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Abstract

In chemistry, the problem known as similarity searching involves finding a set of
molecules that are similar to a given sample molecule. The problem is tackled using
graph theory and related algorithmic approaches involving some kind of measure of
similarity of two graphs. In this paper we study a recently introduced Hausdorff
distance between some families of graphs that often appear in chemical graph theory.
Next to a few results for general graphs, we determine formulae for the distance
between paths and cycles. For trees some bounds are proved. Also, an exact
(exponential time) algorithm for determining the distance between two arbitrary
trees is presented. We give examples emphasizing the difference between this new
measure and some other known approaches, also reasons why some well-known
algorithms for trees may not suffice to determine the Hausdorff distance of two
trees are shown.

1 Introduction

In this paper we study a new measure of similarities of graphs (introduced in [3]) on

common families of chemical graphs, namely paths, cycles and trees. Determining the

distance between two graphs is closely related to the study of similarity of molecular

structures and related algorithmic problems [11,14].

The subgraph isomorphism problem is defined as follows. Given two graphs G and H,

does there exist a subgraph of G isomorphic to H. The subgraph isomorphism problem

is known to be NP-complete [7].
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The so-called structure searching mostly uses a graph isomorphism algorithm to de-

termine whether two molecular compounds are identical; substructure searching involves

the subgraph isomorphism problem and involves determining whether any of the sample

structures (usually saved in a database) contain a sample structure. Closely related to

the topic of this paper is the problem in chemistry known as similarity searching : given

a molecule of interest find in a database its nearest neighbours - those molecules which

are most similar to the given sample using some measure of inter-molecular similarity [8].

Generally, in graph theory the distance between two graphs has been defined in various

ways, for examples see [4–6,9]. A common way is to define the distance as the minimum

number of some operations (on vertices or edges) one needs to transform one graph into

the other. Under the assumption that the graphs compared are of the same order and

size, the operations defined were edge move [4], edge rotation [6] and edge slide [4, 9],

among others.

A graph G is said to be a common subgraph of the graphs G1 and G2 if it holds that

G ⊆ G1 and G ⊆ G2. We say that a common subgraph G of G1 and G2 is a maximal

common subgraph if there does not exist a common subgraph H with |V (H)| > |V (G)|

and G ⊆ H. In [5], the authors use the notion of the maximal common subgraph to define

the distance between two non-empty graphs, where the metric they define uses only the

order of a maximal common subgraph and the order of the graphs compared. A measure

of similarity of graphs based on a maximal (maximum) common subgraph is often used

chemical graph theory to search for molecules that are measured to be close to each other.

In [3], Banič and Taranenko define the concept of so-called Hausdorff graphs. Together

with amalgams (cf. [2, 10]) these graphs are used to define the Hausdorff distance on the

class of all connected simple graphs as a new measure of similarity of two such graphs. We

use this measure to determine the distance between paths, cycles and trees. The notion

of the Hausdorff distance considers a special kind of a common subgraph of the graphs

compared, as do many such measures, as well as the structural properties outside of the

common subgraphs, which is, to our knowledge, new.

We proceed as follows. In the next section we present basic definitions and results

needed for proper understanding of the results of this paper. We also prove some general

results related to the measure itself. In Section 3 we give formulas for exact values of the

Hausdorff distance between paths and cycles. Section 4 deals with the Hausdorff distance
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between two trees. We present some bounds and an exact exponential time algorithm that

is used to determine the Hausdorff distance of two trees. Moreover, we give examples that

show why some already known polynomial time algorithms for trees do not suffice in the

case of the Hausdorff distance. We conclude the paper with two open problems.

2 Definitions and Notations

A graph G = (V (G), E(G)) is determined by a non-empty vertex set V (G) and a set E(G)

of unordered pairs of vertices {u, v}, called the set of edges. We will use the short notation

uv for edge {u, v}. We say that a vertex u is adjacent to a vertex v if uv ∈ E(G).

Let G = (V (G), E(G)) and H = (V (H), E(H)) be any graphs. If V (H) ⊆ V (G) and

E(H) ⊆ E(G), then we say that H is a subgraph of G and write H ⊆ G.

All graphs considered in the paper are simple graphs, i.e. the graphs without multiple

edges and without loops (uu 6∈ E(G) for any u ∈ V (G)).

Let G be a graph and let S ⊆ V (G). By 〈S〉 we denote the subgraph of G induced by

the set S, i.e. for all u, v ∈ S, uv ∈ E(〈S〉) if and only if uv ∈ E(G).

Two graphs are isomorphic, if there is a bijection between their vertex sets that pre-

serves adjacency and non-adjacency of the vertices.

A path P from a vertex x to a vertex y in G is a sequence x = v0v1v2 . . . vk−1vk = y

of pairwise different vertices of G, where vivi+1 ∈ E(G), for each i ∈ {0, . . . , k − 1}. The

vertices x and y are called the endpoints of the path. The length of a path P , denoted by

`(P ), is the number of edges in P .

The distance between vertices x and y, denoted by dG(x, y), is the length of a shortest

path between x and y in G.

A graph G is connected if for each u, v ∈ V (G) there is a path in G from u to v.

A connected subgraph H of a graph G is convex in G if for any u, v ∈ V (H), P ⊆ H

for any shortest path P from u to v in G.

Let G be a graph and v be a vertex of G. The eccentricity of the vertex v, denoted e(v)

is the maximum distance from v to any vertex of G. That is, e(v) = max{dG(v, u)|u ∈

V (G)}. The radius of G, denoted rad(G), is the minimum eccentricity among the vertices

of G. Therefore, rad(G) = min{e(v)|v ∈ V (G)}. The diameter of G, denoted diam(G),

is the maximum eccentricity among the vertices of G. Thus, diam(G) = max{e(v)|v ∈

V (G)}. The center of G is the set of vertices with eccentricity equal to the radius. Hence,
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center(G) = {v ∈ V (G)|e(v) = rad(G)}. A vertex v ∈ center(G) is called a central vertex

of G. It is well known that for an arbitrary graph G it holds that rad(G) ≤ diam(G) ≤

2 · rad(G).

We will also need the following definitions form [3].

Definition 2.1. [3] Let G be an arbitrary graph. The Hausdorff graph of the graph G,

denoted by 2G, has for the vertex set V (2G) the set of all non-empty subgraphs of G. The

adjacency of vertices in 2G is defined as follows. For all H1, H2 ∈ V (2G), H1 6= H2, it

holds that H1H2 ∈ E(2G) if and only if

1. for each v ∈ V (H1) there exists v′ ∈ V (H2) such that dG(v, v′) ≤ 1 and

2. for each v′ ∈ V (H2) there exists v ∈ V (H1) such that dG(v′, v) ≤ 1.

The Hausdorff metric hG between two subgraphs of a graph G is defined in the following

definition. It will tell us how much two subgraphs of G coincide.

