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Abstract

There are only four surfaces in which a fullerene can be embedded: the sphere,

projective plane, torus and Klein bottle. Let F be a fullerene on surface Σ. A reso-

nant pattern of a fullerene F is a set H of pairwise disjoint hexagons such that F−H
has a perfect matching. The Clar number c(F ) of F is the maximum cardinality of

all resonant patterns of F . In this paper, as a generalization of spherical fullerenes

we obtain a sharp upper bound for the Clar number of any fullerene F with n ver-

tices on surface Σ, that is, c(F ) ≤ �n6 � − χ(Σ), where χ(Σ) stands for the Euler

characteristic of Σ. Moreover, we present five families of projective fullerenes which

can attain the upper bound n
6 − 1, and characterize all fully-benzenoid toroidal and

Klein-bottle fullerenes.

1 Introduction

The discovery of buckminsterfullerene C60 has generated an epidemic of new research

into fullerene science. Fullerenes are closed carbon-cage molecules made up entirely of

pentagons and hexagons. Their molecular graphs are finite trivalent graphs on the sphere

with only hexagonal and pentagonal faces. Such structures also exist on other surfaces [7].

The Euler characteristic χ of a surface Σ is given by χ(Σ) = 2 − 2g if Σ = Sg, while

χ(Σ) = 2 − g if Σ = Ng, where Sg and Ng are obtained from the sphere by adding
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g handles and g crosscaps respectively. From Euler’s formula, one can obtain that the

number of pentagons f5 of a fullerene F on surface Σ is equal to 6χ(Σ). So there are only

four possible surfaces on which fullerenes exist, namely, the sphere S0, projective plane

N1, torus S1 and Klein bottle N2 since their Euler characteristics are respectively 2, 1, 0

and 0, and the other surfaces have negative Euler characteristics. The fullerenes on these

surfaces are called spherical, projective, toroidal and Klein-bottle fullerenes, respectively.

Hence there are exactly 12, 6, 0 and 0 pentagons in a spherical, projective, toroidal and

Klein-bottle fullerene, respectively.

Let F be a fullerene on surface Σ. A perfect matching (or Kekulé structure) M of F

is a set of edges such that each vertex is incident with exactly one edge in M . A cycle

of F is M-alternating if its edges appear alternately in and off M . A set H of pairwise

disjoint faces of F is called a resonant pattern if F has a perfect matching M such that

the boundary of each face in H is an M -alternating cycle. A Clar set of F is a resonant

pattern with the maximum number of faces. The number of faces of a Clar set is called

the Clar number of F , denoted by c(F ). A fully-benzenoid fullerene F is a fullerene

admitting a Clar set that includes all vertices of F .

The Clar number is an important chemical index which was introduced by Clar [4]

for predicting the stability of the benzenoid hydrocarbon isomers. Given two isomeric

benzenoid hydrocarbons, the one with larger Clar number is both chemically and thermo-

dynamically more stable. Hansen and Zheng [15] computed the Clar number of benzenoid

hydrocarbons using integer linear programming and conjectured that the linear program-

ming relaxation was sufficient for benzenoid hydrocarbons. Abeledo and Atkinson [1]

confirmed this conjecture for general 2-connected plane bipartite graphs. This result im-

plies that the Clar number can be computed in polynomial time for 2-connected plane

bipartite graphs. Salem [24,25] also attempted to give a combinatorial algorithm to solve

the Clar problem of benzenoid hydrocarbons. However Bernáth and Kovács [3] proved

that the Clar number problem is NP-complete for planar non-bipartite graphs. For other

relevant researches on the Clar number, we refer to [14, 19, 26, 31].

Zhang and Ye [32] presented an upper bound of Clar number of spherical Fullerenes.

A new proof was given by Hartuny [16].

Theorem 1.1. [32] Let F be a spherical fullerene with n vertices. Then c(F ) ≤ �n
6
� − 2.

