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Abstract

The Randić index R of a simple graph G is defined as

R(G) =
∑
vi∼vj

1√
δiδj

,

where δi denotes the degree of the vertex vi. In this paper we obtain closed formulae
for the Randić index of Sierpiński-type polymeric networks.

1 Introduction

Over the past three decades, polymer networks has emerged as a coherent subject area. It

is well-known that, in comparison with those linear polymers, the properties of polymer

networks depend to a much larger extent on methods and condition of preparation, i.e.,

properties depend not only on the chemical structure of the individual polymer chains,

but on how those chains are joined together to form a network [26]. While the basic

works on polymer modelling started from linear polymeric systems, in recent years the

attention has focused more and more on complex underlying geometries including fractals

generalized networks. In this article we consider a model of polymer networks based on

generalized Sierpiński graphs.

To begin with, we need some notation and terminology. Let G = (V,E) be a non-

empty graph of order n and vertex set V = {1, 2, ..., n}. We denote by {1, 2, ..., n}t the set
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of words of size t on alphabet {1, 2, ..., n}. The letters of a word u of length t are denoted

by u1u2...ut. The concatenation of two words u and v is denoted by uv. Klavžar and

Milutinović introduced in [12] the graph S(Kn, t) whose vertex set is {1, 2, ..., n}t, where

{u, v} is an edge if and only if there exists i ∈ {1, ..., t} such that:

(i) uj = vj, if j < i;

(ii) ui 6= vi;

(iii) uj = vi and vj = ui if j > i.

When n = 3, those graphs are exactly Tower of Hanoi graphs. Later, those graphs have

been called Sierpiński graphs in [13] and they were studied by now from numerous points of

view. The reader is invited to read, for instance, the following recent papers [5,7,8,13–15]

and references therein.

Figure 1: Two Sierpiński graphs: S(K4, 2) and S(K4, 3).

Figure 1 shows the Sierpiński graphs S(K4, 2) and S(K4, 3). This construction was

generalized in [4] for any graph G, by defining the generalized Sierpiński graph, S(G, t),

as the graph with vertex set {1, 2, ..., n}t and edge set defined as follows. {u, v} is an edge

if and only if there exists i ∈ {1, ..., t} such that:

(i) uj = vj, if j < i;

(ii) ui 6= vi and {ui, vi} ∈ E;

(iii) uj = vi and vj = ui if j > i.
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Notice that if {u, v} is an edge of S(G, t), there is an edge {x, y} of G and a word

w such that u = wxyy...y and v = wyxx...x. In general, S(G, t) can be constructed

recursively from G with the following process: S(G, 1) = G and, for t ≥ 2, we copy

n times S(G, t − 1) and add the letter x at the beginning of each label of the vertices

belonging to the copy of S(G, t − 1) corresponding to x. Then for every edge {x, y} of

G, add an edge between vertex xyy...y and vertex yxx...x. See, for instance, Figure 2.

Vertices of the form xx...x are called extreme vertices. Notice that for any graph G of

order n and any integer t ≥ 2, S(G, t) has n extreme vertices and, if x has degree d(x) in

G, then the extreme vertex xx...x of S(G, t) also has degree d(x). Moreover, the degrees

of two vertices yxx...x and xyy...y, which connect two copies of S(G, t− 1), are equal to

d(x) + 1 and d(y) + 1, respectively.

Figure 2: The 3-cube graph Q3 and the Sierpiński graphs S(Q3, 2) and S(Q3, 3).

We denote by Pr the path graph of order r. Notice that for G = K2 we obtain

S(K2, 2) = P4 and, in general, S(K2, t) = P2t , which is the simplest possible polymer

model presented by the ideal chain. Also, the graphs S(Kn, t) were used in [1, 10, 11]

to analyse the scaling behaviour of experimentally accessible dynamical relaxation forms

for polymers modelled through finite Sierpiński-type graphs, which we denote here by

P (Kn, t). Using the approach introduced in [10,11] to construct P (Kn, t), now we define

the polymeric Sierpiński graphs P (G, t) = (V,E), where G is a connected graph of order

n and t is a positive integer. For i ∈ {1, ..., t} we define the sets Ai = {ai1 , ..., aini−1
} and

we denote S(G, i) = (Vi, Ei) and Vi = {vi1 , ..., vini
}. Then, the vertex set of P (G, t) is

V =
t⋃
i=1

(Ai ∪ Vi)

and the edge set of P (G, t) is

E =

(
n⋃
i=1

(Ei ∪Bi)

)
∪

(
t−1⋃
i=1

Ci

)
,
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where Ci = {{vij , ai+1j} : j = 1, ..., ni}, Bi =
⋃ni−1

j=1 Wj, and Wj is formed by the edges

obtained by connecting aij to every vertex belonging to the j-th copy of G in S(G, i).

