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Abstract

Carbon nanotubes are chemical compounds made of carbon which possess a
cylindrical structure. Open-ended single-walled carbon nanotubes are called tubu-
lenes. The resonance graph of a tubulene reflects the interference among its Kekulé
structures. Our work is motivated by [15] where some basic properties of resonance
graphs of benzenoid systems were investigated.

In the present paper it is shown that every connected component of the resonance
graph of a tubulene is either a path or a graph of girth 4. The example for the
construction of an arbitrary path as a connected component of the resonance graph
is given. We also provide a condition for a tubulene under which every connected
component of its resonance graph different from a path without vertices of degree
one is 2-connected.

1 Introduction

Benzenoid graphs are 2-connected planar graphs such that every inner face is a hexagon.

Benzenoid graphs are generalization of benzenoid systems, also called hexagonal systems,

which can be defined as benzenoid graphs that are also subgraphs of a hexagonal lattice

(for details see [5, 6]).
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If we embed benzenoid systems on a surface of a cylinder and join some edges we obtain

structures called open-ended single-walled carbon nanotubes also called tubulenes (note

that there are also closed-ended single-walled carbon nanotubes i.e. carbon nanotubes

with caps). Carbon nanotubes are carbon compounds with a cylindrical structure. The

extremely large ratio of length to diameter causes unusual properties of these molecules,

which are valuable for nanotechnology, electronics, optics and other fields of materials

science and technology. Nanotubes were observed in 1991 [7] in the carbon soot of graphite

electrodes during an arc discharge. The first macroscopic production of carbon nanotubes

was made in 1992 by two researchers at NEC’s Fundamental Research Laboratory [2].

In 1996 Smalley group at Rice university successfully synthesized the aligned closed-

ends single-walled carbon nanotubes [11]. Nanotubes are members of the fullerenes, i.e.

carbon molecules in different shapes such as sphere, ellipsoid, tube, which may also contain

pentagonal rings.

The resonance graph R(G) of a benzenoid system or a tubulene G reflects the structure

of perfect matchings of G. The concept of the resonance graph was introduced indepen-

dently in mathematics (under the name Z-transformation graphs) by Zhang, Guo, and

Chen [15] and in chemistry first by Gründler [4] and later by El-Basil [3] as well as by

Randić with co-workers [8, 9]. The definition is quite natural and has a chemical mean-

ing since perfect matchings of G are Kekulé structures of a corresponding hydrocarbon

molecule. Some basic properties of resonance graph of benzenoid systems can be found

in [14].

Resonance graphs of some families of tubulenes were considered in [17, 18, 19] and

in [1] the equality of the Zhang-Zhang polynomial of a spherical benzenoid system and

the cube polynomial of its resonance graph was shown. It was shown in [12] that the

resonance graph of every tubulene is always bipartite. Also, a condition under which the

resonance graph of a tubulene is not connected was given.

In [15] the authors proved that the resonance graph of any benzenoid system is either

a path or a graph of girth 4. It was also shown that in the last case the resonance graph

without vertices of degree one is 2-connected. In this paper we generalize these results to

tubulenes. Some ideas from [15] can be used but the cylindrical structure of tubulenes

makes significant differences.
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2 Preliminaries

First we will formally define open-ended carbon nanotubes, also called tubulenes ([10]).

Choose any lattice point in the hexagonal lattice as the origin O. Let −→a1 and −→a2 be the

two basic lattice vectors. Choose a vector
−→
OA = n−→a1 + m−→a2 such that n and m are

two integers and |n| + |m| > 1, nm 6= −1. Draw two straight lines L1 and L2 passing

through O and A perpendicular to OA, respectively. By rolling up the hexagonal strip

between L1 and L2 and gluing L1 and L2 such that A and O superimpose, we can obtain

a hexagonal tessellation HT of the cylinder. L1 and L2 indicate the direction of the axis

of the cylinder. Using the terminology of graph theory, a tubulene T is defined to be the

finite graph induced by all the hexagons of HT that lie between c1 and c2, where c1 and

c2 are two vertex-disjoint cycles of HT encircling the axis of the cylinder. The vector
−→
OA

is called the chiral vector of T and the cycles c1 and c2 are the two open-ends of T .

Figure 1: Illustration of a (4,−3)-type tubulene.

