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Abstract.  

 In the present work we designed and successfully applied a new Hybrid Algorithm 

(HA) able to optimize Activation Thermodynamic Parameters (ATP) directly from the 

computational treatment of non-isothermal kinetic data. It comprises two methods based in 

different mathematical principles whose sequential application is carried out. Firstly it uses a 

“soft modeling” method of Artificial Neural Networks (ANN) that does not need to use the 

initial estimates of the parameters and determine the ATPs values in the neighborhood of the 

minimum global. These values are improved later after application of a mathematical 

optimization method based in a second order gradient algorithm (AGDC) able to reach the 

desired global optimum.  

The application of HA that we propose provided good and satisfactory results for the 

optimized values of the ATPs. HA offers several advantages with respect to the isothermal 

classic methods since it allows to optimize ATPs directly without the need to determine the 

kinetic constants previously. In addition for the case of non-isothermal experiments, a single 

replicated kinetic experiment is enough since it allows the computation of a larger number of 

kinetic data that implies a considerable saving of reagents and laboratory time.  
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1. Introduction 
Determination of the parameters involved in the mathematical functions by means of 

the application of computational treatments is usually carried out by means of mathematical 

optimization methods applying gradient algorithms. These non-linear iterative fitting 

techniques are often used in the various fields of Chemistry, in particular, and of Science in 

general. However, a major drawback of these optimization methods is their high sensitivity to 

the initial estimates of the parameters to be supplied. Only if these values are very close to the 

global minimum can a rapid and reliable convergence of the iterative process be expected, 

guaranteeing success of the parameter optimization. If the initial estimates are far from the 

global minimum the process may become divergent or may reach a singular point (local 

minimum, saddle point, etc…), leading the optimization process to fail. This often happens in 

the treatment of kinetic models. Additionally there is a series of problems involving 

identifiability and distinguishability, which lead to different types of ambiguity in the 

solutions to the stiff systems of ordinary differential equations (ODE). In light of this, it would 

seem appropriate to design and apply a new method that, initially, would provide an approach 

to the global optimum and then use such results as a starting point to apply a robust gradient 

method that will guarantee the success of the mathematical optimization of parameters. 

In the present work we designed and successfully applied a new Hybrid Algorithm 

(HA) able to optimize Activation Thermodynamic Parameters (ATP) -Pre-exponential factor 

(A) and the Activation Energy (Ea)- directly from non-isothermal kinetic data. It comprises 

two methods based in different mathematical principles whose sequential application is 

carried out. Firstly we applied a “soft modeling” method using Artificial Neural Networks 

(ANN) that does not need to use the initial estimates of the parameters and its goal is the 

determination of the parameter values (outputs) in the neighborhood of the optimum global. 

These values will be the initial estimates of a robust and efficient second order gradient 

algorithm (AGDC) [1] able to reach the desired global optimum that will guarantee the 

success of the final optimization of the values of the parameters. The classic method used to 

determine ATPs consists of applying “hard-modelling” techniques to series of data of 

isothermal kinetic experiments acquired at different temperatures to initially obtain the rate 

constants of each kinetic experiment. With the values of these, the ATPs are obtained in a 

second step from the linearized Arrhenius equation.  
  

The application of this HA that we propose, provided several advantages since it 

became possible to optimize those parameters directly, without the need to determine the 
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kinetic constants in a previous step. To be able to apply this treatment, it was necessary to 

acquire the kinetic data from non-isothermal kinetic experiments [2], imposing a controlled 
variation of temperature along the reaction kinetic. The number of the set of kinetic data 

computed in the classic isothermal procedure (T=constant) is very small since it is limited by 

the experimental requirements when dealing with a low number of isothermal experiments 
(normally, 10-12), each of them performed at a different temperature. In the case of non-

isothermal experiments, a single replicate kinetic experiment is enough since it allows the 

computation of a huge set of kinetic data which, bearing in mind the laboratory time and 

reagents saved, is a great advantage.  

The literature contains several recent references in which the authors have applied 

Hybrid Algorithms (HA) in the field of Chemistry and that essentially comprise Genetic 

