Clar Sets and Maximum Forcing Numbers of Hexagonal Systems *

Xiangqian Zhou, Heping Zhang†

School of Mathematics and Statistics, Lanzhou University, Lanzhou,
Gansu 730000, P. R. China
zhouxiangqian0502@126.com, zhanghp@lzu.edu.cn
(Received January 26, 2015)

Abstract

Let H be a hexagonal system with a perfect matching. Xu et al. discovered that the maximum forcing number of H equals its Clar number. In this article we obtain a result: for any resonant set K of a peri-condensed hexagonal system H consisting of disjoint hexagons not meeting the boundary of H, if the subgraph obtained from H by deleting K and the boundary of H has a perfect matching or is empty, then the Clar number of H is at least $|K| + 2$. This fact improves the previous corresponding result due to Zheng and Chen. Based on the result, we prove that for each perfect matching M of H with the maximum forcing number, there exists a Clar set consisting of disjoint M-alternating hexagons of H.

1 Introduction

A hexagonal system, also called benzenoid system, is a 2-connected finite plane graph whose every interior face is bounded by a regular hexagon of side length one [17]. It can also be formed by a cycle with its interior in the infinite hexagonal lattice on the plane (graphene) [4]. A perfect matching of a hexagonal system H is a set of disjoint edges covering all vertices of H. This concept coincides with that of a Kekulé structure in organic chemistry. Since a hexagonal system with at least one perfect matching may be viewed as the carbon-skeleton of a benzenoid hydrocarbon molecule, various topological

*This work is supported by NSFC (grant no. 11371180).
†Corresponding author.
properties of hexagonal systems have been extensively studied. The interested reader may refer to [2–4] with references therein.

A basic concept of Clar’s aromatic sextet theory is that of Clar number, which can measure the stability of polycyclic benzenoid hydrocarbons [2]. According to Clar’s theory, within a series of isometric benzenoid hydrocarbons, the one with larger Clar number is more stable [2].

Let M be a perfect matching of a graph G. A cycle C (resp. a path P) of G is said to be M-alternating if the edges of C (resp. P) appear alternately in and off M. For a subgraph F of G, let $G - F$ denote the graph obtained from G by deleting all the vertices of F together with their incident edges.

Let H be a hexagonal system with a perfect matching. A set K of disjoint hexagons of H is called a resonant set (or cover) if there is a perfect matching M of H such that all hexagons in K are M-alternating. It is obvious that K is a resonant set of H if and only if $H - K$ either has a perfect matching or is an empty graph. In particular, \emptyset is regarded as a perfect matching of an empty graph (no vertices). A resonant set is maximum if its cardinality is maximum. A maximum resonant set of H is also called a Clar set or Clar formula, and its size is called the Clar number of H, denoted by $Cl(H)$. For the relevant researches on the Clar number and Clar formula, please see [5, 7, 9, 12, 18, 19, 22].

In 1985, Zheng and Chen [26] gave an important property for a maximum resonant set of a hexagonal system as follows.

Theorem 1.1. [26] Let H be a hexagonal system and K a maximum resonant set of H. Then $H - K$ has a unique perfect matching.

The proof of Theorem 1.1 is based on the following Lemma 1.2.

Lemma 1.2. [26] Let H be a peri-condensed hexagonal system, K a resonant set of internal hexagons and $\partial(H)$ the boundary of the exterior face of H. If $H - K - \partial(H)$ has a perfect matching, then K is not a maximum resonant set.

A hexagonal system H is said to be fully benzenoid if a maximum resonant set of H includes all vertices. Gutman and Salem showed [6] that a fully benzenoid has a unique maximum resonant set.

The innate degree of freedom of a Kekulé structure was defined by Randić and Klein [13] as the minimum number of double bonds which simultaneously belong to the given
kekulé structure and to no other one, nowadays it is named “forcing number” by Harary et al. [10].

Let M be a perfect matching of a graph G. A forcing set S of M is a subset of M such that S is contained in no other perfect matchings of G. The forcing number of M, denoted by $f(G, M)$, is the smallest cardinality over all forcing sets of M. The maximum (resp. minimum) forcing number of G is the maximum (resp. minimum) value of forcing numbers of all perfect matchings of G, denoted by $F(G)$ (resp. $f(G)$). For the relevant researches on the matching forcing problem, we refer to [1,11,23–25].