In other words, we construct P (G, t) as follows: The iterative construction starts from

one vertex, a11 , and one copy of G = S(G, 1). So, we obtain P (G, 1) by connecting a11

to every vertex of S(G, 1). To obtain P (G, 2) we take P (G, 1), A2 and S(G, 2). Then

we connect each element a2j ∈ A2 to v1j ∈ V1 and we also connect a2j to every vertex

in the j-th copy of G in S(G, 2). Analogously, for the construction of P (G, t) we take

P (G, t − 1), At and S(G, t). Then, we connect each element atj ∈ At to vt−1j ∈ Vt−1

and we also connect atj to every vertex in the j-th copy of G in S(G, t). Notice that

P (K3, 2) = S(K4, 2), S(K3, 2) = P (K2, 2), while for t ≥ 3, P (Kn, t) 6= S(Kn+1, t).

Figure 3: Two polymeric Sierpiński graphs: P (K3, 2) = S(K4, 2) and P (K2, 3).

Around the middle of the last century theoretical chemists proposed the use of topo-

logical indices to obtain information on the dependence of various properties of organic

substances on molecular structure. In this sense, a large number of various topological

indices was proposed and considered in the chemical literature [27]. We highlight the arti-

cle [2] where Camarda and Maranas addressed the design of polymers with optimal levels

of macroscopic properties through the use of topological indices. Specifically, in the above

mentioned article two zeroth-order and two first-order connectivity indices were employed

for the first time as descriptors in structure-property correlations in an optimization study.

Based on these descriptors, a set of new correlations for heat capacity, cohesive energy,

glass transition temperature, refractive index, and dielectric constant were proposed.

The molecular structure-descriptor, introduced in 1975 by Milan Randić in [22], is
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defined as

R(G) =
∑
vivj∈E

1√
d(vi)d(vj)

,

where d(vi) represents the degree of the vertex vi in G. Nowadays, R(G) is referred to

as the Randić index of G = (V,E). This graph topological index, sometimes referred

to as connectivity index, has been successfully related to a variety of physical, chemical,

and pharmacological properties of organic molecules and became one of the most popular

molecular-structure descriptors [23]. After the publication of the first paper [22], math-

ematical properties and generalizations of R(G) were extensively studied, for instance,

see [3, 6, 9, 16–20,24,25,29] and the references cited therein.

Some topological indices have been studied also for the case of polymeric networks.

For instance, we cite the article [28], where the authors gave the explicitly formula of the

k-connectivity index of an infinite class of dendrimer nanostars. In this article we obtain

closed formulae for the Randić index of Sierpiński-type polymeric networks. In particular,

we study the Randić index of S(G, t) and P (G, t), where G is a complete graph, a triangle

free δ-regular graph and a bipartite (δ1, δ2)-semiregular graph.

2 Computing the Randić index of S(G, t)

Theorem 1. For any integers t, n ≥ 2, R(S(Kn, t)) =
√
n(n− 1) +

nt − 2n+ 1

2
.

Proof. Since S(Kn, t) has n extreme vertices of degree n − 1 and nt − n non-extreme

vertices of degree n, the size of S(Kn, t) is m =
n(n− 1) + (nt − n)n

2
=
nt+1 − n

2
. Now,

S(Kn, t) has no edges formed by extreme vertices and the number of edges containing

one extreme vertex is equal to n(n− 1), so the number of edges non-containing extreme

vertices is nt+1−n
2
− n(n− 1) = nt+1−2n2+n

2
. Therefore,

R(S(Kn, t)) =
n(n− 1)√
n(n− 1)

+
nt+1 − 2n2 + n

2n
=
√
n(n− 1)+

nt − 2n+ 1

2
.