Algorithms (GA). Their design and application are currently able to solve problems pending 
solution and reveal the high degree of reliability and precision in the results obtained. Of 

interest is one review [3] in which the authors consider a broad range of applications of 

different types of GA in Chemometrics: M. Maeder et col. [4] determine the rate and 
equilibrium constants of reaction mechanisms by application of a Hybrid Algorithm based on 

a Genetic Algorithm. C. Hervás et col. [5] use GA and pruning computational neural networks 

for selecting the number of inputs required to correct temperature variations in kinetic-based 

determinations. Artificial Neural Networks (ANN) offer a versatile “soft modeling” method 

that can be applied in diverse fields with acceptable results [6]. The method is applied for 

quantitative purposes, among others, in the so-called Principal Component Analysis (PCA) 
method, in which there are no explicit functions of multivariate correlation or, if there are, 

they are extraordinarily complex. The results of applying ANN for quantitative purposes in 
chemical kinetics in simple models [7,8] are in some cases acceptable. However, it is 

necessary to perform an exhaustive process of training of the neural network in order to 

obtain its optimal architectures, meaning that the method is time-consuming and tedious and 

that it cannot be used individually in all cases. Nevertheless, it is an ideal method for carrying 

out the approximation of the ATPs values to those of the global minimum, without previously 

knowing anything about the magnitude and sign of the parameters. The AGDC algorithm was 

designed and successfully implemented at our laboratory in the treatment of many fields 

within the area of Physical Chemistry [9-13]. It is a second-order gradient algorithm in which 

continuous control of the direction and sense of the movement vector is carried out, 

evaluating each step performed in the iterative process. It is endowed with corrective devices 

that, when necessary, are able to correct and modify the movement vector automatically in 
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order to ensure the decrease to reach the minimum global. Additionally, it is refractive to the 

presence of local minima and ill-conditioned response surfaces and includes different graphic 

representation methods (3D, contour maps, etc.) that allow both the graphic follow-up of the 

global minimum and a detailed exploration of the region of the global minimum to detect the 

existence of singular points.   

2. Theoretical and Computational Aspects  
2.1. Chemical Kinetic Aspects  

Let us consider in general a chemical system formed by nr chemical elementary (or 

concerted) reactions where ns chemical species can be involved. According to IUPAC's norms 

[14] the r-th chemical reaction can be expressed for the generic equation 

                          (1) 

where, Bj  is the chemical species involved in the system of reactions; =(1,…, nr), the number 

of chemical reactions; =(1,…,ns), the number of chemical species; �j,r, the  stoichiometric 

coefficient of the species Bj  in the r-th reaction; �j,r < 0 when Bj  plays only the role of 

reactant in the r-th reaction and��j,r > 0 when Bj plays only the role of product in the r-th 

reaction.  

When the reaction is an elementary or concerted one, the absolute values of the kinetic 

order ( ) and stoichiometric coefficient of Bj coincide, that is . The rate 

differential equation of the chemical species Bj in the r-th is given by 

                   (2) 

where  are the species playing only the role of reactants in the r-th reaction < 0) and kr 

is the kinetic rate constant of the r-th reaction. Each chemical species can take part in several 

reactions and the rate differential equations will be the sum extended over those reactions 

where the reactant  appears, obtaining a system of ordinary differential equations (ODE) 

according to the generic equation, 

              (3) 

The general solution of the system of rate ODE give the explicit function of the 

concentrations of the all species with the time ). If the experimental data are expressed 

in absorbance, we have to consider the Lambert-Beer-Bouguer law: 
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�  = ��                                      (4) 

where �  is the absorbance of the species Bj at the, time ti and path length 1 cm and �� is the 

molar absorption coefficient of Bj at the wavelength��. The absorbance of the mixture ( � ) 

measured at wavelength����time ti and temperature T and, can be expressed as: 
� � ��                            (5) 

 
2.2. Thermodynamic Aspects in Non-Isothermal Kinetics 

 
Let us consider the simple chemical reaction:       

�            (6)

The rate differential equation (3) corresponding to this reaction, expressed in function 

of the extent of reaction variable in units of molar concentration (�') when the reactant B1 is of 

kinetic first order, can be written as:  

     (7) 

 Separating variables and later integration of the first member of the equation, we have  

           (8) 

The Activation Energy, (Ea) and the Pre-exponential Factor (A) can be determined 

substituting k(T) in (8) according the Arrhenius equation, where 	 is the remaining molar 

fraction of the reactant B1. 

(9)

In non-isothermal conditions, the second member of (9) cannot be directly integrated since 

there are two dependent variables (T and t). It will be crucial to establish the identity of this 

function because the mathematical method of resolution of the equation (9) will be different. 

The function must be monotonically increasing, since is this way it will be possible to 

minimize the great differences in the reaction rate existing between the beginning and the end 

of the reaction; the rate of heating must be suitable for the interval of time studied and its 

profile must be reproducible in the laboratory. 

We consider several possibilities for the function T = f(t) 

1.- Inverse function of the temperature corresponding to a hyperbolic branch 

        (10) 

Substituted in (9), we have  

    (11) 
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This function has a great advantage since the integral of (9) has a known primitive function 

and therefore, mathematical exact solution with the following expression: 

        (12) 

We have to take in account the following important considerations: 

a) the explicit function of 	 depending on the time (12) is not simple and 

there is necessary the application of a method of sufficiently robust treatment for the 

determination of the ATPs. In addition it is necessary to consider the great difference in the 

order of magnitude of both parameters that complicates extraordinarily the success in the 

application of the method of treatment.  

b) the experimental points (T/t) must belong to this inverse hyperbolic 

function and therefore, it is necessary to reproduce the profile of the curve of the function 

(T/t) (10) with the points obtained in the laboratory.  

