(10n + 35, 10n + 36)(10n + 42, 10n + 45)

(10n+ 43, 10n+ 44)(10n+ 47, 10n+ 50)(10n+ 48, 10n+ 49),

A2 := (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)(11, 13, 15, 17, 19)(12, 14, 16, 18, 20) · · · (10n+31, 10n+33, 10n+35, 10n+

37, 10n+39)(10n+32, 10n+34, 10n+36, 10n+38, 10n+40)(10n+41, 10n+42, 10n+43, 10n+44, 10n+

45)(10n+ 46, 10n+ 47, 10n+ 48, 10n+ 49, 10n+ 50),

A3 := (1, 10n + 46)(2, 10n + 47)(3, 10n + 48)(4, 10n + 49)(5, 10n + 50)(6, 10n + 41)(7, 10n + 42)

(8, 10n + 43)(9, 10n + 44)(10, 10n + 45)(11, 10n + 31)(12, 10n + 32)(13, 10n + 33)(14, 10n + 34)

(15, 10n + 35)(16, 10n + 36)(17, 10n + 37)(18, 10n + 38)(19, 10n + 39)(20, 10n + 40)(21, 10n + 21)

· · · (30, 10n + 30) · · · (5n + 11, 5n + 31)(5n + 12, 5n + 32)(5n + 13, 5n + 33)(5n + 14, 5n + 34)

(5n + 15, 5n + 35)(5n + 16, 5n + 36)(5n + 17, 5n + 37)(5n + 18, 5n + 38)(5n + 19, 5n + 39)

(5n+ 20, 5n+ 40).
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A simple calculation shows that the permutations A1, A2 and A3 are automorphisms

of the fullerene C50+10n. Since the group 〈A1, A2, A3〉 has order 20, Aut(C50+10n) ∼=
〈A1, A2, A3〉 ∼= D20. Define x = A2A3 and y = A1. Then x10 = y2 = e and yxy−1 =

x−1 and so by [11, p. 183], the representatives of the conjugacy classes of D20 are

e, x, x2, x3, x4, x5, y, xy. In Table 9, the class functions δ′(g) = |V (G)|δ(g) on each conju-

gacy class of dihedral group D20 are computed.

Table 9: The Class Functions δ′(g) = |V (G)|δ(g) on each Conjugacy Class.

n is Even
Conjugacy Classes 1a 2a 5a 5b

0 50n + 154 40n + 140 80n + 240

Conjugacy Classes 2b 2c 10a 10b
5n2 + 50n + 140 5n2 + 76n + 286 5n2 + 70n + 240 5n2 + 90n + 390

n is Odd
Conjugacy Classes 1a 2a 5a 5b

0 50n + 154 40n + 140 80n + 240

Conjugacy Classes 10a 2b 10b 2c
5n2 + 60n + 175 5n2 + 74n + 281 5n2 + 80n + 305 5n2 + 100n + 475

Apply Theorem 1 and calculations given Table 9, to prove that

Ŵ (C50+10n) =


25

2
n3 +

745

2
n2 +

5285

2
n+

10925

2
n is odd

25

2
n3 +

745

2
n2 + 2640n+ 5450 n is even
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