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Abstract

Local graph symmetry groups are formally defined as acting in a non-identical
fashion on just a proper (local) subset of a graph’s vertices, and consequent
theorems are established for adjacency matrices so as to simplify eigensolutions.
These groups sometimes enlarging on the usual point groups, are illustrated, with
examples of the application of the theorems. Some discussion of further utility,
on elaborated models & on identification of so-called “accidental” degeneracies,
is indicated.

1. Introduction

The standard approach for the use of symmetry in quantum mechanical problems —
say for electronic structure — is to form a basis of vectors symmetry adapted to the different
irreducible representations (IRs) of the full symmetry group of operations commuting with
the Hamiltonian. The generation of the IRs is typically viewed as a separate problem. This
overall approach is undoubtedly a seminally important to provide exact symmetry-mediated
guantum numbers, such as then relate to degeneracies and various selection rules — besides
the block-diagonalization of the original Hamiltonian matrix. Seg,, Wigneft and
numerous later books. But when it comes to dealing with graphs and their adjacency or
Laplacian matrices, there often seem to be other things going on — with additional associated
degeneracies, isospectralities, eigenvector localizations, and “higher” (non-geometric)

symmetries. See,g.,>34°
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Here we look at a novel approach to deal with greymmetry, complicitly mixed up
with the construction of a hierarchy of symmetriespecially starting with more “local”
symmetries (of the graph automorphism group), whypéeally the more local symmetries
are only subsymmetries. The approach has preceidethe schemes emphasized by
McClellandf, by D’Amato and Gimarc®, by Davidsof, by Tanget al.X°, and by Mandah!2

But here we give a general theorematic formulatiaith a simple illustrative
application. Often the extended symmetries do easigt to the full Schrodinger equation, so
are approximate, though it may be noted that in flaey extenél rigorously to Hubbard &
Hubbard-PPP models. In an accompanying gépee apply the method to the simplest
(proto-typical) dendrimer, namely the degree-3 Bettee — and look for qualitatively
distinctive features of the eigensolutions. As dhfer potential application dendrimers may
be noted to be a class of molecules with graphsiwadmit a natural hierarchy of our local

symmetries, and application to general dendrimesdsio conceivable.

2. Theoretical Methods
2.1. General Results

Let G (V,E) be a graph, with adjacency matrik, and let é:é(G) be an
automorphism group o6 with permutations;70& realized as matrices ovi such that
1A =A . Then following the standard approach one has:

Theorem 1 Each eigenvector oA can be chosen to transform in accordance with an
irreducible representation of a grodp of automorphisms o6 .

Letting SOV , we defined = &,(G) as the set of automorphisms®@f which leave
S={i0V|iOg fixed (.e, 70& = ni =i, i0S). Then & is said to beSlocalized.
Also a vectorV islocalizedon SOV if the components; of V are=0 for i 0S. Then our

first local subsymmetry theorem is:
Theorem 2 Eigenvectors ofA transforming in accordance with a non-identityedhucible
representation of alocalized automorphism groupz;, are localized o and are given as

solutions on the restriction @& to S
Proof: First it may be noted that theorem 1 guaranteesttigaeigenvectors oA can be
chosen to be symmetry adapted to transform asflRg oNow any componeny; of such a

vector g with i 0 S is left fixed by everyrr &, so that it must associate to the identity IR
of &, which by our hypothesis (thgt transforms as a non-identity IR) is excluded fribra

considered eigenvectors. n
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This theorem often achieves significant resuléshas sometimes been shown [7-11]
for the non-identity IR when#, is of order 2, say as for a reflection group. ©Oftae
restricionG 1 S of G to SOV falls into disconnected fragments. For example,ghaph
G of Figurel has a 3-cyclic automorphism subgrod which fixes the central vertex,
which in turn constitutesS for this group. TherG | S consists of 3 disconnected hexagons
(as in Figurel(b)), for which the eigenvalues of each are well-kndwe—2, —1, —1, +1,
+1, +2. Thus each of these 6 eigenvalues occursetas an eigenvalue t& of G - this
occurrence arising in accordance with tHe-representation of&. (Here the E-
representation is decomposable into two 1-dimemsitRs E, and E_ which are complex
conjugates of one another, and so give degeneeatdts, for our reéh.) To be more
explicit about the eigen-solutions, Igt be the (local) eigenvector for thé' benzene ring,
whenceC¢ and C2@¢ are corresponding eigenvectors for théahd 3 benzene rings, and
the consequenit -eigenvectors ofs are

g =gt reicytrecyt

where £ ="

and C, is the permutation corresponding to a rotation2ay/ 3. One may
note that &, is far from the whole automorphism group (whichisemorphic to the
semidirect product,[ » x ., x.,] with the different , groups flipping a single one of the
benzene rings around), and even other choices teuidade fowZ, fixing larger subsets -

but our choice still serves as a useful exampleidh the eigenvectors A associated to
the identity IR is the subject of the next theorem.

