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Abstract 

Local graph symmetry groups are formally defined as acting in a non-identical 
fashion on just a proper (local) subset of a graph’s vertices, and consequent 
theorems are established for adjacency matrices so as to simplify eigensolutions. 
These groups sometimes enlarging on the usual point groups, are illustrated, with 
examples of the application of the theorems. Some discussion of further utility, 
on elaborated models & on identification of so-called “accidental” degeneracies, 
is indicated. 

 

1. Introduction  

 The standard approach for the use of symmetry in quantum mechanical problems – 

say for electronic structure – is to form a basis of vectors symmetry adapted to the different 

irreducible representations (IRs) of the full symmetry group of operations commuting with 

the Hamiltonian. The generation of the IRs is typically viewed as a separate problem. This 

overall approach is undoubtedly a seminally important to provide exact symmetry-mediated 

quantum numbers, such as then relate to degeneracies and various selection rules – besides 

the block-diagonalization of the original Hamiltonian matrix. See, e.g., Wigner1 and 

numerous later books. But when it comes to dealing with graphs and their adjacency or 

Laplacian matrices, there often seem to be other things going on – with additional associated 

degeneracies, isospectralities, eigenvector localizations, and “higher” (non-geometric) 

symmetries.  See, e.g.,2,3,4,5. 
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 Here we look at a novel approach to deal with graph symmetry, complicitly mixed up 

with the construction of a hierarchy of symmetries, especially starting with more “local” 

symmetries (of the graph automorphism group), where typically the more local symmetries 

are only subsymmetries. The approach has precedent in the schemes emphasized by 

McClelland6, by D’Amato and Gimarc7,8, by Davidson9, by Tang et al.10, and by Mandal11,12. 

 But here we give a general theorematic formulation, with a simple illustrative 

application. Often the extended symmetries do not persist to the full Schrodinger equation, so 

are approximate, though it may be noted that in fact they extend6 rigorously to Hubbard & 

Hubbard-PPP models. In an accompanying paper13 we apply the method to the simplest 

(proto-typical) dendrimer, namely the degree-3 Bethe tree – and look for qualitatively 

distinctive features of the eigensolutions. As a further potential application dendrimers may 

be noted to be a class of molecules with graphs which admit a natural hierarchy of our local 

symmetries, and application to general dendrimers is also conceivable. 

 

2. Theoretical Methods 

2.1. General Results 

 Let G ( , )V E  be a graph, with adjacency matrix A , and let ˆ ˆ( )G=A A  be an 

automorphism group of G  with permutations π ∈A  realized as matrices on V  such that 

π π=A A . Then following the standard approach one has:  

 Theorem 1: Each eigenvector of A  can be chosen to transform in accordance with an 

irreducible representation of a group A  of automorphisms of G . 

 Letting S V⊆ , we define ( )S S G=A A  as the set of automorphisms of G  which leave 

{ | }S i V i S≡ ∈ ∉  fixed (i.e., ,S i iπ π∈ ⇒ =A  i S∈ ). Then SA  is said to be S-localized. 

Also a vector v
�

 is localized on S V⊆  if the components iv  of v
�

 are 0=  for i S∉ . Then our 

first local subsymmetry theorem is: 

Theorem 2: Eigenvectors of A  transforming in accordance with a non-identity irreducible 

representation of an S-localized automorphism group SA , are localized on S and are given as 

solutions on the restriction of G  to S. 