From now on, given a graph H, the number of edges whose endpoints have degrees δ

and δ′ will be denoted by f
H

(δ, δ′).

Lemma 2. For any triangle free δ-regular graph G of order n and any integer t ≥ 2,

(i) f
S(G,t)

(δ, δ) =
nt−1δ

2
(n− 2δ).

(ii) f
S(G,t)

(δ, δ + 1) =

(
nt−1 +

nt−1 − n
1− n

)
δ2.
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(iii) f
S(G,t)

(δ + 1, δ + 1) =
nδ

2

(
1− nt−1

1− n

)
+ nδ2

(
1− nt−2

1− n

)
.

Proof. Notice that S(G, t) is a semiregular graph of degrees δ and δ + 1.

(i) The set of vertices of degree δ + 1 in S(G, 2) is formed by the neighbours of the

extreme vertices of S(G, 2) and, since G is a triangle free graph, each copy of G

in S(G, 2) has nδ
2
− δ2 edges whose endpoints have degree δ in S(G, 2). Hence,

f
S(G,2)

(δ, δ) = n
(
nδ
2
− δ2

)
= nδ

2
(n− 2δ).

For t ≥ 3, any edge of S(G, t) connecting two copies of S(G, t − 1) is formed by

vertices of degree δ + 1 whose neighbours have degree δ + 1 and, as a consequence,

we have that f
S(G,t)

(δ, δ) = nf
S(G,t−1)

(δ, δ). Therefore, for any t ≥ 2, f
S(G,t)

(δ, δ) =

nt−1δ

2
(n− 2δ).

(ii) Any vertex of degree δ+ 1 in S(G, 2) is a neighbour of an extreme vertex and, since

G is a triangle free graph, each copy of G contains δ2 edges whose endpoints have

degree δ and δ + 1 in S(G, 2). Hence, f
S(G,2)

(δ, δ + 1) = nδ2.

Let t ≥ 3 and let Si denote the i-th copy of S(G, t− 1) in S(G, t). Notice that there

are δ extreme vertices of Si, of degree δ+1 in S(G, t), having δ neighbours in Si and

one neighbour in Sj, for some j 6= i. Thus, as G is a triangle free graph, there are

δ2 edges in Si whose endpoints have degree δ + 1 in S(G, t) and degree δ and δ + 1,

respectively, in Si. Hence, f
S(G,t)

(δ, δ + 1) = n
(
f
S(G,t−1)

(δ, δ + 1)− δ2
)

. Therefore,

for any t ≥ 2, f
S(G,t)

(δ, δ + 1) = (nt−1 − nt−2 − · · · − n) δ2 =

(
nt−1 +

nt−1 − n
1− n

)
δ2.

(iii) There are nδ
2

edges {x, y} in S(G, 2) whose endpoints have degree d(x) = d(y) = δ+1.

Now, for t ≥ 3, there are nδ
2

edges in S(G, t), connecting different copies of S(G, t−1),

whose endpoints are extreme vertices in S(G, t − 1). All the neighbours of these

extreme vertices in S(G, t − 1) have degree δ + 1 and, since G is a triangle free

graph,

f
S(G,t)

(δ + 1, δ + 1) =
nδ

2
+ n

(
f
S(G,t−1)

(δ + 1, δ + 1) + δ2
)
.

Hence, for any t ≥ 2,

f
S(G,t)

(δ + 1, δ + 1) =
nδ

2

(
1 + n+ n2 + · · ·+ nt−2

)
+ nδ2

(
nt−3 + nt−2 + · · ·+ 1

)
=
nδ

2

(
1− nt−1

1− n

)
+ nδ2

(
1− nt−2

1− n

)
.

-150-



Theorem 3. For any triangle free δ-regular graph G of order n and any integer t ≥ 2,

R(S(G, t)) =
nt−1

2
(n− 2δ) +

(
nt−1 +

nt−1 − n
1− n

)
δ2√

δ(δ + 1)

+
nδ

2(δ + 1)

(
1− nt−1

1− n

)
+

nδ2

δ + 1

(
1− nt−2

1− n

)
.

Proof. Since S(G, t) is a semiregular graph of degrees δ and δ + 1,

R(S(G, t)) =
f
S(G,t)

(δ, δ)

δ
+
f
S(G,t)

(δ, δ + 1)√
δ(δ + 1)

+
f
S(G,t)

(δ + 1, δ + 1)

δ + 1
.