@ (b)

Figure 1: In (a) one example of molecular gragh manifesting a C,-symmetry. In (b) the graph

G | SwhenG is the central vertex dB in (a)).
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The orbits of V under an automorphism grougy are the different subsets
@i ={n: n04&} ,i0V . Denote the set of orbits By/« , and the order of a s& by |S|.
Thus for the graph of Figurg the lone central vertex is /& -orbit, and the remaining
orbits each consist of triples of vertices transfed into one another bgyJ¢&,. We utilize

some standard restit$>for orbits.
Lemma 3. For & a group acting on a s¥t, the orbits /& ) partitionV .
This is especially well-known (and easy to prove).

Lemma 4. Let i,j0«&a, & an automorphism group oW, with adJV. Then
KmOa: ni=}|={ n0& ma=%| divides||.

Proof: Evidently{770&: 71j = } =&, is the subgroup ofZ leaving j fixed. Granted
j0@a, there is o0& such that j=ca, whence a=c™j, and also
{n0&: ma=0g¢ { n0& o*ma=h . But defining m =0'w, we have
& ={omo0d: ma=g =odo™, so thatallZ,, j0da, have the same order. Next for
j0d&a=di, there must be a rO0& such that ri=j, so that
{(mO@: =} ={n0& m*j=} = m; O& m O] =14, is evidently a left coset of

a

7, and has the same order &, and &,. The number of such cosets is (of course)

\|/|e| =|e|l|a], so thatez| divides|]. "
Again these lemmas are stand4féfor the action of a grougZ on a general sat
fixed by &, independently ol being the vertex set of a graph. The orbits& may be
concisely represented bycamplete set A0V of representatives of the orbits of V /&,
which is to say the differerd[] A generate each orbit exactly onsé/ & ={da\aD A &

azb=&an «b=0. Granted such a@Z as an automorphism group & =(V,E), an
& -condensed graph G/ & is defined to have vertex sét/ & and edge§&a &t} if there
arei'0&a and j'O&b such tha{i’, j} OE. Moreover, for such an edge 6f/ & , define a
weight

Weo oo =l " [{i } DB G: iD@a jOab |lab™”.
This then defines a weighted adjacency mattx on G/ &, which may evidently have
diagonal elements. Also note that there are diffieegpressions fow,,, ,,:

Lemmabs. The edge weight,, ,, of G/ & with a,b0A satisfies:
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-1/2 -1/2

Wda.{lb = ‘da‘

f{i } O G: iD&a jO&b ||

=|@a"{a } DK G: jO&b|(wb|

=|@a "’ [{{i B DE G: i D&} |l
Proof: ForiO&a, there ismOa& with i =7, and{i, } { ma} OE <{ am}j OE with

1/2

j and 7] in the same orbit (sayZb). Thus the cardinality of{j } OE jO&b &

{a j} OE j'O&b are the same, ani j} OE iO&a j'O0d&h = U{,i}j OE when

ilza
jOdb with each one of the components in the disjoinbmrof the same size. That is,
{i } OE iO@a jOa@b =|@af ,a}j OE jO&b| so that the first result of the lemma
is obtained. The second result follows similarly. |
Theorem 6 Each eigenvectogy of A transforming in accordance with the identity IR of
d,, corresponds to an eigenvectr with the same eigenvalue on the condensed (welyhte

graph G/ & such that when botly’ and ¢ are normalized, their components are related

/2

Wi = A

Proof: An eigenvector totally symmetric under, =& hasy, =¢,, On0d&, and

W,, alA.

with A the eigenvalue fof satisfies

0A 0ab v
zzAijwb :ZA\jwj =AY =AY,
b

i
wherei O&a. Now
e _Mb . e _ -1/2 12
DAED IR nE[H{, i} DE jOgb|=|@a " Wy, 0| @)
] ]
having used lemma 5. Thus
LA
z ‘daVl/z Wﬂa‘ﬂb ‘db‘llzwb = /] wa
b
Or if we abbreviatd@c['*y, =y, we have
A
Zwﬂaﬂbwé =Ay, or Wg'=Ag'".
b
Finally the norms are related via

W

=YW= e, w, =Y > ww, @)
a a a
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Thus a corresponding like-normalized vectoMgfis identified. n
These theorems generalize those of McCleflabtdmato’®, Davidsof and Tanget
al.1% which often dealt with the specific caseddf of order 2. Davidsdhand Tangt al.*°

address the cyclic case. In these works the e@gars are ignored, with focus on the

characteristic polynomial, from which the eigenesare viewed to be determined.