Proof: First it may be noted that theorem 1 guarantees that the eigenvectors of A  can be 

chosen to be symmetry adapted to transform as IRs of SA . Now any component iψ  of such a 

vector ψ�  with i S∉  is left fixed by every Sπ ∈A , so that it must associate to the identity IR 

of SA , which by our hypothesis (that ψ�  transforms as a non-identity IR) is excluded from the 

considered eigenvectors.             ■ 

-248-



 

 This theorem often achieves significant results, as has sometimes been shown [7-11] 

for the non-identity IR when SA  is of order 2, say as for a reflection group. Often the 

restriction G S↓  of G  to S V⊆  falls into disconnected fragments. For example, the graph 

G  of Figure 1 has a 3-cyclic automorphism subgroup 3C  which fixes the central vertex, 

which in turn constitutes S for this group. Then G S↓  consists of 3 disconnected hexagons 

(as in Figure 1(b)), for which the eigenvalues of each are well-known to be −2, −1, −1, +1, 

+1, +2. Thus each of these 6 eigenvalues occurs twice as an eigenvalue to A  of G  - this 

occurrence arising in accordance with the E -representation of 3C . (Here the E -

representation is decomposable into two 1-dimensional IRs E+  and E−  which are complex 

conjugates of one another, and so give degenerate results, for our realA .)  To be more 

explicit about the eigen-solutions, let ξψ� be the (local) eigenvector for the 1st benzene ring, 

whence 3C ξψ�  and 2
3C ξψ� are corresponding eigenvectors for the 2nd and 3rd benzene rings, and 

the consequent E -eigenvectors of G  are                             
1 2 2

3 3
E C Cξ ξ ξ ξψ ψ ε ψ ε ψ± ± ±= + +� � � �

 

where 2 /3ie πε =  and 3C  is the permutation corresponding to a rotation by 2 / 3π . One may 

note that 
3
C  is far from the whole automorphism group (which is isomorphic to the 

semidirect product 2 2 2[ ]× ×
3
C S S S  with the different 2S  groups flipping a single one of the 

benzene rings around), and even other choices could be made for SA  fixing larger subsets S - 

but our choice still serves as a useful example, though the eigenvectors of A  associated to 

the identity IR is the subject of the next theorem. 
 
 

 

 

 

 
 
 
 
 
 
 
 
Figure 1: In (a) one example of molecular graph G  manifesting a 3C -symmetry. In (b) the graph 

G S↓ (when G  is the central vertex of G  in (a)). 
 

(b)(a)

-249-



 

 The orbits of V  under an automorphism group A  are the different subsets 

{ : }i iπ π≡ ∈A A ,i V∈ . Denote the set of orbits by /V A , and the order of a set S  by S . 

Thus for the graph of Figure 1, the lone central vertex is a 3/V C -orbit, and the remaining 

orbits each consist of triples of vertices transformed into one another by 3π ∈C .  We utilize 

some standard results14,15 for orbits. 

Lemma 3.  For A  a group acting on a set V , the orbits ( /V A ) partition V . 

This is especially well-known (and easy to prove).   

Lemma 4.  Let  , ,i j a∈A  A  an automorphism group on V , with a V∈ . Then 

{ : } { : }i j a aπ π π π∈ = = ∈ =A A  divides A . 

Proof:     Evidently { : } jj jπ π∈ = ≡A A  is the subgroup of A  leaving j  fixed. Granted 

j a∈A , there is σ ∈A  such that j aσ= , whence 1a jσ −= , and also 

1{ : } { : }a a a aπ πσ σ π σ πσ−∈ = = ∈ =A A . But defining 1
σπ σ πσ−≡ , we have 

1 1{ : }j aa aσ σσπ σ π σ σ− −= ∈ = =A A A , so that all jA , j a∈A , have the same order. Next for 

j a i∈ =A A , there must be a τ ∈A  such that i jτ = , so that 

{ : }i jπ π∈ = =A
1{ : } { : } jj j j jτ τπ πτ τ π π τ−∈ = = ∈ ∈ =A A A  is evidently a left coset of 

jA , and has the same order as jA , and aA . The number of such cosets is (of course) 

/ /j a=A A A A , so that aA  divides A .          ■ 

 Again these lemmas are standard14,15 for the action of a group A  on a general set V  

fixed by A , independently of V  being the vertex set of a graph. The orbits /V A  may be 

concisely represented by a complete set A V⊆  of representatives of the orbits of  /V A , 

which is to say the different a A∈  generate each orbit exactly once: / { }V a a A= ∈A A  &  

a b a b≠ ⇒ ∩ = ∅A A . Granted such an A  as an automorphism group of ( , )G V E= , an 