For any tubulene T , if its chiral vector is n−→a1 + m−→a2 , T will be called an (n,m)-type

tubulene, see Figure 1. Graph G is a spherical benzenoid system if G is either a benzenoid

system or a tubulene [1].

An 1-factor of a graph G is a spanning subgraph of G such that every vertex has

degree one. Edges of the 1-factor form an independent set of edges i.e. a perfect matching

of G (in the chemical literature these are known as Kekulé structures; for more details see
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[6]). Let G be a spherical benzenoid system and M a perfect matching of G. A hexagon h

of G is M-alternating if the edges of h appear alternately in and off the perfect matching

M . Such hexagon h is also called a sextet. Let G be any graph. An edge of G is allowed

if it lies in some perfect matching of G and forbidden otherwise. A graph G is called

elementary if it is connected and every edge of G is allowed.

The resonance graph R(G) of a spherical benzenoid system G is the graph whose

vertices are the perfect matchings of G, and two perfect matchings are adjacent whenever

their symmetric difference forms a set of edges of some hexagon of G.

The concept of resonance graph can be extended to any plane bipartite graph (see

[13]). Let G be a plane bipartite graph and M a perfect matching of G. A cycle C in G

is M-alternating if the edges of C appear alternately in and off the M . The vertices of G

can be colored white and black so that adjacent vertices receive different colors. Then an

M -alternating cycle C of G is said to be proper if every edge in E(C)∩M goes from white

end-vertex to black end-vertex along the clockwise orientation of C. Let F0(G) denotes

the set of all inner faces of G and F (G) the set of all faces of G. Let F ⊂ F (G). Then the

restricted resonance digraph of G, denoted by
−→
RF (G), is the digraph whose vertices are

the perfect matchings of G such that there exists an arc from M1 to M2 if and only if the

symmetric difference M1 ⊕M2 is a proper M1-alternating cycle that is the boundary of

a face f in F . Neglecting all directions of arcs of
−→
RF (G) we get the restricted resonance

graph RF (G).

Let G be a connected graph and v ∈ V (G). Then v is a cut vertex if its removal

disconnects G. A connected graph is 2–connected if it does not contain a cut vertex.

The Cartesian product G�H of graphs G and H is the graph with the vertex set

V (G) × V (H) and (a, x)(b, y) ∈ E(G�H) whenever ab ∈ E(G) and x = y , or, if a = b

and xy ∈ E(H).

3 Some results about resonance graphs of tubulenes

In this section we prove some properties of resonance graphs of tubulenes. It is shown

that every connected component of the resonance graph is either a path or a graph of

girth 4. Note that if a directed graph can be represented as a distributive lattice this
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property follows immediately. In [13] it was proved that if G is a plane elementary

bipartite graph and F ⊂ F0(G) then each connected component of the directed resonance

graph of G restricted to F can be respresented as a distributive lattice, but tubulenes

are not elementary graphs. Further it was shown in the same paper, that if G is a plane

bipartite graph then each connected component of the directed resonance graph can be

represented as a distributive lattice (without any restriction on F0(G)). Since one open-

end of a tubulene T is an inner face in every planar drawing of T the last result can not

be used in our case either.

We also provide a condition for a tubulene such that if some connected component of

its resonance graph is not a path, then this component without vertices of degree one is

2-connected. Some examples of tubulenes such that its resonance graph contains a path

Pn as a connected component are also given.

Lemma 3.1 Let T be a tubulene with a perfect matching and H a connected component

of the resonance graph R(T ) such that H is not a path. If V1(H) is the set of all vertices

in H that have degree one and M ∈ V (H)− V1(H), then we can find in a tubulene T at

least two disjoint hexagons which are M-alternating cycles.

Proof. Let M ∈ V (H) − V1(H). We must show that we can find in a tubulene T at

least two disjoint hexagons which are M -alternating cycles. Consider two options:

1. If M has degree more than two in H we can find three hexagons h1, h2 and h3 of T

which are M -alternating cycles. If every two of them have an edge in common we

get a situation in Figure 2. This is a contradiction since a graph in the figure does

not have a perfect matching. Thus, at least two of the hexagons h1, h2 and h3 are

disjoint.

