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Abstract: DNA molecules have been used to build a variety of nanoscale structures and 
devices like DNA polyhedral links over the past 30 years with some important potential 
applications. To depict these novel and complex structures, knot theory and topology have 
been proved useful tools. Here, we present a new method to construct DNA polyhedral links 
of a given polyhedron based on truncation and topological transformation. This approach can 
provide a theoretical guideline to the design and prediction of DNA polyhedral links. 

1. Introduction 

Knot theory [1, 2], an interesting part of topology, has been greatly appreciated for a 

long time [3-7]. To synthesize intriguing links and knot structures on the molecules level is 

expected by chemists. In 1991, the dream is realized by Seeman, who synthesized the first 

DNA polyhedron, a cube [8]. In the following years, more and more DNA polyhedrons were 

born, such as DNA truncated octahedron [9], octahedron [10], tetrahedron [11], dodecahedron 

[12, 13] and icosahedrons [14, 15].    

The great achievements in the syntheses of DNA polyhedrons not only enrich the DNA 

structures database, but also bring new challenges in how to describe these structures from a 

mathematical viewpoint. In this respect, many results have been reported by Qiu and his 
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coworkers. Three models are put forward to describe these DNA nanostructures. The first is 

‘n-cross-curve and m-twisted double-line covering’ [16-19], which uses n-branched curves to 

cover vertices of a polyhedron and m-twisted double-lines to cover the edges (see Figure 1a). 

The second is ‘n-branched-curve and m-twisted double-line covering’ [20-21], which is used 

to construct DNA polyhedral links with n-degree vertices and m-twisted edges (Figure 1b). 

The third is called ‘Tangle-vertex and single-line covering’ [22-23], which constructs 

polyhedral links based on a four-degree polyhedron by using an even or odd twisted ‘tangle’ 

to cover a vertex and using single-line to cover an edge (Figure 1c).  

However, all above methods are suitable well for polyhedral links with even tangles. For 

the odd tangle, these methods do not perform well. So a general strategy, which can be used to 

construct all kinds of DNA polyhedral links, is proposed. 

 

Figure 1. (a) The method of ‘n-cross-curve and m-twisted double-line covering’. (b) The 
method of ‘n-branched-curve and m-twisted double-line covering’. (c) The method of 
‘Tangle-vertex and single-line covering’. 

2. Methods 

To make the discussion smoothly, we need to clarify some definitions as follows. Tangle: 

A region in the projection plane surrounded by a circle exactly with four emerging arcs {NW, 
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NE, SW, SE}, as shown in Figure 2a. There are two types tangles, one is odd tangle (Figure 

2a) and the other is even one (Figure 2b).  

 
Figure 2. (a) Odd tangles. (b) Even tangles. 

Even-to-odd operation Define the conversion of an even tangle to an odd tangle as the 

even-to-odd operation that can be achieved by the following process. For a given even tangle 

(Figure 3a), cutting off its crossover structure in the ring, four separated branches are left 

(Figure 5b). Then connect the two opposite ends between SW and NE, and between NW and 

SE (Figure 5c), a crossing will form as an odd tangle (Figure 5d).  

 

Figure 3. The conversion of the even tangle to the odd one. 

Herein, we take a tetrahedron as an example to illustrate the approach for constructing 

polyhedral links. To realize the goal of constructing all possible DNA polyhedral links by a 

rational and systematical method, three basic courses are needed. 

2.1 Polyhedral link with pure even tangles 

Starting from an arbitrary polyhedron, a polyhedral link with pure even tangles could be 

obtained by truncation and ‘tangle-vertex and single-line covering’ which provide a concise 

skeleton for further operations. 

Firstly, truncate a tetrahedron to get the according truncated polyhedron which is 

featured by all vertexes of 4 degrees, namely octahedron. Then, a octahedral link is 

constructed using the method of ‘tangle-vertex and single-line covering’ (Figure 1c), via the 

following two steps: (i) cover all edges of the remaining faces of the original tetrahedron in 

Figure 4c with single-line curves, and (ii) all component curves tangle with each other to 
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replace all vertices of the octahedron, as shown in Figure 4. 