Definition 2.2. [3] Let G be an arbitrary graph. The distance between two subgraphs H1

and H2 of G, denoted by hG(H1, H2), is the distance between their corresponding vertices

in 2G. In other words,

hG(H1, H2) := d2G(H1, H2).

We call hG the Hausdorff metric on 2G.

Note that for two different isomorphic subgraphs H1 and H2 of a graph G, the value

hG(H1, H2) may be arbitrarily large. Moreover, the following corollary is also proven

in [3].

Corollary 2.3. [3] If G is connected, then hG is a metric on V (2G).

Definition 2.4. Let H1 be a (convex) subgraph of G1 and H2 a (convex) subgraph of

G2. If H1 and H2 are isomorphic graphs, then a (convex) amalgam of G1 and G2 is any

graph A obtained from G1 and G2 by identifying their subgraphs H1 and H2. We call the

isomorphic copies of G1 and G2 in A the covers of the amalgam A and denote them by

GA
1 and GA

2 , respectively. See Figure 1 for reference.

Denote by A(G1, G2) and X (G1, G2) the sets of all amalgams and all convex amalgams

of the graphs G1 and G2, respectively.
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G1 G2

H1 H2

GA
1 GA

2

A

Figure 1: An amalgam A of G1 and G2.

Remark 2.5. Let A be an amalgam of G1 and G2 obtained from G1 and G2 by identifying

their subgraphs H1 and H2. Then GA
1 ∩GA

2 = HA
1 = HA

2 is isomorphic to H1 and H2.

Let G be the family of all simple connected graphs.

Theorem 2.6. [3, Theorem 4.10] Let G1, G2 ∈ G. Let d be a non-negative integer and

A an amalgam of G1 and G2. Then hA(GA
1 , G

A
2 ) = d if and only if

(i) for each u ∈ V (GA
1 ) there is a vertex v ∈ V (GA

2 ) such that dA(u, v) ≤ d,

(ii) for each u ∈ V (GA
2 ) there is a vertex v ∈ V (GA

1 ) such that dA(u, v) ≤ d, and

(iii) there is u ∈ V (GA
1 ) such that for each vertex v ∈ V (GA

1 ∩GA
2 ) the distance dA(u, v) ≥

d or

there is u ∈ V (GA
2 ) such that for each vertex v ∈ V (GA

1 ∩GA
2 ) the distance dA(u, v) ≥

d.

From Theorem 2.6 we get the following Corollary.

Corollary 2.7. Let G1, G2 ∈ G. Let A be an amalgam of G1 and G2. Then

hA(GA
1 , G

A
2 ) = max

u∈V (A)
{dA(u,GA

1 ∩GA
2 } .

Proof. Let d := maxu∈V (A){dA(u,GA
1 ∩GA

2 } and u ∈ V (GA
i ), for some i ∈ {1, 2}, such that

dA(u,GA
1 ∩ GA

2 ) = d. Then for every vertex v ∈ V (GA
1 ∩ GA

2 ) it holds that dA(u, v) ≥ d.

Therefore, the condition (iii) of Theorem 2.6 holds true.

Choose a vertex u1 ∈ V (GA
1 ). Let v1 ∈ V (GA

1 ∩ GA
2 ) be such that dA(u1, v1) =

dA(u1, G
A
1 ∩GA

2 ). Then dA(u1, v1) ≤ maxu∈V (GA
1 ){dA(u,GA

1 ∩GA
2 } ≤ d. It follows that the

condition (i) of Theorem 2.6 holds true.
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Following the same line of thought one can prove that the condition (ii) of Theorem

2.6 is also fulfilled.

Since all of the conditions of Theorem 2.6 hold true, the assertion follows immediately.

Given G1, G2 ∈ G and an amalgam A of G1 and G2, Corollary 2.7 says that to

determine hA(GA
1 , G

A
2 ) it suffices to find a vertex v ∈ V (A) with the maximum distance to

GA
1 ∩GA

2 , since hA(GA
1 , G

A
2 ) = dA(v,GA

1 ∩GA
2 ). This idea will be used a lot in our proofs.

Finally, the Hausdorff distance H : G × G → R on G can be defined as follows:

Definition 2.8. [3] For any graphs G1, G2 ∈ G, we define

H(G1, G2) =

min
{
hA(GA

1 , G
A
2 ) | A ∈ X (G1, G2)

}
, if G1 6∼= G2

0, if G1
∼= G2

.

We call H the Hausdorff distance on G.

Note, Definition 2.8 is equivalent to definition of the Hausdorff distance in [3, Definition

4.18]. Moreover, it is proven in [3] that H is a metric on the class of all simple connected

pairwise non-isomorphic graphs. A convex amalgam A of two simple connected graphs

G1 and G2, for which hA(GA
1 , G

A
2 ) = H(G1, G2) is called an optimal amalgam.

As noted in [3], for fixed isomorphic subgraphs H1 and H2 of G1 and G2, respectively,

there may be many isomorphisms from H1 onto H2. Therefore there may be more than

just one amalgam A of G1 and G2, which is obtained by identifying H1 and H2 (see

Example 2.9).

Example 2.9. Let G1 and G2 be the graphs depicted in Figure 2, and H1 and H2 their

subgraphs, respectively, both isomorphic to P2. Let f1 and f2 be two isomorphisms from

H1 onto H2. In Figure 2 they are depicted by dotted and dashed arrows, respectively.

Next, let Ai be the amalgam of G1 and G2 obtained by identifying H1 and H2 according

to the isomorphism fi, i ∈ {1, 2}. Obviously, A1 and A2 are not isomorphic, although

they were both obtained by identifying the same subgraphs.

In the next theorem we prove that distance between the covers of a convex amalgam

(therefore also the Hausdorff distance between two graphs) is not dependant on the choice

of the isomorphism between the subgraphs.
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G1 H1

G2 H2

A1

A2

Figure 2: The amalgams A1 and A2 from Example 2.9.

Theorem 2.10. Let G1, G2 ∈ G and let H1 and H2 be fixed isomorphic convex subgraphs

of G1 and G2, respectively. Also, let f1 and f2 be any two isomorphisms between H1

and H2, and A1 and A2 the two convex amalgams of G1 and G2 obtained by identifying

H1 and H2 with respect to isomorphisms f1 and f2, respectively. Then hA1(G
A1
1 , GA1

2 ) =

hA2(G
A2
1 , GA2

2 ).

Proof. Let hk = hAk
(GAk

1 , GAk
2 ), for each k ∈ {1, 2}. Towards contradiction, suppose

hA1(G
A1
1 , GA1

2 ) < hA2(G
A2
1 , GA2

2 ). Then by Corollary 2.7 there exists a vertex u ∈ GA1
i , for

some i ∈ {1, 2}, with dA1(u,G
A1
1 ∩GA1

2 ) = h1. Let v ∈ V (GA1
1 ∩GA1

2 ), with dA1(u, v) = h1.

