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Abstract

We present and comment mathematical papers [5] and [9]. The first one is related to
the Pairing Theorem of the Hückel molecular orbital theory and the second one establishes
the equivalence of the Hückel molecular orbital theory and mathematical spectral graph
theory.

1 Introduction

Spectral graph theory is a mathematical theory in which linear algebra and graph theory

meet. For any graph matrix M we can build a spectral graph theory in which graphs are

studied by means of eigenvalues of the matrix M . This theory is called M -theory. The

most frequently used graph matrix is the adjacency matrix A. The spectral graph theory

includes all particular M -theories together with interaction tools.

Originally, A-theory was developed and we shall consider here only this theory.

The adjacency matrix A of a graph G, with n vertices, is the matrix whose element

aij is equal to the number of the edges, which lead from the vertex i to the vertex j. The

spectrum of the graph G is the family of solutions λi (1 = 1, . . . , n) of the characteristic

equation det(λI −A) = 0 of the matrix A, i. e. the family of eigenvalues of A.

1Recently W. So and W. Haemers asked who was first to observe that bipartite graphs are
characterized by their spectra (Theorem 2 below). That inspired me to prepare [7] and this paper.
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We present and comment the mathematical papers [5] and [9]. The first one is related to

the Pairing Theorem of the Hückel molecular orbital theory and the second one establishes

that the Hückel molecular orbital theory from Chemistry and mathematical theory of graph

spectra are essentially the same.

Surveys of related results appeared in my thesis [6] and in the monograph [8].

I defended my thesis [6] on May 27, 1971. The thesis, originally prepared in Serbian,

has been published in English in a condensed form [6]. It attracted attention of American

mathematician Richard Bellman who suggested to me to extend these results and collect

them in book form. This led after some time to publication of the book [8]. The book has

been widely used and cited a few thousand times in the literature.

The next two sections treat the Pairing Theorem and the Hückel molecular orbital

theory.

2 The Pairing Theorem

I realized that the well established Perron–Frobenius theory of non-negative matrices is

relevant for the theory of graph spectra. In the thesis [6] and in the monograph [8] I

have collected all useful theorems from the Perron–Frobenius theory and classified basic

implications of them.

Spectral properties of irreducible non-negative matrices are described by the following

theorem of Frobenius and this has several immediate corollaries for graph spectra.

Theorem 1. An irreducible non-negative matrix A always has a positive eigenvalue r that

is a simple root of the characteristic polynomial. The modulus of any other eigenvalue

does not exceed r. To the “maximal” eigenvalue r there corresponds a positive eigenvector.

Moreover, if A has h eigenvalues of modulus r, then these numbers are all distinct and are

roots of the equation λh−rh = 0. More generally: the whole spectrum [λ1 = r, λ2, . . . , λn]

of A, regarded as a system of points in the complex λ-plane, is mapped onto itself under a

rotation of the plane by the angle
2π

h
. If h>1, then by a permutation of rows and the same

permutation of columns A can be put into the following “cyclic” form

A =

∥∥∥∥∥∥∥∥∥∥∥

O A12 O . . . O
O O A12 . . . O
...

. . .

O O O . . . Ah−1,h

Ah1 O O . . . O

∥∥∥∥∥∥∥∥∥∥∥
,
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where there are square blocks along the main diagonal.

The adjacency matrix of an undirected multigraph G is symmetric (and, therefore,

Hermitian) and the spectrum of G, containing only real numbers, according to Theorem 1

lies in the segment [−r, r].

We consider now the bipartiteness of graphs.

It is proved in [1] that a bipartite graph has a symmetric spectrum. This fact was

known even earlier in chemical literature under the name the Pairing Theorem [2, 4]. It is

interesting that in [2] a very simple proof of this theorem is given. In [5] a new proof of this

theorem and the proof of the inverse theorem are given:

Theorem 2.2 Connected, finite, undirected graph, without loops and with at least two

vertices, is bipartite if and only if, its spectrum, considered as a set of points on the number

axis, is symmetric with respect to the point zero.

This characterization of bipartite graphs appeared for the first time in my paper [5].

The theorem appears also in my book ”Spectra of Graphs” as Theorem 3.11 on. p. 87,

where other related references can be found. The paper [5] appears in the book as reference

[Cve1].

The proof in [5] uses the Frobenius theorem (Theorem 1) what nowadays can be con-

sidered as shooting with cannons on small birds. In a recent book [11], the proof uses the

fact that in the case of a symmetric spectrum all the odd spectral moments are zero and

the graph has no cycles of odd length.

Actually, from the proof in [5] it is clear that only bipartite graphs, from the considered

class of graphs, have in the spectrum the number −r, where, r is the largest number from

the spectrum.

Hence, for connected graphs we have a substantially stronger result:

Theorem 3. A connected graph G is bipartite if and only if λ1 = −λn.

This important characterization of connected bipartite graphs is proved in [6] (Theorem

4.3) using the Frobenius theorem. Again this can be done with simpler tools (see [11],

Theorem 3.2.4).

2The theorem is formulated in [11] in a more condensed form: A graph G is bipartite if and only
if its spectrum is symmetric with respect to the origin.
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3 The Hückel molecular orbital theory

In order to solve the Schrödinger equations for complicated many-electron molecular sys-

tems, various approximations are used. In the pioneering days of quantum chemistry (in

the 1930s and 1940s) an approximate method for describing the state of single electrons

in conjugated hydrocarbons was developed [15], known under the name Hückel molecular

orbital theory. For more information on Hückel theory the interested reader can consult,

for example, [3, 8, 12].