2.-  Function T = f(t) of polynomial type of n-th degree  

          (13) 

substituting in (8) according the Arrhenius equation,   

       (14) 

This equation does not have mathematical exact solution since the integration 

cannot be performed. We have 2 options of treatment: 

2.1- Numerical integration of the equation (14) using appropriate “quadrature 

formulas” corresponding to a suitable numerical algorithms of resolution of integrals 

(Simpson, Lobatto, Gauss-Kronrod, Vectorized, etc.) 

2.2- Numerical resolution directly from the beginning of the ordinary 

differential equation (eq. [7]) expressed in terms of Arrhenius’s equation, that is: 

                      (15) 

The solution of this differential equation (15) can be performed by means of the application of 

numerical suitable methods that they must be suitable for the treatment of “stiff” systems 

(Runge-Kutta methods, Gear's method (BDFs), Rosenbrock formula, trapezoidal rule with 

"free" interpolant….etc). 

 
2.3. Mathematical Aspects. Hybrid Algorithm (HA)  

The Hybrid Algorithm (HA) designed in our laboratory comprises two methods based in 

different mathematical principles and it is applied sequentially in two steps. In the first, a method of   
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Artificial Neural Network (ANN) is applied. Its most important feature, and indeed a great advantage, 

is that it is not necessary to supply initial estimates values for the determination of ATPs (A and Ea).  

The results obtained in the output matrix are near to those that belong to the global optimum 

sought. These values are precisely the initial estimates for starting the process of ATPs 

optimization via application of the AGDC algorithm, constituting the second step in the 

treatment. This is an improvement of the values obtained in the output matrix after the 

application of the ANN, thus reaching the global minimum that will guarantee the 

determination of the optimized values of the ATPs. 

 

2.3.1. Artificial Neural Networks (ANN)  

Artificial Neural Networks are parallel interconnected networks of simple 

computational elements called neurons and are structured in layers that are intended to 

interact with the objects of the real world in a similar way to the biological nervous systems 

[15]. Parallel processing is the ability of the brain to simultaneously process incoming stimuli 

of differing quality. The multilayer neural network uses sets of input data and parameters 

(called targets), distributed in 2 input matrices when Matlab [16] is applied. The elements of 

the input matrix are the calculated synthetic values, where one row contains a single curve of 

the data and all the curves thus obtained (nc) are grouped in an input data matrix. The target 

matrix is formed by the sets of parameters (np).  In our case, the input data matrix contained 

the kinetic data of all curves (	j,AT, Aj, [Bj]) and the target matrix (ncxnp) contained the set of 

kinetic rate constants (kmn). Formally, a multilayer neural network is an oriented graph in 

which the nodes represent a set of processing units, called neurons, and the connections 

represent the information flow channels. Each connection between two neurons has an 

associated value called “weight” which specifies the strength of the connection between 

neurons. Positive and negative values determine excitatory and inhibitory connections, 

respectively. The choice of a specific class of networks for the approximation of a nonlinear 

map depends on a variety of factors dictated by the context and is related to the desired 

accuracy and the prior information available concerning the input-output pairs.  

The first layer of a multilayer neural network contains neurons that receive the input 

data values from the elements of the input data matrices. This information is transmitted from 

the i-th neuron of a layer to the j-th neuron of the subsequent one, with a weight wji. A neuron 

parameter (bias) is summed with the weighted inputs of the neurons and passed through the 

transfer function to generate the output of the neurons. 
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The layer following the input one is called hidden. In each neuron of a hidden layer 

the weighed inputs coming from the previous one are summed with each other and added to a 

bias. The result is then transformed by means of a suitable mathematical function to obtain an 

output called activation of the neuron, which is transferred to the neurons in the next layer 

after another weighing step. The output parameters values are calculated in the last layer 

(output layer) by means of a suitable transformation function. 

The process described is called to as the training or learning of the multilayer neural 

network and constitutes an iterative method where the iterations are called epochs. After each 

epoch, the calculated values of the parameters are grouped in the output matrix ( ) and 

they are compared with those of the corresponding curve in the target matrix ( ) and the 

optimum value of the Mean Squared Error (MSE), expressed in absolute value, is calculated 

according the following equation: 

              (16) 

 

where nc is the input number of curves and np is the number of parameters, ncxnp being the 

dimensions of both matrices (output matrix  and target matrix).   