Similarly, there exists a vertex x ∈ GA2
i , for some i ∈ {1, 2}, with dA2(x,G

A2
1 ∩GA2

2 ) = h2.

Let y ∈ V (GA2
1 ∩ GA2

2 ) with dA2(x, y) = h2. Denote by x′ the vertex in a cover of A1

corresponding to x, and by y′ ∈ V (GA1
1 ∩GA1

2 ) corresponding to y.

Obviously, dA1(x
′, GA1

1 ∩ GA1
2 ) = dA1(x

′, y′). Moreover, dA1(x
′, y′) = dA2(x, y) = h2.

By Corollary 2.7 for all w ∈ V (A1) holds that dA1(u, v) ≥ dA1(w,G
A1
1 ∩ GA1

2 ). Therefore

h1 = dA1(u, v) ≥ dA1(x
′, GA1

1 ∩ GA1
2 ) = dA1(x

′, y′) = h2, so h1 ≥ h2, a contradiction with

our assumption.

Similarly one can disprove the case that hA2(G
A2
1 , GA2

2 ) < hA1(G
A1
1 , GA1

2 ). Therefore

the assertion follows.

Let G be a graph and H its convex subgraph. The distance between H and G is

defined as maxv∈V (G){dG(v,H)}. Note, that G can be looked at as an amalgam of G and

H ′, where H ′ is isomorphic to H, and the amalgam of G and H ′ is obtained by identifying

H and H ′. Therefore by Corollary 2.7, maxv∈V (G){dG(v,H)} = hG(GG, HG).

Proposition 2.11. Let G1, G2 ∈ G. Let H1 and H2 be two isomorphic convex subgraphs

of G1 with d1 ≤ d2, where d1 and d2 are the distances between H1 and G1, and H2 and
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G1, respectively. Let H3 be a convex subgraph of G2 isomorphic to H1 (and H2). Let

A1 be a convex amalgam of G1 and G2 obtained by identifying H1 and H3, and A2 be a

convex amalgam of G1 and G2 obtained by identifying H2 and H3. Then hA1(G
A1
1 , GA1

2 ) ≤

hA2(G
A2
1 , GA2

2 ) holds true.

Proof. Let d3 be the distance between H3 and G2. From Corollary 2.7 it follows that

hA1(G
A1
1 , GA1

2 ) = max{d1, d3} and hA2(G
A2
1 , GA2

2 ) = max{d2, d3}. Since d1 ≤ d2 it follows

that max{d1, d3} ≤ max{d2, d3} which implies hA1(G
A1
1 , GA1

2 ) ≤ hA2(G
A2
1 , GA2

2 ).

For two arbitrary simple connected graphs, the upper bound for the Hausdorff distance

can be expressed using the radius of the graphs.

Theorem 2.12. Let G1 and G2 be two arbitrary simple, connected graphs. Then

H(G1, G2) ≤ max {rad(G1), rad(G2)} .

Proof. Let c1 be a central vertex of G1 and c2 be a central vertex of G2. Let A be

an amalgam which is created by identifying c1 and c2. Since there is exactly one ver-

tex in GA
1 ∩ GA

2 , A is a convex amalgam. In G1 it holds that for each v ∈ V (G1)

the distance dG1(v, c1) ≤ rad(G1). Similarly, in G2 it holds that for each v ∈ V (G2)

the distance dG2(v, c2) ≤ rad(G2). Since A is a convex amalgam, the same holds for

the corresponding vertices of GA
1 and GA

2 in A. Using Corollary 2.7, it follows that

hA(GA
1 , G

A
2 ) = max {rad(G1), rad(G2)} and H(T1, T2) ≤ max {rad(G1), rad(G2)}.

Note, this bound is sharp if one of the graphs is trivial (a vertex graph).

3 Results on some simple families of graphs

In this section we give some results about the Hausdorff distance between two graphs of

some simple families of graphs, that often appear in chemical graph theory.

First, consider the following Remarks which can be easily verified.

Remark 3.1. We will often use the following implication. If a and b are two arbitrary

positive integers with a < b, then 2a < 2b− 1. Clearly, if b ≥ a + 1, then 2b ≥ 2a + 2 >

2a + 1.

Remark 3.2. For an arbitrary positive integer m the following equality holds:⌈⌊
m
2

⌋
2

⌉
=

⌈
m− 1

4

⌉
.
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Note, for a path every connected subgraphs is also a convex subgraph. Now we give

formulae for the Hausdorff distance between some simple families of graphs. In all cases

we construct a convex amalgam and thus obtain an upper bound. Then we show there

can be no amalgam, that would give a better upper bound.

Proposition 3.3. Let Pn and Pm be two paths on n and m vertices, respectively, with

n ≥ m ≥ 1. Then H(Pn, Pm) =
⌈
n−m
2

⌉
.

Proof. Denote the vertices of Pn with u1, . . . , un, where uiui+1 ∈ E(Pn), for each i ∈

{1, . . . , n − 1}, and the vertices of Pm with v1, . . . , vm, where vivi+1 ∈ E(Pm), for each

i ∈ {1, . . . ,m− 1}.

Let A be an amalgam which is created by identifying pairs of vertices udn−m
2 e+i and vi

for each 1 ≤ i ≤ m. A is clearly a convex amalgam. Using Corollary 2.7 we immediately

get that hA(PA
n , P

A
m) =

⌈
n−m
2

⌉
and therefore H(Pn, Pm) ≤

⌈
n−m
2

⌉
.

Suppose now, that there exists an amalgam A′ ∈ X (Pn, Pm) such that

k := hA′(P
A′
n , PA′

m ) <
⌈
n−m
2

⌉
. Due to Corollary 2.7, for each w ∈ V (A′) it holds that

k ≥ dA′(w,P
A′
n ∩ PA′

m ). The graph PA′
n ∩ PA′

m is isomorphic to a path with at most m

vertices. Then, for every path P in A′ it follows that the length `(P ) ≤ m − 1 + 2k. It

holds that `(P ) ≤ m− 1 + 2k < m− 1 + 2
⌈
n−m
2

⌉
− 1 ≤ m− 1 + 2n−m+1

2
− 1 = n− 1. So,

for every path P in A′ it holds that `(P ) < n− 1. But PA′
n ⊆ A′ and `(PA′

n ) = n− 1; this

is a contradiction with the assumption that such an amalgam A′ exists.

Let Cn be a cycle on n vertices, with n ≥ 3. Then the largest convex subgraph of Cn

is a path on
⌈
n
2

⌉
vertices.