Therefore, by Lemma 2 the result immediately follows.

Lemma 4. Let G = (U1 ∪ U2, E) be a bipartite (δ1, δ2)-semiregular graph of order n =

n1 + n2, where |U1| = n1, |U2| = n2 and δ1 6= δ2. Then for any integer t ≥ 2,

(i) f
S(G,t)

(δ1, δ2) = δ1n
t−1(n1 − δ2).

(ii) f
S(G,t)

(δ1 + 1, δ2) = δ1δ2

(
n2n

t−2 − n1 (nt−2 − 1)

n− 1

)
.

(iii) f
S(G,t)

(δ1, δ2 + 1) = δ1δ2

(
n1n

t−2 − n2 (nt−2 − 1)

n− 1

)
.

(iv) f
S(G,t)

(δ1 + 1, δ2 + 1) =
n1δ1 (nt−1 − 1) + nδ1δ2 (nt−2 − 1)

n− 1
.

Proof. We have four different possibilities for the degree of any vertex in S(G, t), namely

δ1, δ2, δ1 + 1 and δ2 + 1. Notice that if the degree of a vertex of S(G, t) belongs to

{δ1, δ1 + 1}, then the degree of its neighbours belongs to {δ2, δ2 + 1} and, by symmetry, if

the degree of a vertex of S(G, t) belongs to {δ2, δ2 + 1}, then the degree of its neighbours

belongs to {δ1, δ1 + 1}.

(i) For any copy of G in S(G, 2) there are δ1δ2 edges having exactly one endpoint which

is neighbour of an extreme vertex, the remaining edges have endpoints of degree

δ1 and δ2 in S(G, 2). Moreover, any edge {x, y} of S(G, t) connecting two copies

of S(G, t − 1) is formed by vertices of degree d(x) = δ1 + 1 and d(y) = δ2 + 1

whose neighbours have degree δ2 + 1 and δ1 + 1, respectively. Hence, f
S(G,2)

(δ1, δ2) =

n(n1δ1 − δ1δ2) and for t ≥ 3, f
S(G,t)

(δ1, δ2) = nf
S(G,t−1)

(δ1, δ2). Therefore, for any

t ≥ 2,

f
S(G,t)

(δ1, δ2) = δ1n
t−1(n1 − δ2).
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(ii) If {x, y} is an edge of S(G, 2) such that d(x) = δ1 + 1 and d(y) = δ2, then x is

neighbour of an extreme vertex of S(G, 2) and, as a consequence, f
S(G,2)

(δ1 +1, δ2) =

n2δ1δ2.

For t ≥ 3, we denote by Si the i-th copy of S(G, t − 1) in S(G, t). We assume,

without loss of generality, that the i-th vertex of G belongs to U1. In this case

there are δ1 extreme vertices of Si having δ2 +1 neighbours in S(G, t), δ2 neighbours

in Si and one neighbour in Sj, for some j 6= i. Thus, there are δ1δ2 edges in Si

whose endpoints have degree δ2 + 1 and δ1 + 1 in S(G, t) and degree δ2 and δ1 + 1,

respectively, in Si. Hence, the contribution of Si to f
S(G,t)

(δ1 + 1, δ2) is equal to

f
S(G,t−1)

(δ1 + 1, δ2)− δ1δ2. On the other hand, if the i-th vertex of G belongs to U2,

then the contribution of Si to f
S(G,t)

(δ1 + 1, δ2) is equal to f
S(G,t−1)

(δ1 + 1, δ2). Then

we have

f
S(G,t)

(δ1 + 1, δ2) = nf
S(G,t−1)

(δ1 + 1, δ2)− n1δ1δ2.

Therefore, for any t ≥ 2,

f
S(G,t)

(δ1 + 1, δ2) = nt−2n2δ1δ2 − n1δ1δ2
(
nt−3 + nt−2 + · · ·+ 1

)
= δ1δ2

(
n2n

t−2 − n1 (nt−2 − 1)

n− 1

)
.

(iii) This case is analogous to the previous one.