3. Results & Discussion
3.1. Example & General Scheme

We may continue our simple example, with #e= ¢, case of Figurd to give the
eigensolutions for the identity IR af,. The graphG/¢&, is as in Figure, where the bold
face edge has a weight oB. Notably if so wished this graph could be furtketved using
its &, symmetry group. The application of theorem 2 gigesingle edge to solve, and the
application of theorem now giveG/&,)/ G, as in Figure3: a weighted path graph, with

successive edges having Weigh@, V2,1, 2.

Figure 2: The condensed graph Figure 3: The doubly condensed
G/é,. grapfG/ &)/ 6,.

Thus for the example of Figulle the utility of our theorem8 & 6. The overall mode
of application might be made a little more explivitth:
Corollary 7. Suppose the restriction @ to S falls into disjoint fragments such that every
nonidentity g 0 & moves at least one fragment into another. Theeitenvalues associated
to the non-identity IRs of are given as the eigenvalues of the fragments twhie
nonequivalent undesz; .

This and the theoren® suggest a systematic scheme to utilize the lasdliz
symmetries especially when a suitable sequendeeaf tan be identified:
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» Start with a maximally localized choice fef;, such choice if in a hierarchy likely
involving setsS which are disjoint from one another.
* Use corollary? to find the eigenvectors associated to nonideifi/of theserz .

* Then theoren is used to make a contracted graph for th&se

* A new next maximally localized automorphism grospdentified for this contracted
graph, repeating the whole procedure (till thedrehy is exhausted).
A general application of such procedure occurfiértext paper, concerning the prototype of
a general circumstance where the present methogaaspecially felicitous in this iterative
form.

3.2. Weighted Graphs

Weighted graphs as for instance arise with highder tight-binding models can be
treated within our framework. The theorefin& 2 and lemmas, 4, & 6 apply as they stand,
so long as the permutation matricescommute with the new Hamiltonian matri%¥ even
with weights. Though “full” 1-electron Hamiltonianshould only preserve point-group
symmetry, we emphasize that the additional symm&tish as found in our Huckel-model
(example of Figurel), still often persists in a weighted tight-bindimgodel extended to
include next-neighbor interactions — even if a esponding low-order non-identity overlap
matrix is included. For instance, the same graptsgenmetries found for the adjacency
matrix associated to the graph of Figurestill apply with next-neighbor interactions as in
Figure4. In this case one has a weighted matix=A + 8'A ,, where 8’ is a parameter of

magnitude <1. There is a weighted graps now as indicated in Figuré, with edges
E(WG) = E(G) O WE,(G), whereE,(G) ={{i B: A A, =, i #k is the set of next-nearest
neighbors ofG and the factow indicates a weighting foE,(G) (and we have assumed

that G has no triangular cycles).

Figure 4: GraphG in addition with differently weighted next-neightiateraction, appearing as dashed lines.
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Another sort of weighted graph may be recogriiZ&do arisé®1°202lin the context
of dealing with all the valence electrons of araalkk — where there is a graph node for each
(sp’) hybrid orbital of each C atom as well as a nogleelach 1s H-atom orbital. Here the
weights arise because the internal “bonds” betveierent sg-hybrids on the same C atom
have a notably lesser weight than that of the (g)rfgpnds between atoms.

One may even entertain a non-identity overfap | +sA, where s is an overlap
parameter also with a magnitude <1. Then the efgeblem is

Wy = ASy
Here the local symmetry operations (typically) comenwith bothW & S, so that one may
show:
Lemma 8 — The edge weightv,, ,, of 5'G/«& with a,b0A satisfies:
W =l ST SW, ] (el S, dat] = el S, ]
T j i

and the edge weight of the overlap maixs
O@a Oab O@a Oab
Scaa =l Y, Y Q@b =0, +lad Y YA, b
i j ! ]
_ 112 v2 _ 12 & - vz
=0+l Y A, (T =6, +laa T A, i)
i ]

The proof proceeds using the same sort of methgglas for lemm&. Yet further, thatw

& S occurring inW ¢ = AS¢y commute with one another immediately implies:

Corollary 9 — The matricesW & S have simultaneous eigenvaluekW) & A(S)
which correspond tol = A(W)/ A(S) in the (generalized) eigenvalue probléftyy = ASy .

All have common eigenvectors, with the condensatibtheorem6 applying, with the new
weights given in lemma.