Proposition 3.4. Let Pn and Cm be a path and a cycle on n and m vertices, respectively,

with n ≥ 1 and m ≥ 3. Then

H(Pn, Cm) =



⌈
m−n
2

⌉
, n ≤ m

2⌈
m−1
4

⌉
, m

2
< n ≤ m⌈

n−dm2 e
2

⌉
, n > m

Proof. Denote vertices of Pn with u1, . . . , un where uiui+1 ∈ E(Pn), for each i ∈ {1, . . . , n−

1}, and vertices of Cm with v0, v1, v2, . . . , vm−1 where vivi+1 ∈ E(Cm), for each i ∈

{0, . . . ,m− 1}. All indices in Cm are computed modulo m.
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Let n ≤ m
2

. Let A be an amalgam which is created by identifying pairs of vertices ui

and vi, for each 1 ≤ i ≤ n. Since every subgraph of Cm isomorphic to a path on n vertices is

a convex subgraph of Cm, A is a convex amalgam. Clearly, maxu∈V (A){dA(u, PA
n ∩CA

m)} =⌈
m−n
2

⌉
. Using Corollary 2.7 it follows that hA(PA

n , C
A
m) =

⌈
m−n
2

⌉
andH(Pn, Cm) ≤

⌈
m−n
2

⌉
.

Suppose there exists a convex amalgam A′ with hA′(P
A′
n , CA′

m ) <
⌈
m−n
2

⌉
. Define h :=⌈

m−n
2

⌉
. Due to convexity, PA′

n ∩CA′
m is isomorphic to a path on k vertices, 1 ≤ k ≤ n. Say

the vertices in PA′
n ∩ CA′

m are vA
′

i , vA
′

i+1, . . . , v
A′

i+k−1, with an edge between two consecutive

vertices. We now consider the vertex vA
′

i−h. Clearly, dA′(v
A′
i , vA

′

i−h) = h =
⌈
m−n
2

⌉
. On the

other hand,

dA′(v
A′

i+k−1, v
A′

i−h) =

`(Cm)− h− (k − 1) =

m− h− k + 1 ≥

m− h− n + 1 =

2
m− n + 1

2
− h ≥

2

⌈
m− n

2

⌉
− h = h.

It follows that dA′(v
A′

i−h, P
A′
n ∩ CA′

m ) =
⌈
m−n
2

⌉
> hA′(P

A′
n , CA′

m ). A contradiction with

Corollary 2.7.

Let m
2

< n ≤ m. Set l :=

⌈
n−dm2 e

2

⌉
. Let A be an amalgam which is created by

identifying pairs of vertices ui+l+1 and vi for each 0 ≤ i <
⌈
m
2

⌉
, see Figure 3 for reference.

It is easy to verify that A is a convex amalgam. Due to Corollary 2.7, to determine the

value of hA(PA
n , C

A
m) it suffices to find the vertex in A with the maximum distance to

PA
n ∩ CA

m. Clearly, the candidates are the two endpoints of the path PA
n that are outside

of PA
n ∩CA

m (vertices uA
1 and uA

n ) and a vertex of V (CA
m)\V (PA

n ∩CA
m) with the maximum

distance to PA
n ∩ CA

m (the vertex vA
0−d bm/2c

2 e
).

Note, that dA(uA
1 , P

A
n ∩CA

m) = dA(uA
1 , u

A
l+1) = l and dA(uA

n , P
A
n ∩CA

m) = dA(uA
n , u

A
l+dm2 e

).

The distance between the vertices uA
n and uA

l+dm2 e
can be expressed as the difference

between the length of the path Pn and the length of the path between uA
1 and uA

l+dm2 e
.
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vA0

vA1vAdm
2 e−2

vAdm
2 e−1

uA
l+2

uA
l+dm

2 e−1

vAm−1
vAdm

2 e

uA
l uA

2 uA
1

uA
l+dm

2 e+1uA
n−1uA

n

vA
0−d bm/2c

2 e

Figure 3: An amalgam A of path Pn (vertices ui) and cycle Cm (vertices vj).

Therefore,

dA(uA
n , u

A
l+dm2 e) =

n− 1− (l +
⌈m

2

⌉
− 1) =

n− 1− l −
⌈m

2

⌉
+ 1 =

2
n−

⌈
m
2

⌉
2

− l ≤

2

⌈
n−

⌈
m
2

⌉
2

⌉
− l =

2l − l = l.

The distance dA(vA
0−d bm/2c

2 e
, PA

n ∩ CA
m) = min{

⌈
bm/2c

2

⌉
, dA(vA

0−d bm/2c
2 e

, vAdm2 e−1
)}. It

holds that

dA(vA
0−d bm/2c

2 e
, vAdm2 e−1) =

m− dA(vA
0−d bm/2c

2 e
, vA0 )− dA(vA0 , v

A

dm2 e−1) =

m−
⌈m

2

⌉
+ 1−

⌈⌊
m
2

⌋
2

⌉
=

⌊m
2

⌋
−

⌈⌊
m
2

⌋
2

⌉
+ 1 =⌊⌊

m
2

⌋
2

⌋
+ 1 ≥

⌈⌊
m
2

⌋
2

⌉
.

Therefore, dA(vA
0−d bm/2c

2 e
, PA

n ∩ CA
m) =

⌈
bm/2c

2

⌉
. Since l ≤

⌈
bm/2c

2

⌉
, by Corollary 2.7,

hA(PA
n , C

A
m) =

⌈
bm/2c

2

⌉
. It follows that H(Pn, Cm) ≤

⌈
bm/2c

2

⌉
. See Figure 3 for reference.
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Suppose there exists a convex amalgam A′ with hA′(P
A′
n , CA′

m ) <

⌈
bm2 c
2

⌉
. Define

h :=

⌈
bm2 c
2

⌉
. Again, due to convexity, PA′

n ∩ CA′
m is isomorphic to a path on k vertices,

1 ≤ k ≤
⌈
m
2

⌉
. Say the vertices in PA′

n ∩ CA′
m are vA

′
i , vA

′
i+1, . . . , v

A′

i+k−1. We consider the

vertex vA
′

i−h. Since dA′(v
A′
i , vA

′

i−h) = h and

dA′(v
A′

i+k−1, v
A′

i−h) =

m− dA′(v
A′

i , vA
′

i+k−1)− dA′(v
A′

i , vA
′

i−h) =

m− (k − 1)− h =

m− k + 1− h ≥

m−
⌈m

2

⌉
+ 1− h =⌊m

2

⌋
+ 1−

⌈⌊
m
2

⌋
2

⌉
=⌊⌊

m
2

⌋
2

⌋
+ 1 ≥⌈⌊

m
2

⌋
2

⌉
= h,

it follows that dA′(v
A′

i−h, P
A′
n ∩ CA′

m ) = h =

⌈
bm2 c
2

⌉
> hA′(P

A′
n , CA′

m ). A contradiction with

Corollary 2.7. Using Remark 3.2 the assertion follows.