For planar bipartite graphs, Pachter and Kim revealed a minimax fact that connects the forcing number of a perfect matching and its alternating cycles as follows.

Theorem 1.3. [16] Let M be a perfect matching of a plane bipartite graph G. Then $f(G, M) = c(M)$, where $c(M)$ is the maximum number of disjoint M-alternating cycles of G.

For a hexagonal system H with a perfect matching M, let $h(M)$ denote the maximum number of disjoint M-alternating hexagons of H. Theorem 1.3 implies $f(H, M) = c(M) \geq h(M)$. Second equality does not hold alway. Let us see an example in Fig. 1. The bold edges of Coronene form a perfect matching M' whose forcing number equals 2, but the graph has only one M'-alternating hexagon. However, Xu et al. [20] obtained the following result by finding a perfect matching M of H so that $F(H) = f(H, M) = h(M)$.

Theorem 1.4. [20] Let H be a hexagonal system with perfect matchings. Then $Cl(H) = F(H)$.

![Figure 1: Coronene.](image-url)

In this article, we show that for every perfect matching M of a hexagonal system H with the maximum forcing number, i.e. $F(H) = f(H, M)$, there exist $F(H)$ disjoint M-alternating hexagons in H. That is, $f(H, M) = h(M)$. To prove this, we mainly improve
Lemma 1.2 to obtain Lemma 2.1 in Section 2. Based on this crucial lemma, in Section 3 we describe clearly structure properties for a maximum set of disjoint M-alternating cycles of H for any perfect matchings M with the maximum forcing number, then we give a proof of this main result.

2 A crucial lemma

In this section, all hexagonal systems considered are placed in the plane so that an edge-direction is vertical. A peak (resp. valley) of a hexagonal system is a vertex whose neighbors are below (resp. above) it. For convenience, the vertices of a hexagonal system are colored with white and black such that any pair of adjacent vertices receive different colors and the peaks are black.

Let H be a hexagonal system. The boundary of H means the boundary of the infinite face, denoted by $\partial(H)$. An edge on the boundary of H is a boundary edge. A hexagon of H is called an external hexagon if it contains a boundary edge and an internal hexagon otherwise. H is said to be cata-condensed if all vertices lie on its boundary and pericondensed otherwise.

We state a crucial lemma as follows.

Lemma 2.1. Let H be a pericondensed hexagonal system and K a resonant set consisting of internal hexagons of H. Suppose $H - K - \partial(H)$ has a perfect matching or is an empty graph. Then $\text{Cl}(H) \geq |K| + 2$.

In order to prove the lemma, we need some further terminology and a known result.

Let M be a perfect matching of a hexagonal system H. An edge of H is called an M-double edge if it belongs to M and an M-single edge otherwise. An M-alternating cycle C of H is said to be proper if each edge of C in M goes from white end-vertex to black end-vertex along the clockwise direction of C.

The symmetric difference of two finite sets A and B is defined as $A \oplus B := (A \cup B) - (A \cap B)$. Given a perfect matching M of a hexagonal system H. If C is an M-alternating cycle (or hexagon) of H, then the symmetric difference $M \oplus C$ is another perfect matching of H and C is an $(M \oplus C)$-alternating cycle of H. Here C may be viewed as its edge-set. Let P be a set of some hexagons of H and let F be a subgraph of H. The set of the common hexagons of P and F is denoted by $P \cap F$.
A hexagonal system H is called a *linear chain* if the centers of all hexagons lie on a straight line. Zhang et al. obtained the following result in [21, Theorem 4].

Theorem 2.2. [21] A hexagonal system H has $Cl(H) = 1$ if and only if H is a linear chain.

For a cycle C of a hexagonal system H, let $I[C]$ denote the subgraph of H formed by C together with its interior.

Proof of Lemma 2.1. By the assumption, we can choose a cycle C of H satisfying that

(i) the graph $I[C]$ is a peri-condensed hexagonal system, and

(ii) C is disjoint with each member of K and $H - K - C$ has a perfect matching, and $I[C]$ contains as few hexagons as possible subject to (i) and (ii). Set $H' := I[C]$ and $K' := K \cap H'$.

Claim 1. For any resonant set K_0 of H', $K_0 \cup (K \setminus K')$ is a resonant set of H.