The experimental spherical fullerenes C60:1, C70:1, C76:1, C78:1, C82:3, C84:22 and
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C84:23 attain the upper bound in Theorem 1.1, where Cn:m [9] occurs at position m in

a list of lexicographically ordered spirals that describe isolated-pentagon isomers with

n atoms. For buckminsterfullerene C60, El-Basil [8] found that it has exactly 5 Clar

sets, each of which consists of 8 hexagons. Ye and Zhang [30] gave a characterization of

spherical fullerenes whose Clar numbers attain the bound n
6
− 2 and constructed all 18

spherical fullerenes whose Clar numbers attain the maximum value 8 among all fullerene

isomers of C60. Further Zhang et al. [33] proposed a combination of Clar number and

Kekulé count of spherical fullerenes, as a stability predictor of spherical fullerenes, which

distinguishes uniquely the icosahedral C60 from its all 1812 fullerene isomers. Recently,

Hartuny [16] gave another characterization of spherical fullerenes whose Clar numbers

attain the bound n
6
− 2.

Altshuler [2] showed that any toroidal fullerene can be determined by a unique string

of three integers. For convenience, we adopt the notation H(p, q, t) (p ≥ 1, q ≥ 1,

0 ≤ t ≤ p − 1), which was introduced by Marušič and Pisanski [21], to represent a

toroidal fullerene. Kirby and Pollak [18] described a simple algorithm for enumerating

all isomers of a toroidal fullerene. Thomassen [29] classified Klein-bottle fullerenes with

girth 6 into five classes. Li et al. [20] reclassified the five classes of Klein-bottle fullerenes

into two new classes K(p, q, t) and N(p, q, t).

In this paper, Theorem 1.1 is extended to any fullerenes on surface Σ as follows.

Theorem 1.2. Let Fn be a fullerene graph with n vertices on surface Σ. Then c(Fn) ≤
�n
6
� − χ(Σ).

In Section 2 of this paper, we will present the proof of Theorem 1.2. We say a fullerene

with n vertices on a surface Σ extremal if the Clar number of the fullerene attains the

bound n
6
−χ(Σ). In addition to the experimental extremal spherical fullerenes pointed out

previously, Zhang and Ye [32] constructed infinitely many examples of extremal fullerenes

in zigzag and armchair carbon nanotubes. In Section 3, we give five families of ex-

tremal projective fullerenes, whose Clar numbers attain the upper bound n
6
− 1. Since

there is a one to one correspondence from projective fullerenes to centrosymmetric spher-

ical fullerenes [7], we also obtain five families of the corresponding extremal spherical

fullerenes. Since the Euler characteristics of torus and Klein-bottle are zero, a toroidal

or Klein-bottle fullerene is fully-benzenoid if and only if it is extremal. In Section 4, we

characterize all extremal toroidal and Klein-bottle fullerenes.
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2 Proof of Theorem 1.2

The projective plane is the simplest compact nonorientable surface which can be obtained

from the sphere by adding one crosscap. Alternately, the projective plane can be obtained

by identifying antipodal points of the sphere. Similarly, a graph on projective plane is

the antipodal quotient of a centrosymmetric spherical graph on the sphere which has

vertices, edges and faces obtained by identifying antipodal vertices, edges and faces of the

centrosymmetric spherical graph. Graphs on projective plane are usually drawn inside a

circular frame where antipodal boundary points are to be identified.

(a) (b) (c)

Figure 1. (a) A resonant pattern of a projective fullerene; (b) A resonant pattern of

the corresponding centrosymmetric spherical fullerene of projective fullerene in (a); (c) A

resonant pattern of the Schlegel diagram of spherical fullerene in (b).

In Clar’s modes [4], a resonant pattern is denoted by those cycles depicted within

such hexagons and the remainder is placed a perfect matching designated by the double

bonds. If some hexagon in the resonant pattern of a projective fullerene is located in

the boundary region in the circular representation and is divided into two parts by the

boundary of the circular, we assign each part a halfcycle. If some edge of the remainder

perfect matching is divided into two parts by the boundary of the circular, we place

each part a half double bonds. For example, a resonant pattern of a projective fullerene

with 30 vertices is illustrated in Figure 1(a). If we draw a projective graph G inside a

circular frame, we can always obtain the corresponding centrosymmetric spherical graph

G1 as follows: take a copy G, each boundary point is being identified to the copy of its

antipodal point, then stretch it to the corresponding centrosymmetric spherical graph G1.