Let n > m. Set l :=

⌈
n−dm2 e

2

⌉
. Let A be an amalgam which is created by identifying

pairs of vertices ui+l+1 and vi for each 0 ≤ i <
⌈
m
2

⌉
. It is easy to verify that A is a

convex amalgam. As in the previous case, the value of hA(PA
n , C

A
m) can be determined

by finding a vertex of A with the maximum distance to PA
n ∩ CA

m; the same candidate

vertices have to be considered (vertices uA
1 , uA

n and vA
0−d bm/2c

2 e
). Following the same line

of thought as in the previous case and taking into account that l ≥
⌈
bm2 c
2

⌉
, it follows that

hA(PA
n , C

A
m) =

⌈
n−dm2 e

2

⌉
and H(Pn, Cm) ≤

⌈
n−dm2 e

2

⌉
.

Suppose there exists a convex amalgam A′ with hA′(P
A′
n , CA′

m ) <

⌈
n−dm2 e

2

⌉
. Due to

convexity, PA′
n ∩CA′

m is isomorphic to a path on k vertices, 1 ≤ k ≤
⌈
m
2

⌉
. Say the vertices

in PA′
n ∩ CA′

m are vA
′

i , vA
′

i+1, . . . , v
A′

i+k−1. The length of path PA′
n is clearly n− 1 and equals

dA′(u
A′
1 , vA

′
i ) + dA′(v

A′
i , vA

′

i+k−1) + dA′(v
A′

i+k−1, u
A′
n ). On the other hand, by Corollary 2.7,

it holds that dA′(u
A′
1 , vA

′
i ) ≤ hA′(P

A′
n , CA′

m ) and dA′(v
A′

i+k−1, u
A′
n ) ≤ hA′(P

A′
n , CA′

m ). Putting
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this together we get that

`(PA′

n ) = dA′(u
A′

1 , vA
′

i ) + dA′(v
A′

i , vA
′

i+k−1) + dA′(v
A′

i+k−1, u
A′

n ) ≤

hA′(P
A′

n , CA′

m ) + k − 1 + hA′(P
A′

n , CA′

m ) <

2

⌈
n−

⌈
m
2

⌉
2

⌉
− 1 + k − 1 ≤

2
n−

⌈
m
2

⌉
+ 1

2
− 1 +

⌈m
2

⌉
− 1 = n− 1.

So, n− 1 = `(PA′
n ) < n− 1, a contradiction.

Now, we derive a formula for the Hausdorff distance between two cycles. If the cycles

are isomorphic, the Hausdorff distance equals 0 by definition. For non-isomorphic cycles

we get the following proposition.

Proposition 3.5. Let Cn and Cm be two cycles of length n and m, respectively, with

n > m ≥ 3. Then H(Cn, Cm) =

⌈
n−dm2 e

2

⌉
.

Proof. Denote vertices of Cn with u0, . . . , un−1, where uiui+1 ∈ E(Cn), for each i ∈

{0, . . . , n − 1}, and vertices of Cm with v0, . . . , vm−1, where vivi+1 ∈ E(Cm), for each

i ∈ {0, . . . ,m − 1}. All indices are computed modulo of the length of the corresponding

cycle.

Let A be an amalgam which is created by identifying pairs of vertices ui and vi, for

each 1 ≤ i ≤
⌈
m
2

⌉
. Since every subgraph of Cm (Cn) isomorphic to a path on

⌈
m
2

⌉
vertices

is a convex subgraph of Cm (and also Cn), A is a convex amalgam. Then by Corollary

2.7 hA(CA
n , C

A
m) =

⌈
n−dm2 e

2

⌉
and H(Cn, Cm) ≤

⌈
n−dm2 e

2

⌉
.

Suppose there exists a convex amalgam A′ with hA′(C
A′
n , CA′

m ) <

⌈
n−dm2 e

2

⌉
. There-

fore CA′
n ∩ CA′

m is isomorphic to a path on k vertices, 1 ≤ k ≤
⌈
m
2

⌉
. Say the vertices

in CA′
n ∩ CA′

m are uA′
i , uA′

i+1, . . . , u
A′

i+k−1. We now choose the vertex uA′

i−
⌈

n−dm2 e
2

⌉. Since

dA′(u
A′
i , uA′

i−
⌈

n−dm2 e
2

⌉) =

⌈
n−dm2 e

2

⌉
and dA′(u

A′

i+k−1, u
A′

i−
⌈

n−dm2 e
2

⌉) ≥
⌈

n−dm2 e
2

⌉
, it follows that

dA′(u
A′

i−
⌈

n−dm2 e
2

⌉, CA′
n ∩ CA′

m ) =

⌈
n−dm2 e

2

⌉
> hA′(C

A′
n , CA′

m ). A contradiction with Corollary

2.7.
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4 Trees and the Hausdorff distance

Trees often appear in chemical graph theory, since many organic molecules have a graph

representation that is a tree (e.g. saturated hydrocarbons). Isomers, for example, have

the same chemical formula but different molecular structures. One of the problems arisen

with respect to the chemical structure is to determine whether two chemical structures

are the same or how similar they are. Say that the chemical structures can be presented

as trees. This means we have to determine whether two trees are isomorphic; this is a

simple problem and can be done in linear time [1]. Also, as a measure of similarity of two

non-isomorphic trees one can use a maximum common subtree of the two trees compared.

The problem of finding a maximum common subtree of two arbitrary trees can be done

in non-linear polynomial time [13].

On the other hand, to determine the Hausdorff distance between two trees, using a

maximum common subtree to form a convex amalgam of two arbitrary trees may not

produce an optimal amalgam (see Example 4.8). Therefore the mentioned algorithms

may not suffice to determine the Hausdorff distance of two arbitrary trees.

In the next section we present some bounds for the Hausdorff distance between two

trees, some formulae for special cases and in Section 4.2 an exact (exponential time)

algorithm for computing the Hausdorff distance between two trees.

4.1 Hausdorff distance between trees

It is well known that any tree has either exactly one central vertex or exactly two central

vertices that are adjacent. We say that a tree T is central, if |center(T )| = 1, otherwise

it is bicentral. Also, for an arbitrary tree T it holds that diam(T ) = 2rad(T )− 1, if T is

bicentral, and diam(T ) = 2rad(T ), if T is central. This fact, together with Theorem 2.12,

immediately implies the following corollary.

Corollary 4.1. Let T1 and T2 be two arbitrary trees. Then

H(T1, T2) ≤ max

{⌈
diam(T1)

2

⌉
,

⌈
diam(T2)

2

⌉}
.

Clearly, if one of the trees is trivial, one obtains an optimal amalgam of the two trees

by identifying the only vertex of the trivial tree with a central vertex of the other tree.

For this reason in the following results we restrict ourselves to non-trivial trees.

-236-



Proposition 4.2. Let T1 and T2 be two non-trivial trees with diam(T1) ≥ diam(T2). If

T1 is bicentral then H(T1, T2) < rad(T1).