 During the process of training, weights and bias values are modified with suitable 

mathematical optimization algorithms in order to minimize the calculated values of MSE in 

each epoch. In the present work, the back-propagation algorithm was used. The iterative 

process finishes when the minimum value of MSE is reached, after which the training process 

can be considered to be completed.  

It is necessary to know the optimal architecture and topology of the multilayer neural 

network in order to obtain the best results when ANN is applied to the system under study. 

We have used a method of trial and error by minimizing the MSE values obtained for the 

different possible configurations of the same number of hidden layer/s. It must to determine 

the minimum value (optimum) of the MSE for all possible configurations for the hidden 

layer/s chosen. For each hidden layer, a graph of MSE values vs. the number of neurons 

shows that initially, for the lower configurations, the value of the MSE decreases rapidly 

when the number of neurons increases, but after a constant value or a poor improvement is 

obtained. The optimum number of neurons (configuration) in that hidden layer is given by the 

point of intersection of the two branches of the graph. Sometimes, a small minimum appears 

near this intersection point. The architecture of the neural network can be written in 
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abbreviated notation as (ninp, nhid, nout), where ninp is the number of neurons in the input layer, 

nhid in the hidden layer and nout in the output layer. 

Neural network training is completed with the processes of validation and testing. 

These are 2 control and verification processes of the iterative minimization method between 

the elements of the output and target matrices. Among the different curves comprising the 
input matrix, random choice is made of a percentage of the total, established previously 

(5%,10%...), which gives rise to a  “sub-matrix” of input curves that are subjected to iterative 

optimization until a minimum MSE value is reached. It is thus possible to verify the validity 

of the training process by ensuring that it is convergent, that it has an appropriate termination, 

and that there not been any “overfitting”, since any possible “overtraining” has taken been 

into account. Validation is completed when in a given number (
6) of consecutive epochs the 

MSE remains constant or shows a slight tendency to increase. The testing process is similar, 

except that the control for terminating the process is performed by controlling the 

computation time instead of the number of epochs. 

The process of prediction consists of the determination of the unknown parameters 

from a set of experimental data after application of the optimal and trained neural network. 

Obviously, the elements of the target matrix are unknown for this prediction process, and 

only the input data matrix is provided to the neural network. In our case, the elements of the 

input data matrix in the process of prediction are experimental kinetic values (	j, AT, Aj, [Bj], 

etc.), acquired from a real system of reactions developed at the laboratory.  

The computational work of ANN has been performed using Matlab environment [16] 

by means of the application of “Neural Networks Toolbox” with the creation of user´s 

interfaces (GUI) including the appropriate individual analysis of Residuals and errors (MSE, 

SD, etc) and special plotting programs for visualizations 3D of SQD functions.  

2.3.2. AGDC Algorithm 

Mathematical optimization is a computational method that allows the determination of 

different parameters by means of the maximization or minimization of the objective function. 

Usually performed objective function minimization using different methods: Search 

algorithms (Simplex, Fibonacci,..etc) or Gradient algorithms (Steepest Descent, Gauss-

Newton, Levenberg-Marquardt, AGDC,…etc) [17].  In this paper we have used the AGDC 

mathematical optimization algorithm [13,18,19], this is a second-order gradient method that 

minimizes the numerical function Sum of Quadratic Deviations (SQD) and whose initial 

estimates are the outputs values obtained by ANN.  
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The procedure followed by AGDC, step by step, is the following: 
1.  Select the parameters to be optimized X (Ea/A) 

2. m=0 (m= iteration number). Input data: 
     2.1. Experimental data of (	i)exp/t, initial concentrations, Convergence Criterion (CC), etc. 

     2.2. Initial estimates of the unknown parameters X(0) (Values of outputs from ANN).     
3. Determinate the SQD(0) function. 

    3.1. Calculate of concentrations [B1]i by a) Mathematical exact solution [eq. (12)]; b) 

Numerical integration [eq.(14)]  c) ODE [eq. (15)]. 

    3.2. Calculate (	i)calc                                                                         

    3.3. Calculate SQD(0) by the equation:           

4. AGDC ALGORITHM 

    4.1. Calculate the vector of movement p(m).  

4.1.1. Compute partial numerical derivatives of (	i)calc with respect to the parameters 

to be determined X(m),     

         4.1.2. Compute Gradient vector and Hessian Matrix (g(m) and H(m)).          

4.1.3. Compute (H(m))–1  

         4.1.4. Calculate the components of the vector of movement 

 

   4.2. Control and correction of the direction of the vector of movement p(m) 

         4.2.1. If H(m)  is singular, p(m) = -g(m), go to 4.3. 

   4.2.2. If  p(m) g(m)  � �����= scalar close to zero ), p(m) = -g(m) and go to 4.3 

         4.2.3. If p(m) g(m)  
 0 ,  p(m) = -p(m) 

   4.3. Control the length of the vector of movement p(m). 

         4.3.1. Compute the scalar (� (m) ) by the method of Hartley [17] 

         4.3.2.  