Proof. Since $H - K - C$ has a perfect matching, H has a perfect matching M_0 such that each member in $K \cup \{C\}$ is M_0-alternating. So the restriction of M_0 on $H - H'$ is a perfect matching of $H - H'$, denoted by M_c. Let M'_0 be a perfect matching of H' such that each member in K_0 is M'_0-alternating. Let $M' := M'_0 \cup M_c$. Then M' is a perfect matching of H such that each member in $K_0 \cup (K \setminus K')$ is an M'-alternating hexagon. ■

From Claim 1 it suffices to prove that $Cl(H') \geq |K'| + 2$. If $K' = \emptyset$, by Theorem 2.2 we have that $Cl(H') \geq |K'| + 2$. From now on suppose that $K' \neq \emptyset$. Without loss of generality, let M be a perfect matching of H' such that the boundary C of H' and each member in K' are proper M-alternating cycles. We have the following claim.

Claim 2. H' has no external hexagons that are proper M-alternating.

Proof. Suppose to the contrary that an external hexagon h of H' is proper M-alternating. Then $M \oplus h$ is a perfect matching of H', and each component of $C \oplus h$ is a proper $(M \oplus h)$-alternating cycle. Since any two proper M-alternating hexagons of H' are disjoint, h is disjoint with each member of K'. Since $K' \neq \emptyset$, $C \oplus h$ has a component as a cycle C' which satisfies the above conditions (i) and (ii). But $I[C']$ has fewer hexagons than $I[C]$, contradicting the choice for C. Hence Claim 2 holds. ■
Along the boundary C of H', we will find two substructures of H' in its left-top corner and left-bottom corner as Figs. 3 and 4, respectively, as follows.

A b-chain of hexagonal system H' is a maximal horizontal linear chain consisting of the consecutive external hexagons when traversing (counter)clockwise the boundary $\partial(H')$. A b-chain is called high (resp. low) if all hexagons adjacent to it are below (resp. above) it. For example, in Fig. 2 $D_0, D_1, D_2, G_1, G_2, \ldots, G_9, G'_1, D_5, D_6$ and D_7 are b-chains. In particular, D_0, D_1, D_2 and G_1 are high b-chains, while G'_1, D_5 and D_6 are low b-chains. But G_2, G_3, \ldots, G_9 and D_7 are neither high nor low b-chains.

Choose a high b-chain and a low b-chain of H'. They are distinct. Otherwise H' itself is a linear chain, contradicting that H' is peri-condensed. From the high b-chain to the low b-chain along the boundary $\partial(H')$ counterclockwise, we pass through a sequence of consecutive b-chains. In this process, let G_1 be the last high b-chain and let G'_1 be the first low b-chain after G_1. Clearly, there is no other high b-chain and low b-chain between G_1 and G'_1. That is, those b-chains between G_1 and G'_1 descend monotonously.

From high b-chain G_1 we have a sequence of consecutive b-chains G_1, G_2, \ldots, G_m with the following properties: (1) for each $1 \leq i < m$, G_{i+1} is next to G_i, and the left end hexagon of G_{i+1} lies on the lower left side of G_i, (2) either G_m is just the low b-chain G'_1 or G_{m+1} is the b-chain next to G_m such that G_{m+1} has no hexagon lies on the lower left side of G_m. Let G be a hexagonal chain of H' consisting of b-chains G_1, G_2, \ldots, G_m. Then G is a ladder-shape hexagonal chain.

Similarly, from low b-chain G'_1 we have a sequence of consecutive b-chains G'_1, G'_2, \ldots, G'_s.
with the following properties: (1) for each $1 \leq j < s$, G'_j is next to G'_{j+1}, and the left end hexagon of G'_{j+1} lies on the higher left side of G'_j, (2) either G'_s is just the high b-chain G_1 or G'_s is next to the b-chain G'_{s+1} such that G'_{s+1} has no hexagon lies on the higher left side of G'_m. Let G' be a hexagonal chain of H' consisting of b-chains G'_1, G'_2, \ldots, G'_s.

For example, given a high b-chain D_1 and a low b-chain D_3 in Fig. 2, we can get two required hexagonal chains $G = G_1 \cup G_2 \cup G_3 \cup G_4$ and $G' = G_9 \cup G'_1$.