(iv) There are n1δ1 = n2δ2 edges in S(G, 2) whose endpoints have degree δ1 + 1 and

δ2 + 1. Now, for t ≥ 3, there are n1δ1 = n2δ2 edges in S(G, t), connecting different

copies of S(G, t− 1), whose endpoints are extreme vertices in S(G, t− 1). Since all

the neighbours of these extreme vertices of degree δ1 (Resp. δ2) in S(G, t− 1) have

degree δ2 + 1 (Resp. δ1 + 1),

f
S(G,t)

(δ1 + 1, δ2 + 1) = n1δ1 + n
(
f
S(G,t−1)

(δ1 + 1, δ2 + 1) + δ1δ2

)
.

Hence, for any t ≥ 2,

f
S(G,t)

(δ1 + 1, δ2 + 1) = n1δ1

t−2∑
l=0

nl + nδ1δ2

t−3∑
l=0

nl

=
n1δ1 (nt−1 − 1)

n− 1
+
nδ1δ2 (nt−2 − 1)

n− 1
.
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Theorem 5. Let G = (U1 ∪ U2, E) be a bipartite (δ1, δ2)-semiregular graph of order

n = n1 + n2, where |U1| = n1 and |U2| = n2. Then for any integer t ≥ 2,

R(S(G, t)) =
δ1n

t−1(n1 − δ2)√
δ1δ2

+
δ1δ2√

(δ1 + 1)δ2

(
n2n

t−2 − n1 (nt−2 − 1)

n− 1

)
+

δ1δ2√
δ1(δ2 + 1)

(
n1n

t−2 − n2 (nt−2 − 1)

n− 1

)
+
n1δ1 (nt−1 − 1) + nδ1δ2 (nt−2 − 1)

(n− 1)
√

(δ1 + 1)(δ2 + 1)
.

Proof. If δ1 = δ2, then we are done by Theorem 3. If δ1 6= δ2, then we have four possibilities

for the degree of any vertex in S(G, t), namely δ1, δ2, δ1 + 1 and δ2 + 1. Hence,

R(S(G, t)) =
f
S(G,t)

(δ1, δ2)√
δ1δ2

+
f
S(G,t)

(δ1 + 1, δ2)√
(δ1 + 1)δ2

+
f
S(G,t)

(δ1, δ2 + 1)√
δ1(δ2 + 1)

+
f
S(G,t)

(δ1 + 1, δ2 + 1)√
(δ1 + 1)(δ2 + 1)

.

Therefore, by Lemma 4 the result immediately follows.

Chemical trees are trees that have no vertex with degree greater than 4. For instance,

Figure 4 shows the chemical tree S(K1,3, 2). Notice that for any t ≥ 2, the Sierpiński

graph S(K1,3, t), is a chemical tree.

Figure 4: The graph K1,3 and the Sierpiński graph S(K1,3, 2).

As a particular case of Theorem 5 we obtain the following corollary.

Corollary 6. For any integers r, t ≥ 2,

R(S(K1,r, t)) =
(r + 1)t−1(r − 1) + 1√

r + 1
+

√
r

2
+

2(r + 1)t−1 − r − 2√
2(r + 1)

.
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3 Computing the Randić index of P (G, t)

Since P (Kn, 1) ∼= Kn+1, we have R(P (Kn, 1)) =
n+ 1

2
. For t ≥ 2 we have the following

result.

Theorem 7. For any integers n, t ≥ 2,

R(P (Kn, t)) =
5∑
l=1

αl,

where α1 =
√
n(n+ 1), α2 = n(nt+2nt−1−n+4t−8)

2(n+1)
, α3 = nt+1−n3+(t−2)(n−1)(n−2n2)

2(n+2)(n−1) , α4 =

2nt−n2−n
(n−1)
√

(n+1)(n+2)
and α5 = (t−2)(n2−2n)−n(t−1)√

(n+1)(n+2)
.

Proof. Let d(x) be the degree of x in P (G, t). We differentiate the following cases for the

edges {x, y} of P (G, t).

(1) x = a11 and y ∈ V1. In this case, there are n edges {x, y} with d(x) = n and

d(y) = n+ 1. Then the contribution of these edges to the Randić index is

ζ1 =

√
n

n+ 1
.

(2) x, y ∈ V1. In this case, there are n(n−1)
2

edges {x, y} with d(x) = d(y) = n + 1. So,

the contribution of these edges to the Randić index is

ζ2 =
n(n− 1)

2(n+ 1)
.