A -condensed graph /G A  is defined to have vertex set /V A  and edges { , }a bA A  if there 

are i a′∈A  and j b′∈A  such that { , }i j E′ ′ ∈ . Moreover, for such an edge of /G A , define a 

weight 

1/ 2 1/ 2

, {{ , } ( ) : , }a bw a i j E G i a j b b
− −= ∈ ∈ ∈

A A
A A A A . 

This then defines a weighted adjacency matrix W  on /G A , which may evidently have 

diagonal elements. Also note that there are different expressions for ,a bw
A A

: 

Lemma 5.   The edge weight ,a bw
A A

 of /G A  with ,a b A∈  satisfies: 
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1/ 2 1/ 2

, {{ , } ( ) : , }a bw a i j E G i a j b b
− −≡ ∈ ∈ ∈ ⋅

A A
A A A A  

1/ 2 1/ 2
{{ , } ( ) : }a a j E G j b b

−= ∈ ∈ ⋅A A A  

1/ 2 1/ 2
{{ , } ( ) : }a i b E G i a b

−= ⋅ ∈ ∈ ⋅A A A  

Proof: For i a∈A , there is π ∈A  with i aπ= , and 1{ , } { , } { , }i j a j E a j Eπ π −= ∈ ⇔ ∈  with 

j  and 1 jπ −  in the same orbit (say bA ). Thus the cardinality of {{ , } : }i j E j b∈ ∈A  & 

{{ , } : }a j E j b′ ′∈ ∈A  are the same, and {{ , } : , } {{ , }
i a

i j E i a j b i j E
•

∈

′ ′∈ ∈ ∈ = ∈∪
A

A A  when 

j b∈A  with each one of the components in the disjoint union of the same size. That is, 

{{ , } : , } {{ , } : }i j E i a j b a a j E j b∈ ∈ ∈ = ⋅ ∈ ∈A A A A  so that the first result of the lemma 

is obtained. The second result follows similarly.          ■ 

Theorem 6: Each eigenvector ψ�  of A  transforming in accordance with the identity IR of 

SA , corresponds to an eigenvector ψ ′�  with the same eigenvalue on the condensed (weighted) 

graph / SG A  such that when both ψ ′�  and ψ�  are normalized, their components are related 

1/ 2

S a S aaψ ψ′ = ⋅
A

A , a ∈ A . 

Proof: An eigenvector ψ�  totally symmetric under S ≡A A  has k kπψ ψ= , π∀ ∈A , and 

with λ  the eigenvalue for ψ�  satisfies 

A b V

ij b ij j i a
b j j

ψ ψ λψ λψ
∈ ∈ ∈

= = =∑∑ ∑A A
A

 

where i a∈A . Now 

1/ 2 1/ 2

,{{ , }} {{ , } : }
b b

ij a b
j j

i j E i j E j b a w b
∈ ∈

−= ∩ = ∈ ∈ =∑ ∑A
A A

A A
A A A  

having used lemma 5. Thus  

1/ 2 1/ 2

,

A

a b b a
b

a w b ψ λψ
∈

− =∑ A A
A A  

Or if we abbreviate 
1/ 2

c cc ψ ψ ′≡A , we have  

,

A

a b b a
b

w ψ λψ
∈

′ ′=∑ A A
  or   ψ λψ′ ′=W

� �
. 

Finally the norms are related via 

A A A a

a a a a j j
a a a j

aψ ψ ψ ψ ψ ψ ψ ψ ψ ψ
∈ ∈ ∈

′ ′ ′ ′〈 〉 = = ⋅ ⋅ = 〈 〉∑ ∑ ∑∑
� � � �A

A  
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Thus a corresponding like-normalized vector of W is identified.        ■ 

 These theorems generalize those of McClelland6, D’Amato7,8, Davidson9 and Tang et 

al.10, which often dealt with the specific case of SA  of order 2.   Davidson9 and Tang et al.10 

address the cyclic case.  In these works the eigenvectors are ignored, with focus on the 

characteristic polynomial, from which the eigenvalues are viewed to be determined. 