Claim 3. Either G and G' are disjoint or the last b-chain G_m in G coincides with the first b-chain G'_s in G'.

To analyze the substructures G and G' of H', as [26] we label the hexagons of G and some edges as follows (see Fig. 3): let $S_{i,j}$, $1 \leq i \leq m$ and $1 \leq j \leq n(i)$, be the hexagons of b-chain G_i as Fig. 3, neither A nor A' is contained in H'. Denote by $e_{i,j}$ be the boundary edge of H' which is parallel to $e_{1,1}$ and belongs to $S_{i,j}$, $1 \leq i \leq m$ and $1 \leq j \leq n(i)$, and denote the other boundary edges in $S_{1,1}$ and $S_{m,n(m)}$ by a, a', e_0, e'_0 respectively, as shown in Fig. 3.

Since the boundary C of H' is a proper M-alternating cycle, all the edges $e_0, e'_0, e_{i,j}$, $1 \leq i \leq m$, $1 \leq j \leq n(i)$, are M-double edges. So we can draw a ladder-shape broke line segment $L_1 = P_0P_1 \cdots P_{q+1}(q \geq 1)$ satisfying the following conditions.

A1 The endpoints P_0 and P_{q+1} of L_1 are the midpoints of the edges a and a', respectively. P_i ($1 \leq i \leq q$) is the center of a hexagon S_i of H', P_iP_{i+1} ($0 \leq i \leq q$) is orthogonal to one of the three edge directions, and P_{i+1} ($0 \leq i \leq q$) lies on the lower left side or the left side of P_i according as i is even or odd (see Fig. 3). L_1 only passes through hexagons of H'. Clearly, the graph consisting of the hexagons intersected by L_1 is a hexagonal chain, denoted by H_1.

A2 All the edges intersected by L_1 are M-single edges, all the M-double edges which are located in the region above L_1 are parallel to $e_{1,1}$ (see Fig. 3).

Note that there exists such a broke line segment such that it only passes through hexagons $S_{i,j}$, $1 \leq i \leq m$ and $1 \leq j \leq n(i)$. Among all those broke line segments, we can select one, also denoted by L_1, such that there are the maximum number of M-double edges above it.

Symmetrically we treat substructure G' of H' as follows. Let $T_{i,j}$, $1 \leq i \leq s$ and $1 \leq j \leq t(i)$, be the hexagons of b-chain G'_i, neither hexagon B nor hexagon B' is
Figure 3: The hexagonal chain G on the left-top corner of H' (bold edges are M-double edges, $m = 6$, $n(1)=3$, $n(2)=1$, $n(3)=3$, $n(4)=2$, $n(5)=2$. And $A, A' \notin H'$.)

contained in H' as Fig. 4. Let $f_{k,\ell}$, $1 \leq k \leq s$ and $1 \leq \ell \leq t(k)$, be a series of boundary edges on this structure as indicated in Fig. 4. Since the boundary of H' is a proper M-alternating cycle, we can see that all the edges $f_0, f'_0, f_{k,\ell}$, $1 \leq k \leq s$ and $1 \leq \ell \leq t(k)$, are M-double edges (see Fig. 4).

Figure 4: The hexagonal chain G' on the left-bottom corner of H' (bold edges are M-double edges, $s = 4$, $t(1)=3$, $t(2)=1$, $t(3)=3$, $t(4)=1$. And $B, B' \notin H'$.)

Like L_1, we also draw a ladder-shape broke line segment $L_2 = Q_0Q_1 \cdots Q_{r+1}(r \geq 1)$ as indicated in Fig. 4 so that the part below L_2 has as many M-double edges parallel to $f_{1,1}$ as possible. Let Q_i ($1 \leq i \leq r$) be the center of a hexagon T_i of H'. Let H_2 be the hexagonal chain consisting of the hexagons intersected by L_2.

Clearly, both L_1 and L_2 have an odd number of turning points. We now have the
following claim.

Claim 4. The boundary of H_1 (resp. H_2) is a proper M-alternating cycle and $m \geq 2$ (resp. $s \geq 2$).