Figure 2: Position of hexagons h1, h2 and h3 in case 1. which is not possible.
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2. If M has degree two in H then there are only two M -alternating cycles which are

hexagons of T . Let h1 and h2 be these hexagons. If h1 and h2 are disjoint, the proof

is obvious. So suppose that h1 and h2 have an edge in common.

Let M1 = M⊕E(h2) and M ′
1 = M⊕E(h1). Obviously, any M1-alternating hexagon

of T , which is not h2, must have a common edge with h2 since otherwise there are

more than two hexagons which are M -alternating cycles. In Figure 3 we can see

Figure 3: Perfect matching M1.

that hexagons h1, s1, s2, s3, s4 can not be M1-alternating. Hence, there can be at

most one hexagon besides h1, say h3, which is an M1-alternating cycle. Similar is

true for M ′
1, i. e. there is at most one hexagon besides h1, say h′2, which is an M ′

1

alternating cycle. Hence, vertices M1 and M ′
1 have both degree at most two in H.

We can repeat this procedure to get linearly connected hexagons h2, h3, h4, . . . and

h1, h
′
2, h
′
3, . . .. Since they lie on a tubulene it could happen that two of them are

Figure 4: Perfect matching M .

equal, say hp and h′q (see Figure 4). In that case edges e and e′ coincide but then M

is not a perfect matching. Therefore all hexagons are different and since T is finite,

with repeating the above procedure we get a path M ′
rM

′
r−1 . . .M

′
1MM1 . . .Mt−1Mt

(r ≥ 1, t ≥ 1), which is a connected component of H. Since H is connected, H

must be a path itself and this is a contradiction. Therefore, hexagons h1 and h2 are

disjoint.

We have proved that in a tubulene T there are two disjoint hexagons h1 and h2 which are

M -alternating cycles. The proof is complete.
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With Lemma 3.1 we can prove the following theorem.

Theorem 3.2 Let T be a tubulene with a perfect matching and H a connected component

of the resonance graph R(T ). Then H is either a path or a graph of girth 4.

Proof. Suppose that H is not a path. We will see that in this case H must be a graph of

girth 4. The set of all vertices in V (H) which have degree one will be denoted by V1(H).

If the set V (H)−V1(H) is empty it follows that H is the path P2, which is a contradiction

since H is not a path. Hence, let M ∈ V (H)− V1(H).

By Lemma 3.1, in a tubulene T there are two disjoint hexagons h1 and h2 which are

M -alternating cycles. Thus, M lies in a 4-cycle MM1M2M3 where M1 = M ⊕ E(h1),

M2 = M1 ⊕ E(h2) and M3 = M2 ⊕ E(h1). By Theorem 3.2 in [12] the resonance graph

R(T ) is bipartite, therefore, H is bipartite too. Since every vertex lies in some 4-cycle,

the girth of H is 4 and the proof is completed.

Theorem 3.2 says that every connected component of a resonance graph R(T ) is either

a path or a graph of girth 4. But it is not so easy to find an example of a tubulene T

such that its resonance graph R(T ) has a connected component which is a path. Hence,

we state the following theorem.

Proposition 3.3 Let n be a positive integer. Then there is a tubulene T such that the

resonance graph R(T ) has a connected component which is isomorphic to a path Pn.

Proof.

1. If n = 1 the proof is obvious since we know many examples (see other cases of this

proof and papers [1, 12, 17, 18, 19]) of tubulenes such that the resonance graph

contains an isolated vertex, i. e. a path P1.

2. If n = 2, let T be a tubulene in Figure 5. Obviously, since only hexagon h1 is a

sextet, a graph in Figure 5 is a connected component of the resonance graph R(T ).

Although there are also other perfect matchings of T , one connected component of

its resonance graph is a path P2.

3. If n ≥ 3, let T be a tubulene in Figure 6. Clearly, the resonance graph contains a

path on n vertices M1M2 . . .Mn and two isolated vertices Mn+1 and Mn+2.
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Figure 5: A connected component of the resonance graph of a tubulene in Case 2. Edges
e and e′ are joined together.

Figure 6: The resonance graph of a tubulene in Case 3. Edges e and e′ are joined together.