Thence through this next-nearest neighbor apprai@amamuch of what already has been

described for the nearest-neighbor model is redaine

3.3 Excessive Eigenvalue Degeneracy

One of the on-goirfg* “mysteries” of molecular graphs and their assedadttickel
eigenspectrum has been their occasional seemingssixe (or accidental) degeneracies.
Now in fact our theoren® leads to an understanding of at least some ofetlseeming

“accidents”. To understand this we consider th&eovhen the local s&V and the local



-255-

automorphism grougZ is a proper subgroup of the full automorphism grei=4,. In

this case we have eigenvectorsiofor eigenvaluel which are also symmetry adapted to a

nonsymmetric irreducible representation of & -- which is to say the eigenvectors are
labelled by ag along with the columns of ag, say asy(A,a4) — and further these

eigenvectors transform under group operatiGgs] & thusly
G W(Aad) =2 asGy);, WAas)
j

where a¢(Gg),; is the (j,i)th element of the irreducible representation mati(G;) for
the elemeniG; 0 . These symmetry adapted vectors may be furthed (e.qg., following

chap. 7 of Curtis & Reinéj) to induce a representation of the full graap using a se€ of

coset multipliers for distinct (left) cosets @f; 0 & , this latter meaning that
= @ C&,

where the direct sum here is just a disjoint unawer the collection of distinct cosets
Cd, ={CG,: GO} . Evidently for two distinct coset multiplielS, & C, it must occur
that C,"C, 04 , whence we see th@S & C,S are distinct, and the members of

B,(as 1) ={CU A adi): COE ranging (over columns of
being localized on different disjoint sets (conjiggto S) must also be linearly independent.
Thus B, (ag 1) is a basis for a representatiog 1 of the full group&Z. This is to say for an
arbitrary elementGO#« , there are uniqu&€, 0€ & GyO4& for which G=CGg. And

similarly there must also be uniqueC,0€ & Gg,0& such thatCG,C, =C, Gs,

whence we have

GICY(A,a4)=C,.Gs,[ (A ad)= zas(Gsm)p C.yAasj)
i

which verifies the claim thaB,(ag 1) forms a basis for a representation &f. This
induced representationrg 1 evidently has C,,j,C,i )th matrix element
as 1t (ClGS)Cuj,Cli =0s(Ggp);; WhereCGC,0C 4 & G, = C, [CGLC,
Now because all these group elements commute Avitive see that
ACY(A,a4)=CAY(A,ad)=ACyA.a4)

Overall this establishes:
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Theorem 10 —The members of the basi; (a5 1) for the carrier space of the representation

ag 1 induced from a nonsymmetric irreducible repredinaag of & O& are all
degenerate.
In particular, this degeneracy applies regardiésshetherag 1 is irreducible. This

then accounts for (some) “accidental” degeneraeydhd that dictated from the size of the
irreducible representations @ ). For example this extends the considerations it & al®
who propose using the full automorphism grodp which occasionally is larger than the
ordinary point group of the molecule (associatethtadjacency matrik ). Wild et al note

the local structure of different group element®asged to our, [ & , but their aim is just
to use the group theory as an aid to constructiucible representations o — our

construction by-passes this and identifies addiiodegeneracy, wherogt is not
irreducible. Of coursegg 1t is sometimes irreducible, whence the symmetry tadiap to

just ag of & is sufficient* (& economically so) to obtain symmetry adaptation? .

4. Conclusion

A potentially very useful general approach to ohegWith local graph symmetries has
been described and briefly illustrated. A more clatpillustration is described in a follow-
up paper, where a virtually complete solution tettBe tree” graphs result upon utilization of
our present approach — and indeed it seems siynitafhcilitate ready solution to the general
class of “dendrimer” graphs. Moreover, as notedhi discussion above, there should be
applications to stellated (alkane) graphs, and epgantum-chemically weighted extended
Hiickel theories. Yet further the types of groupderd to selected PPP-Hubbard type
model$. The localization of the eigenvectors is herenseebe central to our development,
and have some novel implications — one such béiagdentification of a simple rationale for
what are otherwise se®it®as “accidental” degeneracies manifested by thekeliimodel,
as discussed in conjunction with theor&f This is understandable in that each local area
which are mutually transformed into one anotheegiegeneracies based on the number of
such (disjoint) localities — a number generally eeding the dimensions of irreducible
representations of the full automorphism group.th&mr novel implications of the locality
features are pursued in our subsequent Wétk In our approach associated to the local
symmetries, there are localized MO eigenvectorsciwiseem to have special chemico-

physical relevance — perhaps even more-so tharcahgentional delocalized symmetry-



-257-

adapted eigenvectors — these localized MOs areiimedgo be better adapted to deal with

electron-correlation or perturbations due to stibstins (which themselves are “local”). As

such the current results offer much promise.
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