A resonant pattern of the corresponding centrosymmetric spherical fullerene of projective
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fullerene in Figure 1(a) is illustrated in Figure 1(b). Graphs on sphere are usually drawn

on plane as Schlegel diagrams. Figure 1(c) illustrate a resonant pattern of the Schlegel

diagram of the spherical fullerene in 1(b).

Proof of Theorem 1.2. The theorem holds for a toroidal or Klein-bottle fullerene since

it has the Euler characteristic 0 and consists entirely of hexagons. By Theorem 1.1, it

holds for any spherical fullerenes. So we only need to prove that c(F ) ≤ �n
6
� − 1 for

any projective fullerene F with n vertices. To this end, let H be a Clar set of F . Then

there exists a perfect matching M of F such that the boundary of each face in H are M -

alternating. Since each edges of M is obtained by identifying two antipodal edges of the

corresponding centrosymmetric spherical fullerene F1, the set of edges in F1 corresponding

to M form a perfect matching M1 of F1. Since each face of H is obtained by identifying

two antipodal faces of the corresponding centrosymmetric spherical fullerene F1, the set of

facesH1 in F1 corresponding toH is a set of pairwise disjoint faces of F1 and the boundary

of each face in H1 is M1-alternating. So we have |H1|=2|H|, and H1 is a resonant pattern

of F1. By Theorem 1.1, we have c(F ) = |H| = |H1|
2

≤ c(F1)
2

≤ 	 2n
6

−2

2
= �n

6
� − 1.

3 Extremal projective fullerenes

In this section we will present five families of extremal projective fullerenes, which implies

five families of extremal spherical centrosymmetric fullerenes. From now on, we always

omit the boundary of the circular frame when we draw a projective fullerene.
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5v
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5v

6v

1A 2A
2H

Figure 2. The construction of the first family of projective fullerenes Hk.

(1) Extremal projective fullerenes Hk
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From A0, add k layers of hexagons to obtain Ak for a natural number k (see Figure

2). We label the 2-degree vertices of Ak along the boundary of Ak counterclockwise with

v1, v2, v3, v4, v5, v6, and connect v1 with v4, v2 with v5, v3 with v6. Now we get a projective

fullerene Hk. Figure 2 illustrates the construction of H2. The graph Hk (k = 0, 1, 2, . . . )

has 12k + 24 vertices, 18k + 36 edges, 6k + 7 hexagons and c(Hk) = 2k + 3.

A
1B

1I

1v
2v

8v 9v

10v

11v

12v

14v

15v

13v

3v

4v

6v

7v

5v

16v

Figure 3. The construction of the second family of projective fullerenes Ik.

(2) Extremal projective fullerenes Ik

Extremal projective fullerenes Ik can be constructed as follows: first display a linear

hexagonal chain with 3k hexagons along the vertical direction, then paste two linear

hexagonal chains with 3k + 1 and 3k hexagons to the each lateral side gradually, and

denote the resulting graph by Bk, where k is a natural number. Now we paste a copy of A

to the top side of Bk and rotate another copy of A 180 degrees, then paste it to the bottom

side of Bk. Note that the resulting graph has 6k + 10 2-degree vertices. We label these

2-degree vertices along the boundary of Bk counterclockwise with vi, i = 1, 2, . . . , 6k+10,

and connect vi with vi+3k+5, where i = 1, 2, . . . , 3k + 5. Now we get projective fullerenes

Ik. Figure 3 illustrates the construction of I1. The graph Ik (k = 0, 1, . . . ) has 36k + 48

vertices, 54k + 72 edges, 18k + 19 hexagons and c(Ik) = 6k + 7.