(3) x ∈ Ai and y ∈ Vi, for 2 ≤ i ≤ t− 1. There are n edges {x, y} where y is an extreme

vertex of S(Kn, i) and for these vertices we have d(x) = d(y) = n + 1. Moreover,

there are ni− n edges {x, y} where y is not an extreme vertex of S(Kn, i) and in this

case we have d(x) = n+ 1 and d(y) = n+ 2. Thus, the contribution of these edges to

the Randić index is

ζ3 =
t−1∑
i=2

(
n

n+ 1
+

ni − n√
(n+ 1)(n+ 2)

)

=
(t− 2)n

n+ 1
+

n2(nt−2 − 1)

(n− 1)
√

(n+ 1)(n+ 2)
− (t− 2)n√

(n+ 1)(n+ 2)
.

(4) x, y ∈ Vi, for 2 ≤ i ≤ t − 1. There are n(n − 1) edges {x, y} where x is an extreme

vertex of S(Kn, i), and for these vertices we have d(x) = n + 1 and d(y) = n + 2.

Also, we know that the size of S(Kn, i) is ni+1−n
2

, so there are ni+1−n
2
−n(n− 1) edges
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{x, y} where neither x nor y are extreme vertices of S(Kn, i) and for these vertices

we have d(x) = d(y) = n + 2. Hence, in this case the contribution of these edges to

the Randić index is

ζ4 =
t−1∑
i=2

(
n(n− 1)√

(n+ 1)(n+ 2)
+
ni+1 + n− 2n2

2(n+ 2)

)

=
(t− 2)n(n− 1)√

(n+ 1)(n+ 2)
+

n3(nt−2 − 1)

2(n+ 2)(n− 1)
+

(t− 2)(n− 2n2)

2(n+ 2)
.

(5) x ∈ Vi and y ∈ Ai+1, for 1 ≤ i ≤ t − 1. There are n edges {x, y} where x is an

extreme vertex of S(Kn, i) and for these vertices d(x) = d(y) = n+ 1. Moreover, for

the remaining ni − n edges we have d(x) = n + 2 and d(y) = n + 1. So, in this case

the contribution of these edges to the Randić index is

ζ5 =
t−1∑
i=1

(
n

n+ 1
+

ni − n√
(n+ 1)(n+ 2)

)

=
(t− 1)n

n+ 1
+

n(nt−1 − 1)

(n− 1)
√

(n+ 1)(n+ 2)
− (t− 1)n√

(n+ 1)(n+ 2)
.

(6) x ∈ At and y ∈ Vt. In this case, there are n edges {x, y} where y is an extreme vertex

of S(Kn, t) for which d(x) = n+ 1 and d(y) = n. For the remaining nt − n edges we

have d(x) = d(y) = n + 1 and, as a consequence, the contribution of these edges to

the Randić index is

ζ6 =

√
n

n+ 1
+
nt − n
n+ 1

.

(7) x, y ∈ Vt. There are n(n − 1) edges {x, y} where x is an extreme vertex of S(Kn, t)

and y is not, and for these vertices we have d(x) = n and d(y) = n + 1. Also, we

know that the size of S(Kn, t) is nt+1−n
2

, so there are nt+1−n
2
− n(n − 1) edges {x, y}

where nor x nor y are extreme vertices of S(Kn, t) and for these vertices we have

d(x) = d(y) = n+ 1. Hence, the contribution of these edges to the Randić index is

ζ7 = (n− 1)

√
n

n+ 1
+
nt+1 − 2n2 + n

2(n+ 1)
.

Therefore, R(P (Kn, t)) =
7∑
l=1

ζl =
5∑
l=1

αl.

Remark 8. For any δ-regular graph G of order n ≥ 2,

R(P (G, 1)) =

√
n

δ + 1
+

nδ

2(δ + 1)
.
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Proof. Since there is one vertex of degree n and n vertices of degree δ+1, P (G, 1) has size
n(δ + 2)

2
. Hence, there are n edges {x, y} where x has degree d(x) = n and y has degree

d(y) = δ + 1, and for the remaining
n(δ + 2)

2
− n edges we have d(x) = d(y) = δ + 1.

Therefore, the result follows as R(P (G, 1)) =
n√

n(δ + 1)
+

nδ

2(δ + 1)
.