 

3. Results & Discussion 

3.1. Example & General Scheme  

 We may continue our simple example, with the S =
3

A C  case of Figure 1 to give the 

eigensolutions for the identity IR of 
3
C . The graph /G

3
C  is as in Figure 2, where the bold 

face edge has a weight of 3 . Notably if so wished this graph could be further solved using 

its 
2
C  symmetry group. The application of theorem 2 gives a single edge to solve, and the 

application of theorem now gives ( / ) /G
3 2
C C as in Figure 3: a weighted path graph, with 

successive edges having weights,3 , 2 , 1, 2 .  

 

 

 

 

 

                  

  

Figure 2: The condensed graph                                          Figure 3: The doubly condensed 

                   /G
3
C .                                                                          graph ( / ) /G

3 2
C C .               

 

 Thus for the example of Figure 1, the utility of our theorems 2 & 6.  The overall mode 

of application might be made a little more explicit, with:  

Corollary 7. Suppose the restriction of G  to S  falls into disjoint fragments such that every 

nonidentity Sg ∈A  moves at least one fragment into another. Then the eigenvalues associated 

to the non-identity IRs of SA  are given as the eigenvalues of the fragments which are 

nonequivalent under SA . 

 This and the theorem 6 suggest a systematic scheme to utilize the localized 

symmetries especially when a suitable sequence of them can be identified: 

•

••

•

•
•

•
•

•

•

•

•
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• Start with a maximally localized choice for SA , such choice if in a hierarchy likely 

involving sets S  which are disjoint from one another. 

• Use corollary 7 to find the eigenvectors associated to nonidentity IRs of these SA . 

• Then theorem 6 is used to make a contracted graph for these SA . 

• A new next maximally localized automorphism group is identified for this contracted 

graph, repeating the whole procedure (till the hierarchy is exhausted). 

A general application of such procedure occurs in the next paper, concerning the prototype of 

a general circumstance where the present methodology is especially felicitous in this iterative 

form. 

 

3.2. Weighted Graphs 

 Weighted graphs as for instance arise with higher-order tight-binding models can be 

treated within our framework. The theorems 1 & 2 and lemmas 3, 4, & 6 apply as they stand, 

so long as the permutation matrices π  commute with the new Hamiltonian matrix W  even 

with weights. Though “full” 1-electron Hamiltonians should only preserve point-group 

symmetry, we emphasize that the additional symmetry such as found in our Hückel-model 

(example of Figure 1), still often persists in a weighted tight-binding model extended to 

include next-neighbor interactions – even if a corresponding low-order non-identity overlap 

matrix is included. For instance, the same graphical symmetries found for the adjacency 

matrix associated to the graph of Figure 1, still apply with next-neighbor interactions as in 

Figure 4. In this case one has a weighted matrix 2β ′= +W A A , where β ′  is a parameter of 

magnitude <1. There is a weighted graph wG  now as indicated in Figure 4, with edges 

2( ) ( ) ( )E wG E G wE G= ⊕ , where 2 ( ) {{ , } : 1, }i j jkE G i k A A i k≡ = ≠  is the set of next-nearest 

neighbors of G  and the factor w  indicates a weighting for 2 ( )E G  (and we have assumed 

that G  has no triangular cycles). 

 

 

 

 

 

 
 
 
Figure 4: Graph G  in addition with differently weighted next-neighbor interaction, appearing as dashed lines. 
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 Another sort of weighted graph may be recognized16,17 to arise18,19,20,21 in the context 

of dealing with all the valence electrons of an alkane – where there is a graph node for each 

(sp3) hybrid orbital of each C atom as well as a node for each 1s H-atom orbital.  Here the 

weights arise because the internal “bonds” between different sp3-hybrids on the same C atom 

have a notably lesser weight than that of the (single) bonds between atoms. 