(3) Extremal projective fullerenes Jk

Start from B, then paste k linear hexagonal chains with 3, 6,. . . , 3k, 3k+ 1 hexagons

to each lateral side gradually, and denote the resulting graph by Dk, where k is a positive

integer. For simplicity of our notation, we denote C2 by rotating C1 180 degrees and D by

rotating C 180 degrees. Now we paste k − 1 copies of C1 to the top side of Dk gradually,
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Figure 4. The construction of the third family of projective fullerenes Jk.

and paste k − 1 copies of C2 to the bottom side of Dk gradually, then paste a copy of C

to the top side of resulting graph, and a copy of D to the bottom side of the resulting

graph. Now we get a graph Ek. Clearly, Ek has 6k+8 2-degree vertices. We label these 2-

degree vertices along the boundary of Ek counterclockwise with vi, i = 1, 2, . . . , 6k+8, and

connect vi with vi+3k+4, where i = 1, 2, . . . , 3k + 4. Now we get a projective fullerene Jk.

Figure 4 illustrates the construction of J2. The graph Jk (k = 1, 2, . . . ) has 6k2+36k+30

vertices, 9k2 + 54k + 45 edges, 3k2 + 18k + 10 hexagons and c(Jk) = k2 + 6k + 4.

(4) Extremal projective fullerenes Lk

From F0, add k layers of hexagons to obtain Fk, where k is a natural number. We label

vertices along the boundary of Fk counterclockwise with v0, v1, . . . , v17, identify pairs of

vertices vi and vi+9 to ui, identify pairs of edges vivi+1 and vi+9vi+10 to uiui+1, i =

0, 1, . . . , 8, where subscript addition operation is modulo 18. Now we get a projective

fullerene Lk. Figure 5 illustrates the construction of L1. The graph Lk (k = 0, 1, . . . ) has

18k + 30 vertices, 27k + 45 edges, 9k + 10 hexagons and c(Jk) = 3k + 4.

(5)Extremal projective fullerenes Nk
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Figure 5. The construction of the fourth family of projective fullerenes Lk.
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Figure 6. The construction of the fifth family of projective fullerenes Nk.

From G0, then add k layers of hexagons to obtain Gk, where k is a natural number.

We label vertices along the boundary of Gk counterclockwise with v0, v1, . . . , v29, identify

pairs of vertices vi and vi+15 to ui, identify pairs of edges vivi+1 and vi+15vi+16 to uiui+1,

i = 0, 1, . . . , 14, where subscript addition operation is modulo 30. Now we get a projective

fullerene Nk. Figure 6 illustrates the construction of N1. The graph Nk (k = 0, 1, . . . )

has 30k + 72 vertices, 45k + 108 edges, 15k + 31 hexagons and c(Nk) = 5k + 11.

It is noticeable that by the same method mentioned in Section 2, we can also ob-

tain zigzag nanotube NZ(2k + 1, 6) depicted in [32], which is the corresponding extremal

centrosymmetric spherical fullerene of the projective fullerene Hk (k = 0, 1, . . . ).
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4 Extremal toroidal and Klein-bottle fullerenes

In this section, we obtain complete characterizations of the extremal toroidal and Klein-

bottle fullerenes.

Now, we are going to illustrate the structures of toroidal and Klein-bottle fullerenes.

Let P be a p × q-parallelogram in a hexagonal lattice, where p and q are positive

integers. Every corner of P lies at the center of a hexagon. The top side and the bottom

side intersect p vertical edges and each of the two parallel lateral sides passes through

q edges perpendicular to them. A toroidal fullerene H(p, q, t) (respectively, Klein-bottle

fullerene K(p, q, t)) is obtained from P by the following boundary identification: first

identify two lateral sides along the same direction and then identify the bottom side with

the top side along the same (respectively, reverse) direction with a torsion t, where t is an

integer and 0 ≤ t ≤ p− 1. For example, a toroidal fullerene H(9, 6, 3) and a Klein-bottle

fullerene K(9, 6, 3) are illustrated in Figure 7(a) and (b) respectively.