Given a graph H, the number of vertices of degree δ will be denoted by g
H

(δ).

Lemma 9. For any triangle free δ-regular graph G of order n and any integer t ≥ 2,

(i) g
S(G,t)

(δ) = nt − nδ (nt−1 − 1)

n− 1
.

(ii) g
S(G,t)

(δ + 1) =
nδ (nt−1 − 1)

n− 1
.

Proof. Notice that S(G, t) is a semiregular graph of degrees δ and δ+1. The set of vertices

of degree δ + 1 in S(G, 2) is formed by the neighbours of the extreme vertices of S(G, 2),

so g
S(G,t)

(δ + 1) = nδ and g
S(G,t)

(δ) = n2 − nδ.

For t ≥ 3, any edge of S(G, t) connecting two copies of S(G, t−1) is formed by vertices

of degree δ+ 1 and, as a result, g
S(G,t)

(δ+ 1) = ng
S(G,t−1)

(δ) + nδ. Therefore, for any t ≥ 2

we have g
S(G,t)

(δ+ 1) = nt−1δ+ nt−2δ+ · · ·+ nδ = nδ

(
nt−1 − 1

n− 1

)
and, as a consequence,

g
S(G,t)

(δ) = nt − nδ
(
nt−1 − 1

n− 1

)
.

Theorem 10. For any triangle free δ-regular graph G of order n ≥ 2 and any integer

t ≥ 2,

R(P (G, t)) =
7∑
i=1

αi,

where

α1 =
n√

n(δ + 2)
, α2 =

nδ

2(δ + 2)
,

α3 =
nδ

(1− n)
√

(n+ 1)(δ + 3)

(
t− 2− n

(
nt−2 − 1

n− 1

))
+

n2(1− nt−2)
(1− n)

√
(n+ 1)(δ + 2)

+
nδ

(1− n)
√

(n+ 1)(δ + 2)

(
t− 2− n

(
nt−2 − 1

n− 1

))
,

α4 =
nδ2(1− nt−2)

(1− n)
√

(δ + 2)(δ + 3)

(
1 +

1

1− n

)
+

n

(δ + 2)

(
nδ

2
− δ2

)(
1− nt−2

1− n

)
+

nδ

2(δ + 3)(1− n)

(
t− 2− n

(
1− nt−2

1− n

))
+

nδ2

(1− n)(δ + 3)

(
t− 2−

(
1− nt−2

1− n

))
,

α5 =
nδ

(1− n)
√

(n+ 1)(δ + 3)

(
t− 1−

(
1− nt−1

1− n

))
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+
n

(1− n)
√

(n+ 1)(δ + 2)

((
1− nt−1

)(
1 +

δ

1− n

)
− δ(t− 1)

)
,

α6 =
nδ√

(δ + 2)(n+ 1)

(
1− nt−1

1− n

)
+

(
nt − nδ

(
1− nt−1

1− n

))
1√

(δ + 1)(n+ 1)

and

α7 =

(
nt−1 +

nt−1 − n
1− n

)
δ2√

(δ + 1)(δ + 2)
+

nt−1

δ + 1

(
nδ

2
− δ2

)
+

+
nδ

2(δ + 2)

(
1− nt−1

1− n

)
+

nδ2

δ + 2

(
1− nt−2

1− n

)
.

Proof. Let d(x) be the degree of x in P (G, t). We differentiate the following cases for any

edge {x, y} of P (G, t).

1. x = a11 and y ∈ V1. In this case, there are n edges {x, y} with d(x) = n and

d(y) = δ + 2. Then the contribution of these edges to the Randić index is equal to

α1.

2. x, y ∈ V1. In these case, there are
nδ

2
edges {x, y} with d(x) = d(y) = δ+ 2. So, the

contribution of these edges to the Randić index is equal to α2.

3. x ∈ Ai and y ∈ Vi for 2 ≤ i ≤ t − 1. In this case d(x) = n + 1 and, by Lemma 9,

there are g
S(G,i)

(δ+1) =
nδ (ni−1 − 1)

n− 1
edges {x, y} where y have degree d(y) = δ+3

and there are g
S(G,i)

(δ) = ni − nδ (ni−1 − 1)

n− 1
edges {x, y} where d(y) = δ + 2. Thus,

the contribution of these edges to the Randić index is equal to α3, i.e.,

nδ√
(n+ 1)(δ + 3)

t−1∑
i=2

ni−1 − 1

n− 1
+

1√
(n+ 1)(δ + 2)

t−1∑
i=2

(
ni − nδ (ni−1 − 1)

n− 1

)
= α3.