 One may even entertain a non-identity overlap s= +S I A , where s  is an overlap 

parameter also with a magnitude <1.  Then the eigen-problem is 

ψ λ ψ=W S  

Here the local symmetry operations (typically) commute with both W  &  S, so that one may 

show: 

Lemma 8 –  The edge weight ,a bw
A A

 of /Gβ ′ A  with ,a b A∈  satisfies: 

1/2 1/2 1/2 1/2 1/2 1/2

, , , , 
a b b

a b i j a j i b
i j j i

w a W b a W b a W b
∈ ∈ ∈ ∈

− − − −≡ ⋅ = ⋅ = ⋅∑ ∑ ∑ ∑
A A A Aa

A A
A A A A A A  

and the edge weight of the overlap matrix S is  

1/2 1/2 1/2 1/2

, , , ,

1/2 1/2 1/2 1/2

, , , ,

  

                                 

a b a b

a b i j a b i j
i j i j

b

a b i b a b a j
i j

s a s b a A b

a A b a A b

δ

δ δ

∈ ∈ ∈ ∈
− − − −

∈ ∈
− −

≡ ⋅ = + ⋅

= + ⋅ = + ⋅

∑ ∑ ∑ ∑

∑ ∑

A A A A

A A

Aa A

A A A A

A A A A

 

The proof proceeds using the same sort of methodology as for lemma 5.  Yet further, that W  

& S occurring in ψ λ ψ=W S  commute with one another immediately implies: 

Corollary 9 – The matrices W  &  S have simultaneous eigenvalues ( )λ W  &  ( )λ S       

which correspond to ( ) / ( )λ λ λ= W S  in the (generalized) eigenvalue problem ψ λ ψ=W S .  

All have common eigenvectors, with the condensation of theorem 6 applying, with the new 

weights given in lemma 8. 

Thence through this next-nearest neighbor approximation, much of what already has been 

described for the nearest-neighbor model is retained. 

 

3.3 Excessive Eigenvalue Degeneracy 

 One of the on-going2,3,4 “mysteries” of molecular graphs and their associated Hückel 

eigenspectrum has been their occasional seeming excessive (or accidental) degeneracies.  

Now in fact our theorem 2 leads to an understanding of at least some of these seeming 

“accidents”.   To understand this we consider the case when the local set S V⊂  and the local 
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automorphism group SA  is a proper subgroup of the full automorphism group V≡A A .  In 

this case we have eigenvectors to A  for eigenvalue λ  which are also symmetry adapted to a 

nonsymmetric irreducible representation Sα  of SA  -- which is to say the eigenvectors are 

labelled by Sα  along with the columns i  of Sα , say as ( , )Siψ λ α  – and further these 

eigenvectors transform under group operations S SG ∈A  thusly 

,( , ) ( ) ( , )
S

S S S S j i S
j

G i G j
α

ψ λ α α ψ λ α⋅ = ⋅∑  

 where ,( )S S j iGα  is the ( ,j i )th element of the irreducible representation matrix ( )S Sa G  for 

the element S SG ∈A  .  These symmetry adapted vectors may be further used (e.g., following 

chap. 7 of Curtis & Reiner23) to induce a representation of the full group A , using a set C  of 

coset multipliers for distinct (left) cosets of  S ⊂A A , this latter meaning that 

S
C

C
∈

= ⊕
C

A A  

where the direct sum here is just a disjoint union over the collection of distinct cosets 

{ : }S S S SC CG G≡ ∈A A .  Evidently for two distinct coset multipliers 1C  & 2C  it must occur 

that 1
1 2 SC C− ∉A  , whence we see that 1C S  & 2C S  are distinct, and the members of  

                       ( ) { ( , ) : , ranging (over columns of )}S SB C i Cλ α ψ λ α↑ ≡ ⋅ ∈C    

being localized on different disjoint sets (conjugate to S ) must also be linearly independent.  

