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Abstract

Nucleosome is the basic structure of chromatin in eukaryotic cells. Nucleosome positioning

plays a key role in the regulation of many biological processes like replication, transcription and

DNA repair. In this paper the informational entropy and the mutual information are applied

to detect the information on nucleotide correlation stored in the nucleosomal sequences. We

find that the two nucleotides separated by a gap of length 1 have higher certainty than in

the case of longer gaps. Also, two nucleotides separated by a gap of length 1,2 have a much

higher correlation, compared to longer gaps. This finding was used to construct a feature

vector suitable fort classifying nucleosomal and linker sequences. Computational experiments

on several nucleosome positioning datasets show that in all cases the proposed model gives

a better prediction performance than other models. This suggests that our vector contains

important signaturs of nucleosome positioning.

1 Introduction

A chromosome is an organized structure of DNA and protein found in cells. It is a single

piece of coiled DNA containing many genes, regulatory elements and other nucleotide

sequences. Nucleosome is the basic structure of chromatin in eukaryotic cells, forming

the chromatin fiber, interconnected by sections of linker DNA. Each nucleosome contains
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approximately 165 bp genomic DNA, and the core nucleosome is about 147 bp genomic

DNA, wrapped in 1.75 turns around an octamer of the histone proteins H2A, H2B, H3,

and H4 (see [1]). Neighboring nucleosomes are separated from each other by 10-50-bp-

long stretches of unwrapped linker DNA [2]. Thus 75 to 90 percent of eukaryotic genomic

DNA is packaged in nucleosomes. The precise location of the nucleosome core DNA’s in

genomic DNA is the nucleosome’s positioning, playing an important role in replication,

transcription, DNA repair, and many other biological processes [3–6].

Numerous factors can contribute towards determining the nucleosome positioning in

vivo, and many studies have provided extensive evidence indicating a sequence dependent

positioning of nucleosomes along DNA [7, 8]. The CA dinucleotide has been shown to

be important for nucleosome positioning, and the decamer TATAAACGCC has a high

affinity for histones [9, 10]. Poly (dA:dT) has been shown to increase the accessibility of

transcription factors bound to nearby sequences [11]. Analysis of periodicities in genomic

DNA is also important for clarifying the basic genomic structures. In previous works,

Satchwell et al. [12] detected a periodicity of 10 bp in the chicken nucleosome sequence.

There is evidence of a periodic repeating at every 10.4 bases of the dinucleotides AA and

TT in nucleosome forming sequences [13]. Besides, several prediction tools have been

developed for nucleosome positioning. Segal et al. in 2006 [14] used a hidden Markov

model for constructing a “nucleosome-DNA interaction model”. Their model has a 50%

predicting accuracy. In 2008, Guo–Cheng Yuan et al. [15] proposed an N-score model

fot discriminating nucleosome and linker DNAs, using wavelet energies as covariates in

a logistic regression model. Peckham et al. [8] and Gupta et al. [16] introduced support

vector machines (SVMs) to classify nucleosomal and non-nucleosomal DNAs. Using the

frequencies of the k-mers for k = 1 to 6, Peckham et al. used a SVM to distinguish

between nucleosome forming and nucleosome inhibiting sequences [8]. They found that

the GC/AT richness of a sequence was the strongest single factor among k-mer frequencies

in determining its nucleosome formation potential.

We first make a research of the informational entropy and the mutual information

in the nucleosomal sequences. We find that the two nucleotides separated by a gap of

length 1,2 have a high correlation compared to the others. Based on these results, a new

method for predicting nucleosome positioning from genome sequences is developed. In

the case of yeast, human, medaka, nematode, and candida, it has a better performance
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for distinguishing nucleosome and linker DNAs than the previous works.

2 Materials and Methods

2.1 Nucleosome positioning data

For the validation of the prediction model we employed the data of human, medaka,

nematode, candida, and yeast from Tanaka et al. [17], available at

http://www.hgc.jp/ytanaka/assess2009/index.html. For each organism, the data

include 10 evaluation datasets with randomly extracted 100 nucleosomal and 100 linker

DNA sequences.

2.2 Methods

In this work, an information–theoretic method is used to to describe the characteristics

of the nucleosome sequences N1, N2, N3, . . . , Ns . To each sequence Ni , the informational

entropy Hi and the mutual information Ik,i of every position are calculated as

Hi = −
∑
x∈α

p(x) log p(x)

and

Ik,i =
∑

x∈α,y∈α
px(k)y

log px(k)y
p(x)p(y)

for i = 1, 2, 3, . . . , ls − k and k = 1, 2, 3, . . . . Here α = {A,G,C, T} is the set of the

nucleotides, ls is the length of the sequence, p(x) is the probability of finding the nucleotide

x in the corresponding position of the sequence, and px(k)y denotes the joint probability

of finding the pair of nucleotides x and y, separated by a gap of length k.