4. x, y ∈ Vi, for 2 ≤ i ≤ t−1. By Lemma 2 there are f
S(G,i)

(δ, δ+1) =

(
ni−1 +

ni−1 − n
1− n

)
δ2

edges {x, y} where d(x) = δ+2 and d(y) = δ+3, f
S(G,i)

(δ, δ) =
ni−1δ

2
(n− 2δ) edges

{x, y} where d(x) = d(y) = δ + 2 and f
S(G,i)

(δ + 1, δ + 1) =
nδ

2

(
1− ni−1

1− n

)
+

nδ2
(

1− ni−2

1− n

)
edges where d(x) = d(y) = δ + 3. Hence, the contribution of these

edges to the Randić index is equal to α4, i.e.,

δ2√
(δ + 2)(δ + 3)

t−1∑
i=2

(
ni−1 +

ni−1 − n
1− n

)
+
δ(n− 2δ)

2(δ + 2)

t−1∑
i=2

ni−1+

+
1

δ + 3

t−1∑
i=2

(
nδ

2

(
1− ni−1

1− n

)
+ nδ2

(
1− ni−2

1− n

))
= α4.
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5. x ∈ Ai+1 and y ∈ Vi for 1 ≤ i ≤ t− 1. In this case d(x) = n+ 1 and, by Lemma 9,

there are g
S(G,i)

(δ+1) =
nδ (ni−1 − 1)

n− 1
edges {x, y} where y have degree d(y) = δ+3

and there are g
S(G,i)

(δ) = ni− nδ (ni−1 − 1)

n− 1
edges {x, y} where d(y) = δ+ 2. Hence,

the contribution of these edges to the Randić index is equal to α5, i.e.,

nδ√
(n+ 1)(δ + 3)

t−1∑
i=1

ni−1 − 1

n− 1
+

1√
(n+ 1)(δ + 2)

t−1∑
i=1

(
ni − nδ (ni−1 − 1)

n− 1

)
= α5.

6. x ∈ At and y ∈ Vt. As above d(x) = n+1 and, by Lemma 9, there are g
S(G,t)

(δ+1) =

nδ (1− nt−1)
1− n

edges {x, y} where y have degree d(y) = δ+2 and there are g
S(G,t)

(δ) =

nt − nδ (1− nt−1)
1− n

edges {x, y} where d(y) = δ + 1. Thus, the contribution of these

edges to the Randić index is equal to α6.

7. x, y ∈ Vt,. By Lemma 2 there are f
S(G,t)

(δ, δ + 1) =

(
nt−1 +

nt−1 − n
1− n

)
δ2 edges

{x, y} where d(x) = δ+1 and d(y) = δ+2, f
S(G,t)

(δ, δ) = nt−1
(
nδ

2
− δ2

)
edges {x, y}

where d(x) = d(y) = δ+1 and f
S(G,t)

(δ+1, δ+1) =
nδ

2

(
1− nt−1

1− n

)
+nδ2

(
1− nt−2

1− n

)
edges where d(x) = d(y) = δ + 2. Hence, the contribution of these edges to the

Randić index is equal to α7.

According to the seven cases above, the result follows.

We can use Lemma 4 to obtain a formula for the Randić index of P (G, t), where G

is a bipartite semiregular graph. The drawback of presenting the result is that, in this

case, the formula obtained following the procedure described in the proof of Theorem 10

is extremely large.
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est zeroth–order general Randić index, MATCH Commun. Math. Comput. Chem. 54

(2005) 425–434.

[10] A. Jurjiu, Dynamics of Polymer Networks Modelled by Finite Regular Fractals , Ph.D.

Thesis, Univ. Freiburg, 2005.

[11] A. Jurjiu, T. Koslowski, A. Blumen, Dynamics of deterministic fractal polymer net-

works: Hydrodynamic interactions and the absence of scaling, J. Chem. Phys. 118

(2003) 2398 (7 pp.).
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