         4.3.3. Determinate the SQD(m+1) function. 

         4.3.4. If the Goldstein-Armijo criterium [20] is satisfied go to 4.4. 

         4.3.5.    go to 4.3.2. 

4.4. Calculate 

                                             

4.5. If convergence is not attained (CON > CC), set  m = m + 1 and go to 4.1.  

5. Final of Optimization. X (m+1) = Optimized Parameters.  
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5.1 Calculation of the errors of the parameters.  

5.2 Statistical analysis of residuals: arithmetic mean, variance, standard deviation, 

square error, statistical measure of adjustment and Pearson function (�2) [21]. 

6. End of AGDC  

7.- End of  HA. 

 

The elements constituting the Hessian matrices and gradient vectors are detailed in the 

following expressions: 

 

 
 
 
 

 

 

The computational program has been designed and performed in our laboratory using 

a computational executable code programs (##.m type), in the Matlab environment [16], using 

“m” language and it is constituted by a Main program and several Functions and/or 

Subroutines.  

 

3. Kinetic Data. Input Curve Base 
3.1. Study of the Functions T/t and 		/t 

The function T/t has to fulfill the following requirements: a) the function must be 

monotonically increasing, since is this way it will be possible to minimize the great 

differences in the reaction rate existing between the beginning and the end of the reaction 

when isothermal conditions are considered, b) the rate of heating must be suitable for 

reaching a convenient extent of reaction in the interval of time in which the non-isothermal 
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kinetic data will be acquired, and c) the function must be accessible to experimentation and 

accurately reproducible in the laboratory. The type of functions that we have chosen are:  

1.- inverse function of the temperature corresponding to a hyperbolic branch [eq. (10)] 

that permits to reach an exact mathematical solution of the rate differential equation;   

2.- function of polynomial type of n-th degree according equation (13), without of 

exact mathematical solution for the rate differential equation.  

It is seen that as the value of “m” of equation (10) decreases a smoothing of the 

concavity of the hyperbolic branch is observed, tending towards linearity. The suitable value, 

and the one that best satisfies the 3 requisites considered above, is 4.2 10-6 K-1 min-1. We 

fitted the T/t points to a first-degree polynomial function and then progressively to 

polynomials from 2nd to 5th degree, observing that the coefficients of the independent variable 

had negligible values with respect to the value of a1 from the quadratic term. The coefficients 

(a0, a1, …a5) of the polynomials of 1st, 3rd and 5th degree obtained in the fittings are shown in 

Table 1. 
 

Polynomial 

grade a0 a1 a2 a3 a4 a5 

1 298.15 0.3734 - - - - 
3 298.15 0.3734 5.0E-4 6.0E-7 - - 
5 298.15 0.3734 5.0E-4 6.0E-7 7.0E-10 1.0E-12 

 

Table 1. Values of the coefficients of the polynomials functions of 1st, 3rd and 5th degree obtained in 
the fittings according equation (13). 
  

The values of the Statistical Analysis of Residuals show that the linear fitting is 

correct. This means that the T/t data pairs generated with the inverse hyperbolic function with 

a value of m=4.20 10-6 K-1 min-1 can be satisfactorily fitted to a linear function. At the 

laboratory, this allowed us to impose a linear heating rate (slope of 0.3734 K min-1), starting 

(t=0) at T= 298.15 K. Thus, it was guaranteed certain that the T/t experimental points would 

coincide with the exact solution of the differential rate equation (12). That is, it ensures 

satisfactory agreement between the kinetic values of the linear functions and those of the 

inverse hyperbolic branch. 

The profiles of the non-isothermal kinetic curves (	/t) sometimes show concave down 

segments while the isothermal curves are always concave up. This can be explained in terms 

of the notion that in non-isothermal curves there are two opposing phenomena that affect the 

reaction rate: the increase in temperature with time increases the reaction rate, and the logical 
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decrease in the concentration of reagents as they are consumed reduces it. Depending on 

which of the two phenomena predominates, one concavity or the other will be observed and 

even when both effects are balanced quasi-linear profiles appear. This can be seen in Figure 1, 

where the curve (I) is a sigmoid corresponding to non-isothermal kinetics in which three 

behaviours are clearly visible. Segment (a) is concave down since the effect of temperature 

predominates and segment (c) is concave up since the effect of the temperature decrease and 

the concentration influence predominates. The intermediate segment (b) is linear because both 

effects are balanced. Curve (II) has a linear profile since both effects are equilibrated almost 

throughout the kinetics and the whole of curve (III) is concave up, as corresponds to an 

isothermal kinetics in which exclusively of the effect of concentration exists. 