Proof. We only consider H_1 (the other case is almost the same). Let d_i be the edge of $S_{1,i}$ opposite to $e_{1,i}$, $1 \leq i \leq n(1)$ (see Fig. 3). By Claim 2, $S_{1,1}$ is not an M-alternating hexagon. It implies that all edges $d_2, \ldots, d_{n(1)}$ are M-double edges. Hence, $S_{2,1}$ is a hexagon of H' and $m \geq 2$.

Let P_1 be the path induced by those vertices of H_1 which are just upon L_1. By the choice of L_1, we can see that P_1 is an M-alternating path with two end edges in M. Let P_2 be the path induced by those vertices of H_1 which are just below L_1. It suffices to show that P_2 is also an M-alternating path with two end edges in M.

Let $w_1 (= e'_0), w_2, \ldots, w_{\ell_2}$ be a series of parallel edges on the bottom of H_1 and let $h_1 (= e_0), h_2, \ldots, h_{\ell_1}$ be a series of vertical edges of H_1 on the right of P_0P_1 (see Fig. 5).

For $q = 1$, by the condition (A2) and $\{e_0, e'_0\} \subseteq M$, it follows that $h_1, h_2, \ldots, h_{\ell_1}$ (resp. $w_1, w_2, \ldots, w_{\ell_2}$) are forced by e_0 (resp. e'_0) in turn and thus belong to M (see Fig. 5(a)). Therefore, P_2 is an M-alternating path with two end edges in M.

![Figure 5: Illustration for Claim 4 in the proof of Lemma 2.1.](image-url)

Let $q \geq 3$. For even i, $2 \leq i \leq q - 1$, let e''_i be the slant edge of S_i below L_1. Let e_i and e'_i be the two edges of H' which are adjacent to e''_i and below L_1 (see Fig. 6(a)). Clearly, e_i is parallel to e_0, and e'_i is parallel to e'_0. We assert that $e''_i \notin M$. Otherwise, e''_i is an M-double edge. Since C is a proper M-alternating cycle, e''_i does not lie on the boundary
\(C\) of \(H'\). Thus \(S'_1\) is a hexagon of \(H'\) (see Fig. 6(b)). Moreover, we can switch from \(L_1\) to a new brok line segment \(L'_1\) which passes through \(S'_1\) and satisfies the conditions (A1–A2) (see Fig. 6(b)). But the part above \(L'_1\) has more \(M\)-double edges than above \(L_1\), contradicting the choice for \(L_1\). Thus the assertion is true. From condition (A2), we can see that \(\{e_0, e'_0, e_2, e'_2, \ldots, e_{q-1}, e'_{q-1}\} \subseteq M\). It follows that \(P_2\) is an \(M\)-alternating path with two end edges in \(M\) (see Fig. 5(b)).

For odd \(i\), by Claim 4 \(S_i\) (1 \(\leq\) \(i\) \(\leq\) \(q\)) and \(T_i\) (1 \(\leq\) \(i\) \(\leq\) \(r\)) are all proper \(M\)-alternating hexagons, and the other hexagons of \(H_1\) and \(H_2\) are not \(M\)-alternating. For convenience, let \(S_0 := S_{1,1}, S_{q+1} := S_{m,n(m)}, T_0 := T_{1,1}\) and \(T_{r+1} := T_{s,t(s)}\). By Claim 2, we have that \(S_0 \neq S_1, S_{q+1} \neq S_q, T_0 \neq T_1\) and \(T_{r+1} \neq T_r\). Further, by Claim 4 we can see that each hexagon in \(K'\) either belongs to \(H_1 \cup H_2\) or is disjoint with \(H_1 \cup H_2\).

Let \(K_1 := \{S_0, S_2, \ldots, S_{q+1}\}\) and \(K_2 := \{T_0, T_2, \ldots, T_{r+1}\}\). To complete the proof of the lemma, there are two cases to be considered.

Case 1. \(H_1\) and \(H_2\) are disjoint (see Figs. 3 and 4).

It is straightforward to verify that \(H_i - K_i\) has a perfect matching, \(i = 1, 2\), so \(K_i\) is a resonant set of \(H_i\) and \(|K_i| \geq |H_i \cap K'| + 1\).

Let \(K'' := (K_1 \cup K_2) \cup (K' - K' \cap H_1 - K' \cap H_2)\). Similar to the proof of Claim 1, we have that \(K''\) is a resonant set of \(H'\) and \(|K''| \geq |K'| + 2\). Thus \(\text{Cl}(H') \geq |K'| + 2\).