Proof. Let center(T1) = {c1, c2}. Let c be a central vertex of T2 and c′ its arbitrary

neighbour, if T2 is central, otherwise let c′ be the other central vertex of T2. Let H1 be the

subgraph of T1 induced on the set center(T1), and H2 the subgraph of T2 induced on the

set {c, c′}. Let A be a convex amalgam of T1 and T2 obtained by identifying the graphs

H1 and H2.

For any vertex u ∈ V (TA
1 ) it holds that dA(u, TA

1 ∩ TA
2 ) < rad(T1), since both central

vertices are in TA
1 ∩TA

2 . Let v ∈ V (TA
2 ). If T2 is bicentral (both its central vertices are also

in TA
1 ∩ TA

2 ), then dA(v, TA
1 ∩ TA

2 ) < rad(T2) ≤ rad(T1). If T2 is central, then rad(T2) <

rad(T1). Since cA ∈ V (TA
1 ∩TA

2 ) it holds that dA(v, TA
1 ∩TA

2 ) ≤ rad(T2) < rad(T1). Using

Corollary 2.7 the assertion follows immediately.

Next, we study some properties of optimal amalgams of trees. Remember, a convex

amalgam of two graphs is called optimal, if it gives rise to the Hausdorff distance between

the two graphs.

Theorem 4.3. Let T1 and T2 be two arbitrary non-trivial trees, with diam(T1) ≥ diam(T2).

Let c ∈ center(T1). Then for every optimal amalgam A ∈ X (T1, T2) it holds that {cA} ⊆

V (TA
1 ∩ TA

2 ).

Proof. Assume there exists A ∈ X (T1, T2) with hA(TA
1 , T

A
2 ) = H(T1, T2) such that at least

one central vertex of T1, say v, is not in TA
1 ∩TA

2 . Then it holds that dA(v, TA
1 ∩TA

2 ) ≥ 1.

Suppose T1 is central. Since TA
1 ∩ TA

2 is convex in A, then there exists a vertex u ∈

V (TA
1 )\V (TA

1 ∩TA
2 ) with dA(v, u) =

⌈
diam(TA

1 )

2

⌉
. But then, dA(u, TA

1 ∩TA
2 ) ≥

⌈
diam(TA

1 )

2

⌉
+1.

This is a contradiction with Corollary 2.7 and Corollary 4.1 together with the assumption

diam(T1) ≥ diam(T2).

Suppose T1 is bicentral. Since TA
1 ∩ TA

2 is convex in A, then there exists a vertex

u ∈ V (TA
1 )\V (TA

1 ∩TA
2 ) with dA(v, u) = rad(T1)−1. But then, dA(u, TA

1 ∩TA
2 ) ≥ rad(T1).

This is a contradiction with Corollary 2.7 and Proposition 4.2.

Let G be a graph and H its subgraph with a property P . We say H is minimal

subgraph with the property P if there exists no proper subgraph of H with the property

P .
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Theorem 4.4. Let T1 and T2 be two arbitrary non-trivial trees, with diam(T1) ≥ diam(T2).

Let 0 ≤ k ≤ rad(T1) be a fixed integer. Let H be a minimal subtree of T1 containing a

central vertex of T1, such that maxu∈V (T1)\V (H){dT1(u,H)} ≤ k. If T2 does not contain a

subgraph isomorphic to H then H(T1, T2) > k.

Proof. Suppose, H(T1, T2) ≤ k, for some fixed integer 0 ≤ k ≤ rad(T1). Then there exists

a convex amalgam A of T1 and T2 such that hA(TA
1 , T

A
2 ) = k. Let H ′ be the subgraph of

T1 corresponding to TA
1 ∩ TA

2 . By Theorem 4.3 the graph H ′ contains a central vertex of

T1. By Corollary 2.7 it holds true that maxu∈V (T1)\V (H′){dT1(u,H
′)} ≤ k. Now let H be

a minimal subtree of H ′ such that maxu∈V (T1)\V (H){dT1(u,H)} ≤ k is still true. Clearly,

H is a (convex) subgraph of H ′, therefore HA is a convex subgraph of TA
1 ∩ TA

2 . Then T2

clearly contains a subgraph isomorphic to H.

The minimal subgraph H of a tree T , with the properites as required by Theorem 4.4

can be easily found as follows. Set S := center(T ). Say k is a fixed integer as in Theorem

4.4. Choose a central vertex c of the tree T . Now, for each leaf u of the tree consider the

path Pu from the leaf to the central vertex c. If `(Pu) ≤ k, then do nothing. Otherwise,

let vu ∈ V (Pu) be the vertex with dT (u, vu) = k. Let Ru be the path from vu to c. Add

the vertices of Ru to S. Clearly, the graph induced on the vertices in S is the subgraph

we are constructing, i. e. H = 〈S〉.

Theorem 4.3 says that the center of the tree with larger diameter is always in the

intersection of an optimal amalgam. On the other hand, there exist trees T1 and T2, with

diam(T1) ≥ diam(T2), such that no central vertex of T2 is in TA
1 ∩ TA

2 for any optimal

amalgam A of T1 and T2, as the following example demonstrates.

Example 4.5. In Figure 4 we have two non-isomorphic trees T1 and T2. The (connected)

subgraphs induced on the sets of blacks vertices in each tree are clearly isomorphic. More-

over, since they are connected, they are also convex in the corresponding graphs. Therefore

by identifying these two subgraphs we obtain a convex amalgam A such that, by Corollary

2.7, hA(TA
1 , T

A
2 ) = 4. Therefore, H(T1, T2) ≤ 4.

To see that H(T1, T2) ≥ 4, suppose that there exists an amalgam A′ ∈ X (T1, T2) for

which it holds that hA′(T
A′
1 , TA′

2 ) ≤ 3. Using Theorem 4.4, a minimal subtree H of T1

containig the center of T1 and satisfying the condition maxu∈V (T1)\V (H){dT1(u,H)} ≤ 3

is the subgraph induced on the set of vertices {v1, v2, . . . , v11}. Clearly, T2 contains no

subgraph isomorphic to H, therefore H(T1, T2) > 3. It follows that H(T1, T2) = 4.
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v4

v5
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v7

v8

v9

v10

v11
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v14

v15

v16

v17

v18

v19

v20

v21

v22

v23

v1

v2

v3

u4

u5

u6

u7

u1

u2

u3

u8 u9 u10 u11

Figure 4: Trees T1 (left) and T2 (right).

Now, we show that no central vertex of T2 is in some optimal amalgam of T1 and T2.

Note, that u8 is the only central vertex of T2. Suppose that there exist an amalgam A′

such that hA′(T
A′
1 , TA′

2 ) = 4 and uA′
8 ∈ V (TA′

1 ∩ TA′
2 ). From the same reason as above

the set of vertices {vA′1 , vA
′

2 , . . . , vA
′

7 } is a subset of V (TA′
1 ∩ TA′

2 ). Since the subgraph of

T2 induced on the set of black vertices in the Figure 4 is the only subgraph of T2 which

is isomophic to the subgraph of T1 induced on the set of (black) vertices {v1, v2, . . . , v7},

and it does not contain u8, it follows that no such amalgam A′ exists.