 
 

 

Figure 1. Several profiles of non-isothermal and isothermal kinetic curves (	/t). Curve (I) is a 
sigmoid corresponding to non-isothermal kinetic in which three behaviours are clearly visible: 
segment (a) is concave down since the effect of temperature predominates; segment (c) is concave up 
since the effect of the temperature decrease and the concentration influence predominates; segment (b) 
is linear because both effects are balanced. Curve (II) has a linear profile since both effects are 
equilibrated. Curve (III) is concave up, as corresponds to an isothermal kinetic. 
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3.2. Experimental Design (ED)  

The design and implementation of a suitable Experimental Design (ED) is crucial to 
ensure the success of the training process of neural networks. We consider 2 factors (A and 

Ea) whose responses are the non-isothermal kinetic data of the base of the input curves (	/t). 

It is necessary to consider 2 variables: a) the extreme values of both factors that configure the 

experimental domain and b) their relative values. Both variables must ensure that the binary 

combinations of both factors will generate a set of kinetic curves that will have sufficient 
information to ensure an optimal training process of the neural network. In addition, the 

number of levels of the factors of the ED must be suitable if one is to avoid useless 

computational work and avoid large differences in the spacing of the values of the responses. 
Accordingly, to optimize the training process the kinetic curves of the input matrix must have 

efficient kinetic information and must be correctly distributed according to the choice of a 

suitable experimental design and an appropriate experimental domain. In agreement to the 

results of the study of the functions T/t, we have generated the non-isothermal kinetic data 

(	/t) in order to obtain the curves of the input matrix to perform the training process of the 

neural network from the ATPs organized according a suitable ED distribution. Bearing in 

mind the characteristics of the ANN computation of the non-isothermal kinetic system under 

study, we have chosen as the optimum one, the ED corresponding to the Central Star 

Composite Experimental Design (CSCED) distribution represented in Figure 2.  

 
Figure 2. Experimental Design used with a distribution of the experiments corresponding to the 
named Central Star Composite Experimental Design (CSCED). 
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3.3. Analysis of the SQD Minimum 

 

When a mathematical optimization algorithm is applied, it is appropriate to analyze 

graphically a priori the profiles of the minima of the SQD, a numerical function dependent 

upon the ATPs, in order to know whether singular points (local maxima and/or minima, 

saddle points, etc.) are present in the neighborhood that will make the gradient vector equal to 

zero, leading the optimization process to fail. It should be noted that to determine the values 

of ATPs the mathematical expression depicted in equation (12) is fairly complex because it 

includes several exponential functions with different levels of exponents. Since SQD is a 

numerical function, we plotted a 3D graphic, generating a large set of non-isothermal curves 

from pairs of values of the ATPs parameters distributed according to a new CSCED, now in 

the neighborhood of the minimum that coincides with the central point (cmin). Later, the 

SQD(c) values are determined for each curve (c) according equation (17):  

 

	 	                (17) 

 

The��	t values with a hyperbolic T/t variation were generated with the equation (12) 

from pairs of Ea/A values. There were three matrices corresponding to the three coordinate 

axes (Ea, A and SQD) whose graphic plot (Figure 3) shows the minimum of the SQD(c) 

function for both parameters. After the axes had been rotated suitably to obtain the best 

perspective for visualization, no singular points were observed in the neighborhoods of the 

minima.  

To better confirm this, a “cut” of the 3D figure was made by means of a bisecting 

plane perpendicular to the XY plane, thereby obtaining a 2D representation (Figure 4)  that 

clearly showed the minimum corresponding to the values of  A= 106 min-1 and Ea= 4.184 104 

J mol-1. It can be observed the absence of any singular points that might lead the optimization 

process to fail when the AGDC algorithm was applied. 
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Figure 3. Graphic 3D Plot of the numerical function SQD vs. A and Ea showing the minimum of the 
function for both parameters. 
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Figure 4. Plot of the “cut” of the 3D figure (Fig. 3) obtained by means of a bisecting plane 
perpendicular to the XY plane where the minimum with respect to both parameters (A and Ea) is 
clearly showed. 
 

4. Results and Discussion  
ANN treatment involves performing a rigorous process of training of the neural 

network. For this, we carried out a previous study to determine the ideal conditions for 
application. We generated 45 non-isothermal kinetic curves from eq. (12), considering an 
inverse hyperbolic variation of T/t according eq. (10), with a value of m=4.2 10-6 K-1 min-1 in 
a period of time sufficient for α values of at least 1.5 half-lives to be attained. Each curve had 
50 data on which random noise was imposed with a magnitude of the order of the 
experimental error of the data (±1x10-4). For the back-propagation algorithm we chose the 
Levenberg-Marquardt algorithm as the most ideal for performing the optimization of the 
elements of the output and target matrices, in all cases using a percentage ratio of 80/10/10 
for the training/validation/testing processes. To determine the optimum architecture of the 
neural network, we performed the treatment varying the number and configuration of the 
hidden layer/s systematically, considering all cases possible. Thus, in the case of a neural 
network (50,1,2) and a variable configuration of the only one hidden layer (3-25 neurons), for 
the processes of training, validation and testing we obtained output/target regression lines 
with strong dispersions, very poor fitting parameters and unacceptable MSE values, number 