The informational entropy Hi shows the uncertainty of the nucleotides in position

i for one organism’s sequences. Hi = 0 denotes an invariable nucleotide appearing in

position i.

The mutual information Ii,k measures the amount of information that can be obtained

in position i from nucleotide x about another nucleotide y occurring at distance k after x.

In a perfect dataset, uncorrelated pairs of not co-evolving positions (i, i+ k) would show

Ii,k = 0 as the two-point probability is equal to the product of the one-point probabilities,

px(k)y = p(x) · p(y), due to the independence of positions.
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2.2.1 Support vector machine

The vectors considered below were used to train LIBSVM, which is a publicly available on-

line library for training and predicting with SVM [18]. As a supervised machine–learning

technology, it has been successfully used in wide areas of bioinformatics by transforming

the input vector into a high–dimension Hilbert space and seeking a separating hyper-

plane in this space. For a two–class classfication problem, a series of training vectors

were marked by +1 and -1, which respectively indicate the two classes. After training,

predictions can be made by predicting the associated +1/-1 label for each test sample.

When using LIBSVM, it is important to correctly choose the parameters c and g. In this

work, we set c = 4 and g = 2.

2.2.2 Evaluation of prediction performance

For evaluating the performance of a model, the selection of a test method is an important

issue. In previous papers, the jackknife test and ROC curve were used. ROC (Relative

Operating Characteristic curve), is a comparison of two operating characteristics (TP

& FP) as the criterion changes. AUC (the area under the ROC curve) is also used to

evaluate performance of the model.

AUC provides a single measure of overall prediction accuracy. The 0.5 of AUC is

equivalent to random prediction. Values of AUC between 0.5 and 0.7 indicate poor

accuracy. Values of AUC between 0.7 and 0.9 indicate good prediction accuracy and

above 0.9 indicate excellent prediction accuracy. The overall prediction accuracy (A) of

the five models is defined as

A =
TP + TN

TP + TN + FP + FN

whereas the sensitivity S, specificity P , and Matthew’s correlation coefficient MCC of

every subcellular location are defined as

S =
TP

TP + FN
, P =

TP

TP + FP

and

MCC =
(TP × TN)− (FP × FN)√

(TP + FP )× (TN + FN)× (TP + FN)× (TN + FP )
.

with TP , TN , FP , and FN representing true positive, true negative, false positive, and

false negative, respectively.
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3 Results and discussion

3.1 Informational entropy

For a particular organism, if we get the DNA sequences N1, N2, N3, . . . , Ns , then we can

calculate the informational entropy Hk,i of the two nucleotides, separated by a gap of

length k in position i , i = 1, 2, 3, . . . , ls− k, for k = 1, 2, 3, . . . , where ls is the length of

the underlying sequence. The expression for Hk,i reads:

Hk,i = −
∑

x∈α,y∈α
px(k)y log px(k)y

where the set α and the probability px(k)y are same as specified above.

0 20 40 60 80 100 120

2

2.5

3

3.5

4

Fig. 1. The Hk,i-values of nucleosomal sequences. The x-axis represents the position
in the sequences, the y-axis represents the informational entropy of the corresponding
position in the sequences. The bottom line corresponds to H1,i .

For medaka, we calculated Hk,i for the nucleosomal sequences and the results are

shown in Fig. 1. In order to see the difference clearly, in Fig. 2 we show the average

informational entropy Hk traversing ls− k positions, where

Hk =
1

ls− k

ls−k∑
i=1

Hk,i .
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Fig. 2. The Hk-values of nucleosomal sequences. The x-axis represents the gap of the
two nucleotides, the y-axis represents the average informational entropy traversing ls− k
positions.

From Fig. 2 we see that for k ≥ 2, Hk does not significantly change, and that H1 has

the minimum value. This means that the dinucleotides AA,AT,AG,AC, . . . , CC have

the smallest uncertainties, and this gives evidence for the sequence–dependent positioning

of nucleosomes along DNA [7, 8]. The results are consistent with the earlier conclusions

that the dinucleotides AA and TT repeat at every 10.4 bases in nucleosome–forming se-

quences [12]. In addition, the CA dinucleotide was shown to be important for nucleosome

positioning [9,10]. The low uncertainty of the dinucleotides AA,AT,AG,AC, . . . , CC also

explains why the previous nucleosome positioning methods, using their frequencies, have

a better performance [19].

3.2 The mutual information

In order to facilitate the observation, we calculate the average mutual information Ik as

shown in Fig. 3, where

Ik =
1

ls− k

ls−k∑
i=1

Ik,i .
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Fig. 3. The Ik-values of nucleosomal sequences. The x-axis represents the gap of the
two nucleotides, the y-axis represents the average mutual information traversing ls − k
positions. We see that with the increase of the gap, Ik trends down. When k ≥ 3, the
values of Ik do not change significantly.