It is well known fact that the resonance graph of a benzenoid system B is a path Pn,

n ≥ 2, only in the case when B is composed of n − 1 linearly connected hexagons. But

we can find different tubulenes such that the resonance graph contains a path Pn as a

connected component. See Example 3.5. To find such an example we use Lemma 3.4. A

similar result has been already obtained in [13] where it was shown that every directed

resonance graph of a plane bipartite graph is a Cartesian product of directed resonance

graphs of its elementary components. This result could be applied in our case with some

modifications but in the sake of clarity we provide a proof adapted for spherical benzenoid

systems.
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Lemma 3.4 Let B be a spherical benzenoid system with a perfect matching. Let G and H

be spherical benzenoid systems which are subgraphs of B such that V (B) = V (G)∪ V (H)

and V (G) ∩ V (H) = ∅. If every edge of B with one vertex in G and another in H is a

forbidden edge, then the resonance graph R(B) is isomorphic to the Cartesian product of

resonance graphs R(G) and R(H).

Proof. We can find an isomorphism f : R(B) −→ R(G)�R(H). Let M ∈ V (R(B)).

Obviously, M is a perfect matching of B and since every edge between G and H is

forbidden, M = M1 ∪M2 where M1 = M ∩ E(G) is a perfect matching of G and M2 =

M ∩E(H) is a perfect matching of H. Define f(M) = (M1,M2) for every M ∈ V (R(B)).

It is clear that f(M) ∈ V (R(G)�R(H)). It is obvious that f is a bijection. To show that

f is an isomorphism we must check that for every M,N ∈ V (R(B)) it holds: M and N

are adjacent in R(B) if and only if f(M) = (M1,M2) and f(N) = (N1, N2) are adjacent

in R(G)�R(H). To do this, let M,N be two adjacent vertices in R(B). Therefore, there

is a hexagon h in B such that M ⊕ N = E(h). It is obvious that h is a hexagon in

G or a hexagon in H, but not in both. If h is in G, then the vertices M1 and N1 are

adjacent in G and M2 = N2, hence (M1,M2) and (N1, N2) are adjacent in the product.

The same conclusion follows if h is in H. To see the other implication, let (M1,M2) and

(N1, N2) be adjacent in the product. If M1 is adjacent to N1 in R(G) and M2 = N2, then

M ⊕N = (M1⊕N1)∪ (M2⊕N2) = E(h)∪∅ = E(h) for some hexagon h in G. Therefore,

M and N are adjacent in R(B). The same is true if M1 = N1 and M2, N2 are adjacent in

R(H). The proof is complete.

Example 3.5 In Figure 7 we can see a tubulene T and three of it’s perfect matchings

which form a connected component P3 in the resonance graph. Obviously, using similar

tubulenes one can obtain a path Pn (n ≥ 3) as a connected component of the resonance

graph. Note that although these tubulenes are all different from tubulenes in the proof

of Theorem 3.3, we get a path as a connected component in the resonance graph in both

cases. We also notice that edges f and f ′ are forbidden in tubulene T . Hence, by Lemma

3.4 the resonance graph is the Cartesian product of the resonance graphs of tubulene G

(composed of three linearly connected hexagons) and benzenoid system H (with hexagons

h1 and h2). Since R(G) is a graph composed of four isolated vertices and R(H) = P3 it

follows that R(T ) has four connected components and each of them is P3.
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Figure 7: A connected component of the resonance graph of a tubulene. Edges e and e′

are joined together.

Definition 3.6 Let T be a tubulene and
−→
OA its chiral vector. If the graph distance

between O and A is strictly more than eight, then T is called a thick tubulene.

In the last theorem we will prove that for thick tubulenes every connected component of

the resonance graph (which is not a path) without vertices of degree one is 2–connected.

Theorem 3.7 Let T be a thick tubulene with a perfect matching. Furthermore, let H be a

connected component of the resonance graph R(T ) such that H is not a path. If V1(H) is

the set of all vertices in H that have degree one, then the graph induced on V (H)−V1(H)

is 2–connected.

Proof. Let G be a subgraph of H induced on vertices in V (H) − V1(H). Since H is

connected and vertices in V1(H) have degree one, it is obvious that G is connected. It

is enough to prove the following: for any 2–path M1M2M3 in G there is another path

M1M
′
2 . . .M3 in H − V1(H) joining M1 and M3 which is internally vertex disjoint with

M1M2M3. It is easy to see that if this is true, then there can be no cut vertex in G.