of epochs,  � values, gradient,  etc. 
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In the case of the architecture of the neural network with 2 and 3 hidden layers 
(50,2,2) and (50,3,2) and different configurations, we used the same training conditions as in 
the case of 1 hidden layer. However, one aspect that merits detailed comment. In the 
output/target regression lines relative to the set of both parameters, the points of the 
dispersions corresponding to each parameter appear very separated (Figure 5) owing to the 
great difference in the order of magnitude of Ea (104) and A (106). In the case of the 
deviations of A, there is apparently good linearity and in the case of Ea all the dispersion 
values are superposed and produce a single point, due to the broadness of the scales (104-106) 
to be considered on both coordinate axes. This strongly masks the true effects of the 
dispersion, making the statistical fitting parameters of the regression lines obtained for both 
parameters considered jointly apparently acceptable. However, on considering the 
output/target regression lines of each of the parameters separately, where the appropriate 
scales are used, a great dispersion is seen in the case of the Ea (Figure 6), corresponding to the 
dispersion of points observed in Figure 5 values of R2 (0.1058), slope (0.0886) and ordinate at 
the origin (0.0383) are obtained that show a very poor correlation between the output and 
target values, which make these parameter values determined by ANN unacceptable as final 
values. Accordingly, it is necessary to further improve the parameter values, which is done by 
application of the second part of the HA by means of the AGDC gradient method, observing 
the definitive values of the optimized parameters. 

 

 
Figure 5. Regression line of the data from the elements of the Output vs. Target matrices when both 
parameters (A and Ea) are represented together for the process of training of the ANN in the case of 
the architecture of the neural network with 3 hidden layers (50,3,2). 
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Figure 6. Regression line of the data from the elements of the Outputs vs. Targets values in the case 
of exclusively Ea for the process of training of the ANN when the architecture of the neural network 
has 3 hidden layers (50,3,2).  

 It is necessary to quantify the values of these individual errors and Standard 

Deviations of each parameter (SD(A) and SD(Ea)) obtained with the application of the ANN, 

with relative output and target values of the set of 45 curves used in the following general 

expression for SD : 

 

       (18) 

 

where nc is the number of curves; np is the number of parameters per curve (np=1) and bij are  

the ATPs parameters (Ea and A). The values obtained range between are unacceptable such 

that it is necessary to improve the results after application of the complete HA, whose results 

obtained are shown in Table 2.  

We performed the training of a large set of neural networks considering all the 

possible configurations for architectures with 2 and 3 hidden layers and discarding those of a 

single layer. In light of the large number of cases assayed, we only show the results of the 

most significant configurations of the curve corresponding to the central point, because it is 

the most important one of the 45 comprising the ED. The output values of Ea and A and of 

the deviations in % (Dev %) with respect to those that served to generate the data are shown 

in the first part of Table 2, while the second part shows the values of Ea and A optimized with 

AGDC together with the deviations in % of the real values (Dev %). It is possible to note the 

clear improvement achieved with application of the complete HA on comparing the values of 
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the % of deviation (columns 8 and 9) of both parameters, with the corresponding values after 

the application of ANN (columns 4 and 5).  

 

 

Table 2. Values of the ATPs, Errors and Deviations obtained after application of ANN and the 
complete algorithm HA for the training processes of a large set of neural networks considering all the 
possible configurations for architectures with 2 and 3 hidden layers 

 

The improvement in the final values of the ATPs is clearly seen on performing a joint 

plot (Figure 7) of the Residuals of α calculated with the values of the parameters obtained by 

applying the ANN [eq. (19)] and those obtained after the application of the complete 

algorithm HA [eq. (20)], observing improvements of up to 11-fold (0.023 for HA and 0.25 for 

ANN) in the time interval of 10-20 minutes.   

	 	 �	 �����                      (19) 

	 	 ���	 � �                        (20) 

  ANN   HA = (ANN   + AGDC) 
 

Config. 
 