 

Figure 4. The process for obtaining the octahedral link with even tangles. 

2.2 Polyhedral link with odd tangles 

Perform 'even-to-odd' operations to the corresponding polyhedral link with pure even 

tangles to yield polyhedral links consisting of both even and odd tangles. New branches could 

also be derived from this process and then be assembled into new polyhedral links in 

according to some principles. 

Step 1: Mark all even tangles, and suppose that the polyhedron link with pure even tangles is 

the first type of truncated polyhedron link, which is named as A (Figure 5a). 

Step 2: Apply the 'even-to-odd' operation to the first even tangle 1(Figure 5a.1) to get the first 

odd tangle which represents the occurrence of the second type of truncated polyhedron link B 

(Figure 5b). Then select another even tangle adjoining the first odd tangle on the newly 

constructed branch (Figure 5b.2) to get C (Figure 5c). 

   This process will merge two small branches into a new one (Figure 5b) which could be 

used as building blocks to assemble new type of polyhedron links later. Noted there are three 

different even tangles on C (Figure 5b.3, 4, 5), the 'even-to-odd' operation will give rise to 

three different links: D (Figure 5d), E (Figure 5e) and F (Figure 5f).  

Step 3: Continue this approach until all even tangles are changed into odd tangles.  

It should be noted, when applying the 'even-to-odd' operation to an even tangle through 

which a big branch cross with itself, for instance, the even tangle 4 in Figure 5d, sometimes a 

new branch similar to trefoil knot would occur (Figure 5h) when it accomplishes odd times of 
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turn or the primitive branch would be split into two small branches (Figure 5k) when it 

accomplishes even times of turn. 

 

Figure 5. The procedures of 'even-to-odd' operation applied to the octahedral links. 

Step 4: The above procedures could be took as the first circulation. Then start from tangle 2 

and continue the procedures of step 3 and 4 to accomplish another circulation. Repeat the 
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process until all tangles carry on the same circulations.  

Sometimes, to know which symmetry group the polyhedron belongs to will significantly 

facilitate the arduous work. For instance, in the case of octahedron, because of the symmetry, 

all tangles are on a prevalent position and only one circulation is necessary. 

Step 5: Use new branches obtained to assemble other structures.  

Three principles should be followed in the process:  

(1) Every branch must be connected by pure odd tangles. 

(2) All different branches should only be connected by even tangles. 

(3) The combinations of branches could cover the polyhedron. 

 

Figure 6. The combinations of new branches to get new polyhedral links. 

There are only two combinations satisfying the three principles in this case. It is noted that 

the new branches (Figure 6a, 6c) are derived from octahedral link B (Figure 5b) and from 

octahedral link F (Figure 5f), respectively. 

Step 6: Check all octahedral links and delete the repeating ones, and all possible structures 

will be obtained.  

For example, the link P (Figure 7p) assembled in step 5 is actually topologically equivalent to 

link F (Figure 7f) obtained in step 3, so only one structure should be kept. 
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Figure 7. The repeating links in the above procedure 

2.3 Topological transformation to target DNA polyhedral links. 

All corresponding truncated polyhedral links will be topologically deformed into the 

target DNA polyhedral links. Actually, the approach is dependent on the polyhedral links of 

truncated polyhedron, i.e., a polyhedral link of truncated polyhedron will result in an 

according DNA polyhedral link of target polyhedron. The edges are pulled to the center of the 

faces following the directions of the arrows shown in Figure 8b. In this way the four faces in 

the octahedral link are transformed into three-branched vertices, while the six vertexes are 

transformed into twisted double-lines, and the octahedral link is transformed into the 

branched DNA tetrahedral link (Figure 8). 