Within the framework of the Hückel method [15], the Hamiltonian matrix H = [hij ] is

a square matrix of order n, where n is the number of carbon atoms in the molecule. Let

these carbon atoms be labelled by 1, 2, . . . , n. Then the matrix elements hrs are given by

hrs =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α if r = s = 1, 2, . . . , n

β if r �= s and the atoms r and s are chemically bonded

0 if r �= s and no chemical bond between the atoms r and s exists.

(1)

The parameters α and β are called the Coulomb and the resonance integral; in Hückel theory

these are assumed to be constants.

Having in mind relations (1), we see that the Hückel Hamiltonian matrix can be pre-

sented as

H = αIn + βA, (2)

where A is a symmetric matrix whose diagonal elements equal 0 and whose off-diagonal

elements equal 1 or 0, depending on whether the corresponding atoms are connected or not.

In fact A is just the adjacency matrix of the Hückel graph3. Equation (2) immediately gives

the following result.

Theorem 4. If λ is an eigenvalue and z an eigenvector of the matrix A, then α + βλ is

an eigenvalue and z is an eigenvector of the matrix H.

From this theorem it follows that the Hückel molecular orbitals coincide with the eigen-

vectors zj of eigenvalues λj , j = 1, 2, . . . , n, of the adjacency matrix of the Hückel graph.

The eigenvalues λj of the matrix A and the energies Ej of the corresponding electrons are

3The Hückel graph is used for an abbreviated representation of conjugated hydrocarbons. Its
vertices represent only the carbon atoms, and all its edges are simple (irrespective of whether the
corresponding chemical bonds are single or double). The vertices of a Hückel graph may be of degree
1, 2, or 3.
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related simply as

Ej = α+ βλj .

There are exactly n different molecular orbitals, namely the zj for j = 1, 2, . . . , n.

This important conclusion shows that there is a deep and far-reaching relation between

the Hückel molecular orbital theory and graph spectral theory. The Hückel theory provides

an important field of application of the graph spectra.

The main contribution of [9] was to establish that the Hückel theory and theory of

graph spectra are essentially the same. It was Ivan Gutman who realized this fact during

some contacts with me4 in 1971. The relation between Hückel’s theory and theory of

graph spectra was noticed earlier in [14], but was poorly used later (see, for example, [17]).

However, since [9] was published in a mathematical journal, it has not been cited very much

in the chemical literature. The chemical community has realized the connection between

the two theories after [13] has been published5 but the fact remains that [9] was the first

paper to establish clearly this connection. Note that the paper was presented on December

10, 1971, in Mathematical Institute, Belgrade.

In Chemistry the problem of determining the algebraic multiplicity of the number 0 in

the spectra of bipartite graphs is of interest. It can easily be proved that if the spectrum of

the corresponding graph contains at least one number zero, then the molecule cannot have

the total electron spin equal to zero, which implies its instability in chemical sense. The

wave functions for which λ = 0 are called ”non-bonding molecular orbitals”.

Let η(G) be the algebraicmultiplicity of the eigenvalue 0 in the spectrum of the bipartite

graph G. The problem is to find out the connection between the graph structure and the

number η(G). This connection can be, perhaps, expressed by a set of rules by which we

can, after a finite number of steps, determine η(G), the spectrum in total being thus left

undetermined. (This problem for an arbitrary graph was posed in [1]).

The following theorem appears in [9].

4My recollection is that I. Gutman told me this fact during the public defence of my thesis on
May 27, 1971, in Belgrade. However, I. Gutman claims that he realized the connection between the
two theories even earlier when he was attending a talk of mine on graph spectra in Mathematical
Institute, Belgrade. That might have been even in 1970; we were not able to establish the exact
date.

5Relations between the coefficients of the characteristic polynomial and the structure of a graph
from [16] were denoted here as the Sachs theorem, a name which was used widely afterwards in the
chemical literature.
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Theorem 5. If q is the maximal number of mutually non-adjacent edges in a tree G having

n vertices, then η(G) = n− 2q.

This theorem is an immediate consequence of a statement about the coefficients of the

characteristic polynomial of the adjacencymatrix of a tree from [16]. It has been generalized

in [10] in the following way.

Theorem 6. If a bipartite graph G with n vertices does not contain any cycle of length

4s (s = 1, 2, . . . ), then η(G) = n − 2q, where q is the maximal number of mutually non-

adjacent edges in G.

A general solution of the problem of finding the multiplicity of 0 in the spectrum of a

graph is not known, but a variety of partial results have been obtained. As an illustration

we present the following statement from [9] (see also [8], Section 8.1).

Theorem 7. Assume the graph G has a vertex x of degree 1 where x is adjacent to the

vertex y. Then the graphs G and G− x− y have equal multiplicity of the number 0 in their

spectra, i.e. η(G) = η(G− x− y).

A short list of respective terms from graph theory and from Chemistry has been given

in [9]:

graph conjugated hydrocarbon, conjugated polyene,
polyene, aromatic hydrocarbon (i.e., skeleton
of their σ-electron bonds)

vertex atom (of carbon)

edge bond

vertex degree valency

adjacency matrix topological matrix, Hückel matrix

characteristic equation secular equation

bipartite graph alternant hydrocarbon

cycle with N vertices [N ]-annulene

chain linear polyene
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[10] D. Cvetković, I. Gutman, N. Trinajstić, Graph theory and molecular orbitals VII. The

role of resonance structures, J. Chem. Phys. 61 (1974) 2700–2706.
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