Case 2. \(H_1\) intersects \(H_2\).

By Claim 3 the last b-chain \(G_m\) in \(G\) coincides with the first b-chain \(G'_s\) in \(G'\). Hence \(S_{q+1} = T_{r+1}\). By Claim 4 both boundaries of \(H_1\) and \(H_2\) are proper \(M\)-alternating cycles. It follows that only segment \(P_qP_{q+1}\) of \(L_1\) is identical to segment \(Q_qQ_{r+1}\) of \(L_2\). Hence \(H_1 \cup H_2\) is a cata-condensed hexagonal system with exactly one branch hexagon \(S_q (= T_r)\) as Fig. 7, and its boundary is also a proper \(M\)-alternating cycle. So \(H_1\) and \(H_2\) have exactly one common \(M\)-alternating cycle. We also can see that \(K_1 \cup K_2\) is a resonant set of \(H_1 \cup H_2\), and \(|K_1 \cup K_2| \geq |K' \cap (H_1 \cup H_2)| + 2\). Let \(K'' := (K_1 \cup K_2) \cup (K' - K' \cap (H_1 \cup H_2))\). By Claim 1, we have that \(K''\) is a resonant set of \(H'\) and \(|K''| \geq |K'| + 2\). Thus \(\text{Cl}(H') \geq |K'| + 2\).

Now the entire proof of the lemma is complete. ■
3 Main results

We now state our main result as follows.

Theorem 3.1. Let H be a hexagonal system with a perfect matching. For every perfect matching M of H such that $f(H, M) = F(H)$, there exist $F(H)$ disjoint M-alternating hexagons of H.
By Theorem 1.3, there are $F(H)$ disjoint M-alternating cycles of H. It is well known that each M-alternating cycle of H has an M-alternating hexagon in its interior [24]. In order to prove the above theorem, we only need to prove the following lemma.

Let C be a set of disjoint cycles of a hexagonal system H. A member of C is called *minimal* if it contains no other members of C in its interior.

Lemma 3.2. Let H be a hexagonal system. Let M be a perfect matching of H with the maximum forcing number and let A be a maximum set of disjoint M-alternating cycles of H. Then for any two members in A their interiors are disjoint, and for any $C \in A$, $I[C]$ is a linear chain.

Proof. Let $n := F(H) = f(H, M)$. By Theorem 1.3, $n = |A|$. Suppose to the contrary that there exist two cycles in A so that their interiors have a containment relation. Then A has a non-minimal member C_0 and its interior contains only minimal members of A.

Let A_0 denote the set of minimal members of A whose interiors are contained in the interior of C_0. Then the restriction of M on $I[C_0]$ is also a perfect matching of $I[C_0]$, denoted by M_c. Note that each M-alternating cycle has an M-alternating hexagon in its interior [24]. Then each cycle in A_0 can be replaced by an M-alternating hexagon, the set of these hexagons is a resonant set of $I[C_0]$, denoted by K. Clearly, K is disjoint with C_0, $|K| = A_0$ and $I[C_0] - C_0 - K$ has a perfect matching. By Lemma 2.1, $I[C_0]$ has a resonant set S such that $|S| \geq |K| + 2$. Let M_0 be a perfect matching of $I[C_0]$ such that all hexagons in S are M_0-alternating. Let $M_1 := (M \setminus M_c) \cup M_0$ and $A' := S \cup (A - \{C_0\} - A_0)$. Then M_1 is a perfect matching of H such that each member in A' is an M_1-alternating cycle. Note that $|A'| \geq n + 1$. By Theorem 1.3, we have that $f(H, M_1) \geq n + 1$. This contradicts that the maximum forcing number of H is n. Therefore, for any two members in A their interiors are disjoint.

For any $C \in A$, we assert that the Clar number of $I[C]$ is 1. Otherwise, $I[C]$ has a resonant set S' with $|S'| \geq 2$. Similar to the above discussion, we can obtain $n + 1$ disjoint cycles which are M_2-alternating with respect to some perfect matching M_2 of H. By Theorem 1.3, we have that $F(H) \geq n + 1$, a contradiction. Hence the assertion is true. By Theorem 2.2, for any $C \in A$, $I[C]$ is a linear chain.
References