1 2 3 4 6 7 8 95

1 2 3 4 5 67 8 9

1 2 3 4 6 7 8 95

1234 56789

1 2 3 5 6 74

123 4567

8

8

(a) (b) (c)

Figure 7. (a) A toroidal fullerene H(9, 6, 3); (b) A Klein-bottle fullerene K(9, 6, 3); (c)

A Klein-bottle fullerene N(8, 9, 2)

Let R be a p × q-rectangle in a hexagonal lattice, where p is a positive even integer

and q is a positive integer. Every top corner of R lies at the center of a hexagon and

every bottom corner of R lies at the center of a hexagon if q is even but at the center of a

horizontal edge otherwise. The top side (respectively, the bottom side) covers p
2
horizontal

edges and each of the two parallel lateral sides passes through � q
2
� edges perpendicular to

them. A Klein-bottle fullerene N(p, q, t) is obtained from R by the following boundary

identification: first identify two lateral sides along the same direction and then identify

the bottom side with the top side along the reverse direction with a torsion t, where t is an

integer, t and q have the opposite parity, and 0 ≤ t ≤ q − 1. For example, a Klein-bottle

fullerene N(8, 9, 2) is illustrated in Figure 7(c).

It is easy to see that both H(p, q, t) and K(p, q, t) are bipartite graphs with pq faces,
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2pq vertices and 3pq edges, while N(p, q, t) is non-bipartite with pq
2
faces, pq vertices and

3pq
2

edges.

The following two lemmas will be useful.

Lemma 4.1. [27] H(p, q, t) is hexagon-transitive.

Lemma 4.2. [28] All Klein-bottle fullerenes K(p, q, t), t = 0, 1, . . . , p− 1, are equivalent.

Theorem 4.3. H(p, q, t) is extremal if and only if p ≡ 0 (mod 3) and q ≡ t (mod 3).

Proof. Suppose H(p, q, t) is extremal. Then there exists a Clar set of H(p, q, t) covering

all vertices of H(p, q, t). Let C be the cycle induced by those vertices which are just upon

the bottom horizontal line of parallelogram P (see Figure 8(a)). Then the length of C is

2p. For a hexagon in a Clar set of H(p, q, t), if C intersects it, then their intersection must

be a path with 3 vertices. Hence 2p is divisible by 3. This implies that p ≡ 0 (mod 3).

So p ≥ 3. Let h be the hexagon in the lower left corner of P without intersection with the

boundary lines of P . Since H(p, q, t) is hexagon-transitive and extremal, we can extend h

to a unique Clar set H of H(p, q, t) which covers all vertices of H(p, q, t). The hexagons

in H in the interior of the parallelogram P are first determined. Since h ∈ H, the (3i)-

th hexagon (i = 0, 1, . . . ,p
3
− 1) from left to right along the bottom horizontal line of

parallelogram P is in H. If q = 3s+ r, where s and r < 3 are non-negative integers, then

the (3j)-th hexagon (j = 0, 1, . . . , s) from bottom to top along the left lateral line of P

is in H. Hence the r-th hexagon, and the (3i + r)-th hexagon (i = 0, 1, . . . ,p
3
− 1) from

left to right along the top horizontal line of P are in H (see Figure 8(b), (c) and (d)).

The 0-th hexagon from left to right along the bottom horizontal line of P indeed is the

same hexagon as one of the (3i + r)-th hexagons along the top horizontal line of P . So

0 ≤ t = 3i+ r ≤ p− 1, and we have q ≡ t (mod 3).

Conversely, suppose p ≡ 0 (mod 3) and q ≡ t (mod 3). The 0-th hexagon h0 from

left to right along the bottom horizontal line of P is the same hexagon as t-th hexagon

along the top horizontal line of P . Since q ≡ t (mod 3), let q = 3s + r and t = (3i + r)

where s, i and r < 3 are non-negative integers. Further, since p ≡ 0 (mod 3), h0 can be

extended uniquely to a Clar set of H(p, q, t) covering all vertices (see also Figure 8(b), (c)

and (d)). So H(p, q, t) is extremal.

Theorem 4.4. K(p, q, t) is extremal if and only if p ≡ 0 (mod 3).
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Figure 8. Illustration for the proof of Theorem 4.3: Toroidal fullerenes H(p, q, t).

Proof. Suppose K(p, q, t) is extremal. Using similar arguments as in Theorem 4.3, we can

obtain that p ≡ 0 (mod 3).