Proposition 4.6. Let T1 and T2 be two arbitrary non-trivial trees, with diam(T1) ≥

diam(T2). Let A ∈ X (T1, T2) be an optimal amalgam of T1 and T2. Then there exist

c1 ∈ center(T1) and c2 ∈ center(T2) such that dA(cA1 , c
A
2 ) ≤ H(T1, T2).

Proof. Choose vertices c1 ∈ center(T1) and c2 ∈ center(T2) such that distance dA(cA1 , c
A
2 )

is the smallest possible. Choose the vertex u for which it holds that rad(T1) = dA(cA1 , u) ≤

dA(cA2 , u). Such a vertex u ∈ V (TA
1 ) exists because c1 ∈ center(T1). Note, if T1 is bicentral,

the second central vertex is on the shortest path between c1 and u. Choose a vertex v for

which it holds that v ∈ V (TA
1 ∩ TA

2 ) and dA(u, v) is the smallest possible. Then

H(T1, T2) ≥

dA(u, v) =

dA(cA1 , u)− dA(cA1 , v) =

dA(cA1 , u)−
(
dA(cA2 , v)− dA(cA1 , c

A
2 )
)
≥

rad(T1)−
(
rad(T2)− dA(cA1 , c

A
2 )
)

=

dA(cA1 , c
A
2 ) + (rad(T1)− rad(T2)) ≥ dA(cA1 , c

A
2 ).

The following proposition shows that the bound from Proposition 4.6 is sharp.
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Proposition 4.7. For an arbitrary non-negative integer k there exist trees T1 and T2,

with diam(T1) ≥ diam(T2) and H(T1, T2) = k, such that for every optimal amalgam A of

T1 and T2 it holds that dA(cA1 , c
A
2 ) = H(T1, T2), where c1 ∈ center(T1) and c2 ∈ center(T2).

Proof. Let k be a fixed non-negative integer. We will construct two non-isomorphic trees

T1 and T2, such that the Hausdorff distance between T1 and T2 is H(T1, T2) = k and the

distance between the vertices cA1 and cA2 corresponding to the centers of T1 and T2 in every

optimal convex amalgam A is dA(cA1 , c
A
2 ) = k.

c1
2k + 2 2k + 2

k + 1

c2

3k + 2

k

k + 2

k + 1

cA2

cA1
k 2k + 2

k

k + 2 k

k + 1

Figure 5: Trees T1, T2 and an optimal amalgam A of T1 and T2.

Let T1 be the tree constructed from a path of length 4k+ 4 and a path of length k+ 1,

where we identify one end-vertex of the shorter path with the central vertex of the longer

path; see the top left-hand tree in Figure 5 for reference. So T1 is a star-like tree with

three rays, two of length 2k + 2 and one of length k + 1. Clearly, c1 is the only central

vertex of T1.

Next, let T2 be the tree constructed from a path of length 4k + 4 and a path of length

k + 1, where we identify one end-vertex of the shorter path with a vertex at distance k

from the central vertex of the longer path; see the top right-hand tree in Figure 5 for

reference. By construction, also T2 is a star-like tree with three rays, one of length 3k+ 2,

one of length k + 2 and one of length k + 1, with exactly one central vertex, namely c2.

Now, we construct an amalgam A of T1 and T2 as shown in the bottom tree in Figure 5.

Clearly, A is a convex amalgam of T1 and T2, the distance between vertices corresponding

to the centers of the trees is dA(cA1 , c
A
2 ) = k. From the construction and Corollary 2.7 it
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is also obvious that H(T1, T2) ≤ hA(TA
1 , T

A
2 ) = k. Using Theorem 4.4, it can be easily

checked that H(T1, T2) > k − 1.

All that is left, is to show that in every optimal amalgam of trees T1 and T2 the distance

between vertices corresponding to the central vertices of covers is k. Let A be an arbitrary

optimal amalgam of T1 and T2. Note, diam(T1) = diam(T2) = 4k + 4. By Theorem 4.3

to follows that cA1 ∈ V (TA
1 ∩ TA

2 ). Moreover, we claim that the vertices corresponding

to all neighbours of c1 are also in TA
1 ∩ TA

2 . Towards contradiction, let v ∈ V (T1) be a

neighbour of c1 such that vA 6∈ V (TA
1 ∩ TA

2 ). Also, let w denote the leaf of T1 such that

the path Pv,w from v to w does not contain c1. Since TA
1 ∩ TA

2 is convex (and therefore

connected) no vertex of Pv,w can be in TA
1 ∩TA

2 . But then dA(wA, TA
1 ∩TA

2 ) = k+1 > k, a

contradiction with Theorem 2.6 and the fact that H(T1, T2) = k. It follows that c1 and all

its three neighbours are in TA
1 ∩TA

2 . Since T2 contains exactly one vertex, say u, of degree

three and A is a convex amalgam of T1 and T2, this vertex and its neighbours must also

be in TA
1 ∩TA

2 , moreover c1 is mapped with an isomorphism to u. Since A was arbitrarily

chosen, the distance between the vertices cA1 and cA2 is the same in all optimal amalgams.

Clearly, dA(cA1 , c
A
2 ) = k.

4.2 Algorithm

In this section we present an exact (exponential time) algorithm for computing the Haus-

dorff distance between two trees. As the following example demonstrates, using a maxi-

mum common subtree of two arbitrary trees to form a convex amalgam may not always

produce an optimal amalgam for the Hausdorff distance.

Example 4.8. In Figure 6 we have two non-isomorphic trees T1 (left hand side) and

T2 (right hand side) with central vertices c1 and c2, respectively. A maximum common

subtree of T1 and T2 is clearly isomorphic to T2.

c1 c2

Figure 6: Maximum common subtree does not suffice.

Let A1 be a convex amalgam obtained from T1 and T2 by identifying the subgraphs

induced by the sets of black vertices (using maximum common subtree). In this case
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hA1(T
A1
1 , TA1

2 ) = 4. On the other hand, one can form a convex amalgam A2 by identifying

the central vertices of the two trees for which hA2(T
A2
1 , TA2

2 ) = 3 and thereforeH(T1, T2) ≤

3. Therefore A1 is not an optimal amalgam. It can be easily verified that there is no

optimal convex amalgam of T1 and T2 that would be obtained by identifying T2 with any

other subgraph of T1 isomorphic to T2.

Now, we present three algorithms we use to compute the Hausdorff distance between

two arbitrary trees. The first two are used as a subroutine of the Algorithm 3, which

returns the actual Hausdorff distance and an optimal amalgam.