So let M1M2M3 be a 2-path in G. Suppose that h1 and h2 are such hexagons of T

that M2 = M1⊕E(h1) in M3 = M2⊕E(h2), so h1 is an M1–alternating cycle and h2 is an

M2–alternating cycle. If h1 and h2 are edge disjoint, we can find another perfect matching

M ′
2 in G such that M ′

2 = M1 ⊕ E(h2) and M3 = M ′
2 ⊕ E(h1). Obviously, M1M

′
2M3 is

another path joining M1 and M3.

If h1 and h2 are edge joint, then by Lemma 3.1, since the degree of M1 in H is greater

than one, there is another hexagon h3 which is an M1 alternating cycle and is edge disjoint

with h1. Consider the following options:

1. If h2 and h3 are edge disjoint, then there is another path M1M
′
2M

′
3M

′
4M3 joining
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M1 and M3, such that M ′
2 = M1⊕E(h3), M

′
3 = M ′

2⊕E(h1), M
′
4 = M ′

3⊕E(h2) and

M3 = M ′
4 ⊕ E(h3). See Figure 8.

Figure 8: A part of the resonance graph of a tubulene in Case 1.

2. If h2 and h3 are edge joint, since the degree of M3 in H is greater than one, by

Lemma 3.1 there is another hexagon h4 of T which is an M3–alternating cycle. We

can easily see that h2 and h4 are edge disjoint.

(a) If h1 and h4 are edge disjoint, then h4 is also an M1–alternating cycle. Similarly

as in 1. we can get a path M1M
′
2M

′
3M

′
4M3 joining M1 and M3, where M ′

2 =

M1 ⊕ E(h4), M
′
3 = M ′

2 ⊕ E(h1), M
′
4 = M ′

3 ⊕ E(h2) and M3 = M ′
4 ⊕ E(h4).

(b) If h1 and h4 are edge joint, we get a situation in Figure 9. Clearly, there is

another path MM ′
1M

′
2M

′
3M

′
4M

′
5M3, where M ′

1 = M1 ⊕ E(h3). M ′
2 = M ′

1 ⊕

E(h1), M
′
3 = M ′

2 ⊕ E(h4), M
′
4 = M ′

3 ⊕ E(h3), M
′
5 = M ′

4 ⊕ E(h2) and M3 =

M ′
5 ⊕ E(h4).

Figure 9: A perfect matching M1 and a part of the resonance graph in Case 2 (b).

Assumption that T is a thick tubulene is needed since otherwise a part of a tubulene

in Figure 9 could be glued together and hexagons h3 and h4 would not be disjoint.

Therefore, perfect matching M ′
3 in the last case would not exist.

With this we have proved that G can not contain a cut vertex, therefore, G is 2–

connected.
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However, there also exist tubulenes that are extremely thin. For example, in [16] it

was shown that a stable (2, 2)-type tubulene can be grown inside a multi-walled carbon

nanotube. Note that if T is not a thick tubulene, then the subgraph of H induced on

vertices V (H)−V1(H) is not necessarily 2–connected. See an example in Figure 10 (from

[12]) where H is a connected component with seven perfect matchings (vertices). Edges

e and e′ are joined together. Obviously, H is not a path and contains a cut vertex.

Therefore, the graph induced on V (H)− V1(H) is not 2–connected.

Figure 10: A tubulene such that its resonance graph contains a connected component
which is not a 2-connected graph and not a path.

We will conclude the paper with an example of a tubulene T such that there exists a

connected component of the resonance graph of T , different from a path, with a vertex of

degree one (so V1(H) in Theorem 3.7 is not always an empty set). An example of such a

tubulene can be seen in Figure 11. We can easily see that edges f and f ′ are forbidden

edges. Hence, by Lemma 3.4, its resonance graph R(T ) is the Cartesian product of R(G)

and R(H). Since R(G) is composed of four isolated vertices, R(T ) is composed of four

connected components, each isomorphic to R(H). One connected component is in Figure

11.

-198-



Figure 11: A tubulene (edges e and e′ are joined together) and a connected component
of its resonance graph which contains a vertex of degree one.
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[17] P. Žigert, M. Berlič, Lucas cubes and resonance graphs of cyclic polyphenantrenes,

MATCH Commun. Math. Comput. Chem. 68 (2012) 79–90.
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