 

Figure 8. The topological transformation of the tetrahedron link. 
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Finally, all octahedral links and according DNA tetrahedral links could be given as 

illustrated in Figure 9. Every DNA tetrahedral link in the bracket is deformed from the 

octahedral link on its left side topologically. 

3. Validity and application 

This method could produce all possible DNA polyhedral links. If there is a DNA 

polyhedral link could not be derived from this method, when it agrees with the principles in 

step 5, which means it is assembled by the pure odd branches through even tangles, all we 

need to consider is the pure odd branches. If not, select one odd tangle of this DNA 

polyhedron and change it into an even tangle. Actually, it is the reverse of the even-to-odd 

operation which is part of the construction process in step 4 or 5. Continue this procedure one 

by one until all odd tangles become even tangles. This process can also be applied to the pure 

odd branches of the DNA polyhedral links obtained by combination in step 5. Because there is 

only one link connected by pure even tangles, reversing the process will derive the original 

DNA polyhedral link, so it could be obtained by our method. Thereby this method will 

generate all possible DNA polyhedral links. 

Recently, a simple formula called new Euler’s formula, s + μ - c = 2, which connects 

the numbers of Seifert circles s, components μ, and crossings c, has been proposed by Hu[24]. 

Baesd on that, a new invariant called new Euler’s characteristic, λ = s + μ - c, was derived and 

explored explicitly by Li[25].  

The new invariant unites several features of the DNA polyhedral link and has the 

potential to reveal the intrinsic properties of DNA polyhedrons. As an example, the smaller 

the new Euler’s characteristic is, the more asymmetric the related DNA polyhedral link is. 

However, the difficulty to caculate the new Euler’s characteristic is that there is no efficient 

way to compute the number of components μ. Our method could give all possible DNA 

polyhedral links, and inclusively, the number of components μ, which will finally resolve the 

problem of the computation of the new Euler’s characteristics. 
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4. Simplified methods 

The above process to get all types of DNA polyhedral links is very complex, however, if 

only one special type of structure is needed, the method could be simplified.  

 

Figure 9. All octahedral links and according DNA tetrahedral links 

4.1 Single branch growth method  

If only one branch is taken into account, which means only one big circle is generated 

step by step by applying 'even-to-odd' operation on the DNA polyhedral link constructed by 

pure even tangles, the method can be simplified. The example of DNA octahedral links is 
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illustrated in Figure 10. The key of this approach is that, when the big branch emerges more 

and more small branches, it will connect with itself via an even tangle (Figure 10e), which 

should be retained to avoid the occurrence of the complicated cleavage of the big circle. 

 

Figure 10. DNA octahedral links obtained by single branch growth method. 

4.2 Pure odd tangles method 

The construction of one special DNA polyhedral link connected by pure odd tangles 

can be very easy. Take a cube as an example. Based on its truncated polyhedral link, perform 

'even-to-odd' operation on an even tangle (Figure 11c.1) to get an odd tangle (Figure 11d.1) 

and continue to proceed in the same direction (Figure 11c. 2 3 4 5 6) until returning 

to the starting point, then the first circle would be obtained. After that, pick up another even 

tangle in another branch and apply the same rule to the adjoining even tangles, followed by 

topological deformation, the target DNA polyhedron will be obtained. 

 

Figure 11. The process of pure odd tangles method applied to a cube. 
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5. Conclusions 

In summary, our research has presented a general method to resolve the problem of the 

design of DNA polyhedral links especially polyhedron with odd tangles by the following 

steps: (1) Truncate a polyhedron and use ‘tangle-vertex and single-line covering’ method to 

get a pure even tangles polyhedral link; (2) Apply 'even-to-odd' operations to the 

corresponding polyhedral link to yield polyhedral links consisting of both even and odd tangle, 

then use new branches obtained to assemble other structures and delete the repeating ones; (3) 

Transform all corresponding truncated polyhedral links into the target DNA polyhedral links. 

We hope our work not only could help chemists to synthesize novel structures but also could 

provide a new perspective for the theoretical research in the field of knot and topology.  
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