Algorithm 1: ConnectedSubgraphsRooted

input : An arbitrary rooted tree T and result passed by reference.
output: An array of lists of connected subgraphs of input tree T which include

root vertex, saved in result.

1 ts ← firstSubgraph(T)
2 while ts 6= null do
3 ts ← nextSubgraph(T, ts)
4 if ts = null then
5 break
6 end
7 ti ← null
8 foreach subgraph s in result[ts.size()] do
9 if Isomorphism(s, ts) then

10 ti ← s
11 break

12 end

13 end
14 if ti 6= null and ts.dist < ti.dist then
15 Remove ti from result[ts.size()]
16 Insert ts in result[ts.size()]

17 else if ti = null then
18 Insert ts in result[ts.size()]
19 end

20 end

Given a rooted tree as the input, Algorithm 1 computes those connected subgraphs

(called r-subgraphs) of the input tree which include the root vertex. If two or more

isomorphic r-subgraphs are found then, by Proposition 2.11, it suffices to save in the

result only one of them, namely the one that has the smallest distance to the input tree.

The result of the algorithm is an array of lists of subgraphs, where the list at index i

contains all pairwise non-isomorphic connected r-subgraphs on i vertices.
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The function firstSubgraph() returns the (r-)subgraph induced on the root vertex.

The function nextSubgraph() returns the next r-subgraph which has not been created

yet. Details about this procedure are described in [12]. In this procedure we also compute

the distance of the created subgraph to the original tree. The order in which this procedure

generates r-subgraphs is not important in our algorithm.

When we get the result from nextSubgraph() (one r-subgraph) we check if there

already exists an isomorphic r-subgraph on i vertices in the array of saved r-subgraphs.

If no such r-subgraph is found then we save our r-subgraph in the array. Otherwise, due

to Proposition 2.11, we keep in the array only the one of the two r-subgraphs that has

the smallest distance to the input tree.

The time complexity of the outer while loop is proportional to number of all r-

subgraphs, that is O(2n−1) in the worst case. In line 3 we compute one r-subgraph.

The most time consuming in this procedure is computing the distance of the subgraph to

original tree which gives the routine the time complexity O(n2). Lines 8-13 have the time

complexity O(n · 2n−1), where O(n) is the complexity of the method Isomorphism() and

O(2n−1) (number of all r-subgraphs) is the upper bound for the number of r-subgraphs

on fixed number of vertices. Lines 14-19 have a constant time complexity. Therefore, the

total time complexity for Algorithm 1 is O(2n−1 · n · 2n−1) = O(n · 4n).

Algorithm 2: ConnectedSubgraphs

input : An arbitrary tree T and result passed by reference.
output: An array of lists of connected subgraphs of input tree T, saved in result.

1 foreach vertex v ∈ V (T) do
2 Root tree T in v
3 ConnectedSubgraphsRooted(T, result)

4 end

Algorithm 2 is similar to Algorithm 1. It computes all connected pairwise non-

isomorphic subgraphs of the input tree, whilst Algorithm 1 computes only such r-subgr-

aphs. Note, from all pairwise isomorphic subgraphs we only keep the one with the smallest

distance to the input tree. Because of similarity, we can use Algorithm 1 inside Algo-

rithm 2. We root the input tree in each vertex and call Algorithm 1 to add the current

r-subgraphs to the result. The time complexity of Algorithm 2 is O(n2 · 4n).

However, we can slightly improve the complexity by changing the function

nextSubgraph(). When rooting the tree in two different vertices and computing their
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r-subgraphs, the same subgraph of the input tree can appear in the result of both rooted

trees. This means that we iterate through the same subgraphs multiple times. This can

be avoided by adding a condition that prevents computing r-subgraphs which include a

vertex that has already been a root in some previous iteration. Adding this condition does

not worsen the time complexity of the function nextSubgraph(). With this improvement,

the time complexity of Algorithm 2 is O(n · 4n).

Algorithm 3: Hausdorff distance

input : Two arbitrary trees T1 and T2, with diam (T1) ≥ diam (T2)
output: Isomorphic subgraphs r1 and r2 of T1 and T2 which give rise to

T1A ∩ T2A, where A is an optimal amalgam and Hausdorff distance hd

1 Calculate the set center(T1) and then root the tree T1 from an arbitrary
c ∈ center(T1)

2 sub1 ← ConnectedSubgraphsRooted (T1)
3 sub2 ← ConnectedSubgraphs (T2)
4 hd ← rad (T1)
5 for i ← 1 to min(sub1.size(), sub2.size()) do
6 foreach element s1 in sub1[i] do
7 foreach element s2 in sub2[i] do
8 if Isomorphism(s1,s2) and max(s1.dist,s2.dist) < hd then
9 hd ← max(s1.dist,s2.dist)

10 r1 ← s1
11 r2 ← s2

12 end

13 end

14 end

15 end

Algorithm 3 computes the Hausdorff distance of two input trees T1 and T2. It returns

the distance and two subgraphs of the input trees which give rise to an optimal amalgam.

The first part of the algorithm computes all suitable r-subgraphs (for T1, since by

Theorem 4.3 we know that a central vertex of T1 is in the intersection of the amalgam)

and subgraphs of the input trees using Algorithm 1 and Algorithm 2, respectively. Then

the algorithm iterates (lines 5-15) through all pairs of subgraphs of the same order and

looks for isomorphisms between them. If we find an isomorphism between two subgraphs

we can construct amalgam A of the input trees with respect to this isomorphism. Using

Corollary 2.7, the distance hA(T1A,T2A) for such an amalgam equals the maximum of

the distances of the subgraphs to their corresponding input tree. Since we check this for

all possible pairs of subgraphs, the algorithm computes the Hausdorff distance (and the
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optimal amalgam).

The time complexity for lines 1-4 is O(n · 4n). Time complexity for lines 5-15 is also

O(n · 4n), because in the worst case we check all possible pairs of subgraphs and there

are at most 2n−1 subgraphs in sub1 and at most 2n subgraphs in sub2. For every pair of

subgraphs we check if they are isomorphic which takes O(n) time per pair, other operations

inside the loops can be done in constant time. Therefore the total time complexity for

Algorithm 3 is O(n · 4n).

5 Open problems

We conclude the paper with two open problems. It is clear from the complexity analysis

of Algorithm 3 that it is polynomial for trees with a polynomial number of connected

subgraphs, and exponential in the general case. So the next question arises naturally.

Problem 5.1. Is there a polynomial algorithm that determines the Haudsorff distance

between two arbitrary trees?

In chemical graphs the vertices present atoms and edges present bonds. So when

determining the similarity of two (chemical) graphs it would make sense to restrict which

vertices can map to each other when making an amalgam.

Problem 5.2. Define a measure of similarity of two graphs based on the Hausdorff

distance for labelled graphs with an additional restriction to what labels are allowed to

map to each other.
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