Thus ( )SBλ α ↑  is a basis for a representation Sα ↑  of  the full group A .  This is to say for an 

arbitrary element G ∈A , there are unique 1C ∈C  & S SG ∈A  for which 1 SG C G= .  And 

similarly there must also be unique  12C ∈C  & 12S SG ∈A  such that 1 2 12 12S SC G C C G= , 

whence we have  

2 12 12 12 12( , ) ( , ) ( ) . ( , )S S S S S ji S
j

G C i C G i G C jψ λ α ψ λ α α ψ λ α⋅ = ⋅ =∑  

which verifies the  claim that ( )SBλ α ↑  forms a basis for a representation of A .  This 

induced representation Sα ↑  evidently has ( 12 1,C j C i )th matrix element   

       
12 11 , 12 ,( ) ( )S S C j C i S S j iC G Gα α↑ =   where 1 2 12S SC G C C∈ A   & 1

12 12 1 2S SG C C G C−≡ ⋅  

Now because all these group elements commute with A , we see that 

2 2 2( , ) ( , ) ( , )S S SC i C i C iψ λ α ψ λ α λ ψ λ α⋅ = =A A  

Overall this establishes:  
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Theorem 10 – The members of the basis ( )SBλ α ↑  for the carrier space of the representation 

Sα ↑  induced from a nonsymmetric irreducible representation Sα  of S ⊂A A  are all 

degenerate.   

 In particular, this degeneracy applies regardless of whether Sα ↑   is irreducible.  This 

then accounts for (some) “accidental” degeneracy (beyond that dictated from the size of the 

irreducible representations of A ). For example this extends the considerations of Wild et al3 

who propose using the full automorphism group A  which occasionally is larger than the 

ordinary point group of the molecule (associated to the adjacency matrixA ).  Wild et al note 

the local structure of different group elements associated to our S ⊂A A , but their aim is just 

to use the group theory as an aid to construct irreducible representations of A  – our 

construction by-passes this and identifies additional degeneracy, when Sα ↑  is not 

irreducible.  Of course, Sα ↑  is sometimes irreducible, whence the symmetry adaptation to 

just Sα  of SA  is sufficient24 (& economically so) to obtain symmetry adaptation to A . 

 

 4. Conclusion 

 A potentially very useful general approach to dealing with local graph symmetries has 

been described and briefly illustrated. A more complete illustration is described in a follow-

up paper, where a virtually complete solution to “Bethe tree” graphs result upon utilization of 

our present approach – and indeed it seems similarly to facilitate ready solution to the general 

class of “dendrimer” graphs.  Moreover, as noted in the discussion above, there should be 

applications to stellated (alkane) graphs, and even quantum-chemically weighted extended 

Hückel theories. Yet further the types of groups extend to selected PPP-Hubbard type 

models5.  The localization of the eigenvectors is here seen to be central to our development, 

and have some novel implications – one such being the identification of a simple rationale for 

what are otherwise seen2,3,4,5 as “accidental” degeneracies manifested by the Hückel model, 

as discussed in conjunction with theorem 10.  This is understandable in that each local area 

which are mutually transformed into one another give degeneracies based on the number of 

such (disjoint) localities – a number generally exceeding the dimensions of irreducible 

representations of the full automorphism group. Further novel implications of the locality 

features are pursued in our subsequent work13,14.  In our approach associated to the local 

symmetries, there are localized MO eigenvectors which seem to have special chemico-

physical relevance – perhaps even more-so than the conventional delocalized symmetry-
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adapted eigenvectors – these localized MOs are imagined to be better adapted to deal with 

electron-correlation or perturbations due to substitutions (which themselves are “local”).  As 

such the current results offer much promise. 
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Welch Foundation of Houston, Texas. 
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