A /106 

min-1 
Ea /104 

Jmol-1 

 
Dev. % 

(A) 
 

 
Dev. % 

(Ea) 
 

A /106 

min-1 
Ea /104 

Jmol-1 
Dev. % 

(A)   
Dev. % 

(Ea)  

         
14/10 0.9800 4.1933 1.9990 -0.2233 1.0070 4.1859 -0.7038 -0.0453 
15/10 0.9801 4.1871 1.9908 -0.0746 0.9955 4.1829 0.4451 0.0253 

7/10/10 0.9800 4.1871 1.9965 -0.0738 0.9955 4.1829 0.4548 0.0259 
9/10/10 0.9801 4.1950 1.9995 -0.2631 1.0101 4.1867 -1.0104 -0.0640 
10/9/10 0.9800 4.1961 1.9995 -0.2885 1.0120 4.1872 -1.2051 -0.0758 
10/10/7 0.9804 4.1917 1.9628 -0.1847 1.0043 4.1852 -0.4260 -0.0283 
10/10/13 0.9795 4.1938 2.0491 -0.2331 1.0075 4.1860 -0.7521 -0.0483 
10/12/10 0.9799 4.1885 2.0002 -0.1082 0.9981 4.1836 0.1880 0.0094 
10/20/10 0.9806 4.1893 1.9438 -0.1273 0.9999 4.1841 0.0094 -0.0015 
11/10/10 0.9800 4.1923 1.9955 -0.1993 1.0052 4.1854 -0.5212 0.0341 
20/10/10 0.9795 4.1935 2.0514 -0.2267 1.0500 4.1866 -0.7017 -0.0452 
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Figure 7. Plot of the Residuals of α calculated from equation (19) with the values of the parameters 
obtained by applying the ANN and those obtained from equation (20) after the application of the 
complete algorithm HA. 

 
After analyzing the values of all the statistical moments of errors (SD(A) and SD(Ea)) 

and Deviations, it may be concluded that the optimal architecture of the neural network is 

(50,3,2), constituted by 3 hidden layers with a configuration of 10/20/10 used to carry out the 

later processes of ANN prediction and AGDC optimization. 

The process of prediction to determine the final optimized parameters consisted of 

application of the HA to new non-isothermal kinetic curves with “noise”, generated from the 

values of A and Ea within the maximum intervals defined in the ED. For the previous step of 

prediction applying ANN we used the neural network that proved to be optimal after the 

exhaustive process of training -architecture (50,3,2) and configuration (20/10/10)-, in all 

cases computing a base of 4 kinetic curves, which proved to be the ideal number for carrying 

out the multiple and simultaneous prediction of the initial ANN step. Table 3 shows the 

results obtained for the prediction of 4 pairs of A/Ea values (“Real Values”) that served to 

generate the input curve base with “noise”. After later application of the AGDC we obtained 

the optimized values of the parameters (“Optimized Values”) resulting from application of the 

complete HA. Bearing in mind that the percentages of deviations (“% Dev”) have an order of 

magnitude similar to that of the deviations of the training process of the neural network, the 

optimized values of A and Ea can be accepted as being definitive for the 4 prediction 

processes.                                               
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 HA Algorithm (ANN+AGDC)     
 

Real 
Values 
(A) /106 

min-1 
 

 
Real Values 

 (Ea) /104 

Jmol-1 
 

 
Optimized 

Values 
(A) /106 min-1 

 

 
Optimized   

Values 
(Ea) /104 

Jmol-1 
 

 
% Dev.  
    (A) 

 

 
% Dev.  

 (Ea) 
  

 
0.980001 

 
4.18914 

 
0.9897 

 
     4.1865 

 
 -0.99 

 
-0.06 

0.960018 4.19443 0.9792      4.1891  -2.00 -0.12 
0.980001 4.18914    0.980001      4.1891  -0.00015 -2.11 
0.859108 4.18082 0.8537      4.1824  0.61 0.04 

 
Table 3. Values of the ATPs, Errors and Deviations obtained after application of the complete 
algorithm HA for several Prediction processes when a neural network with a optimal architecture 
(50,3,2) and configuration (20/10/10) has been applied  

5. Conclusions 
Upon the analysis and comparison of the results shown in Figures 5 and 6 we observed 

that the graphical representation of the values of targets and outputs jointly corresponding to 

both parameters (A and Ea) according the plot obtained by the ANN application of Matlab 

provides a correlation that seems acceptable. However, on considering the outputs/targets 

regression lines of each of the parameters separately, where the appropriate scales are used, a 

great dispersion is shown and the results are unacceptable. That justifies the need of later 

application of the AGDC optimization algorithm in a second step to improve the results as 

Table 3 and Figure 7 reveals when the Residuals from ANN and HA are jointly plotted. The 

application of the hybrid algorithm (HA) that we propose in the present work provides good 

and satisfactory results for the optimized values of the ATPs. HA offers several advantages 

with respect to the isothermal classic methods since it allows to optimize ATPs directly 

without the need to determine the kinetic constants previously. In addition for the case of non-

isothermal experiments, a single replicated kinetic experiment is enough since it allows the 

computation of a larger number of kinetic data that implies a considerable saving of reagents 

and laboratory time. 
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