We calculated Ik of the nucleosome sequences of five organisms, see Table 1. From

Table 1, we see that for all organisms the trend of Ik is roughly the same, although

there are slight discrepancies for different organisms. The I1-value is the largest, which

is consistent with the the results on informational entropy outlined above. This, again

means that two nucleotides separated by a gap of length 1 have the highest degree of

correlation. The 3-bp periodicity associated with the codon usage largely creates the

maximum of I2 . The data in Table 1 indicate that when k ≥ 3, then the values of Ik

are quite small and thus the correlation is weak. Therefore, we use only I1 and I2 in our

nucleosome positioning.

Table 1: The value of Ik of nucleosome sequences of five organisms

I1 I2 I3 I4 I5 I6 I7 I8

human 0.0580 0.0182 0.0140 0.0142 0.0123 0.0141 0.0137 0.0133

medaka 0.0447 0.0175 0.0129 0.0117 0.0108 0.0112 0.0106 0.0116

nematode 0.0400 0.0172 0.0146 0.0109 0.0113 0.0125 0.0111 0.0120

candida 0.0310 0.0154 0.0173 0.0126 0.0113 0.0173 0.0119 0.0119

yeast 0.0225 0.0128 0.0136 0.0114 0.0112 0.0114 0.0111 0.0109

average 0.0392 0.0162 0.0145 0.0122 0.0114 0.0133 0.0117 0.0119
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3.3 Classification of nucleosomal and linker sequences

For each sequence, based on the above results, we get our brief feature vector F = (F1, F2)

where

Fk,x,y =
147 · 4k−1· px(k)y

�
; k = 1, 2

and x ∈ α , y ∈ α ,α = {A,G,C, T}. In the above formula, � is the length of the sequence.

As we can see, F is a 32-dimensional vector.

We repeated the SVM cross–validation testing procedure, using data generated by

Tanaka et al. For human, medaka, nematode, candida, and yeast (see Section 2). In

10-fold cross–validation, the positive dataset and the negative dataset were divided at

random into ten subsets for each of the five organisms: positive training set (90% of the

positive dataset data) and positive test set (the left-out data), negative training set (90%

of the negative dataset data) and negative test set (the left-out data), respectively. The

positive and negative training sets form the training set. The positive and negative test

sets form the test set. In the training set, every sequence in the positive training set is

marked by 1, and every sequence in the negative training set by −1. By this, a mark

vector is obtained. These vectors were used to train a support vector machine. After

training the support vector machine, the test set and its mark vector were repeated ten

times, each time using a different leave-out set. The ROC of these data is shown in Fig.

4 whereas the AUC-values of all prediction methods applied to five organisms are listed

in Table 2.

Compared with the AUC-values of human, medaka, nematode, candida, and yeast,

we find that our method is more accurate than previous researches. This shows that the

way we structure the sequence can really infer significant features of the nucleosomal and

linker DNA sequences.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) candida
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Fig. 4. ROC curves of five species.

Table 2: Comparison of AUC-values for different models

human medaka nematode candida yeast average

Segal (ver.3) 0.694 0.516 0.708 0.722 0.764 0.681

Segal (ver.2) 0.684 0.53 0.717 0.752 0.804 0.697

Segal (ver.1) 0.487 0.565 0.492 0.51 0.514 0.514

Miele 0.333 0.508 0.319 0.425 0.313 0.379

Gupta (RBF1) 0.695 0.705 0.743 0.69 0.811 0.729

Gupta (RBF5) 0.641 0.659 0.744 0.703 0.796 0.709

Gupta (RBF10) 0.657 0.642 0.736 0.705 0.798 0.707

Zhang [20] 0.872 0.884 0.836 0.766 0.831 0.838

our model 0.9237 0.9068 0.9175 0.8482 0.9079 0.9008

4 Conclusion

The informational entropy and the mutual information are applied to detect the informa-

tion on nucleotide correlation stored in the nucleosomal sequence. From the research of

informational entropy, we learn that the two nucleotides separated by a gap of length 1

have the smallest uncertainty. This gives evidence for the sequence–dependent positioning

of nucleosomes along DNA [7,8], and indicates the importance of the dinucleotide. Anal-
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ysis of mutual information showed that the two nucleotides separated by a gap of length

1,2 have a high correlation, compared to the others. We used this finding to construct

our feature vector for classifying the nucleosomal and linker sequences. We found (cf.

Table 2) that our model has an improved performance relative to the previous models.

This suggests that our vector contains important signatures of nucleosome positioning.

On the other hand, nucleosome positioning along genome is determined by multiple

factors, including preference of DNA sequences, competitive or cooperative binding of

protein factors, activities of ATP-dependent remodeling complexes, and so on [21–24]. If

we add periodicity, curvature, or other factors to our vector, the results may become bet-

ter. This is planned to be our next research. Characterizing the nucleosome positioning

in the whole sequence is the main research object in the future.
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