(a)

hh h

0 (mod 3),

0 (mod 3)

p

q

�

�

(a) (c)
0 (mod 3),

2 (mod 3)

p

q

�

�

(b)
0 (mod 3),

1 (mod 3)

p

q

�

�

Figure 9. Illustration for the proof of Theorem 4.4: Klein-bottle fullerenes K(p, q, t).

Conversely, suppose p ≡ 0 (mod 3). The 0-th hexagon h0 from left to right along

the bottom horizontal line of P is the same hexagon as (t+ 1)-th hexagon along the top

horizontal line of P . Let h be the hexagon in the lower left corner of P not intersecting

the boundary of P . Suppose q = 3s + r, where s and r < 3 are non-negative integers.

For K(p, q, r + 2), where r + 2 is modulo p, since p ≡ 0 (mod 3), by a similar argument

as in Theorem 4.3, h can be extended uniquely to a Clar set of K(p, q, r+ 2) covering all

vertices (see Figure 9). So K(p, q, r+2) is extremal. It follows immediately from Lemma

4.2 that all K(p, q, t), t = 0, 1, . . . , p− 1, are extremal.
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Theorem 4.5. N(p, q, t) is extremal if and only if q ≡ 0 (mod 3).

Proof. Suppose N(p, q, t) is extremal. Then there exists a Clar set H of N(p, q, t) covering

all vertices of N(p, q, t). Let P1 be the subgraph induced by those vertices which are just

at the right side of the left lateral line of rectangle R (see Figure 10(a)). Assume that

t = 0. Then P1 is a cycle and its length equals q. For any hexagon in H, if P1 intersects

it, then their intersection must be a path with 3 vertices. Hence q is divisible by 3, i.e.,

q ≡ 0 (mod 3).

So we may now assume that t �= 0. Then P1 is a path with q + 1 vertices. Let v0 be

the end vertex of P1 on the top horizontal line of R. Let h0 be the 0-th hexagon from

top to bottom along the left lateral line of R, and h1 be the hexagon in the upper left

corner of R such that an edge of h1 overlaps the top horizontal line of R. Suppose h2

is the hexagon such that h0, h1 and h2 have the common vertex v0. By the structure of

N(p, q, t), h2 is one of the hexagons just above the p
2
horizontal edges along the bottom

horizontal line of R. Since H covers v0 and N(p, q, t) is 3-regular, there is exactly one

hexagon of h0, h1 and h2 in H.

1h

1h

1P

(a) Illustration for necessity

2P

(b) 1 (mod 2)q � (c) 0 (mod 2)q �

0v

1h
0h

Figure 10. Illustration for the proof of Theorem 4.5: Klein-bottle fullerenes N(p, q, t).

If h0 ∈ H, then each hexagon intersecting the top and bottom horizontal lines of R

at exactly two vertices of N(p, q, t) is in H. These hexagons cover exactly 4 vertices of

P1. For any other hexagon in H, if P1 intersects it, then their intersection must be a path

with 3 vertices. Hence q + 1− 4 is divisible by 3. This implies that q ≡ 0 (mod 3).

If h1 ∈ H, then each hexagon just below the p
2
horizontal edges along the top horizontal

line of R is in H. By the structure of N(p, q, t), one of these hexagons must cover the

other end vertex of P1. So these hexagons cover exactly 4 vertices of P1. For any other

hexagon in H, if P1 intersects it, then their intersection must be a path with 3 vertices.

Hence q + 1− 4 is divisible by 3. This implies that q ≡ 0 (mod 3).
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If h2 ∈ H, then each hexagon just above the p
2
horizontal edges along the bottom

horizontal line of R is in H. These hexagons cover exactly 4 vertices of P1. For any other

hexagon in H, if P1 intersects it, then their intersection must be a path with 3 vertices.

Hence q + 1− 4 is divisible by 3. This implies that q ≡ 0 (mod 3).

Conversely, suppose q ≡ 0 (mod 3). Then q ≥ 3. Starting from h1, we can always

extend it to a Clar set of N(p, q, t) (see Figure 10(b) and (c)). In fact, each hexagon just

below the p
2
horizontal edges along the top horizontal line of R is in H, and the hexagons

in H without intersection with boundary lines of R are uniquely determined. Note that

these hexagons, which are already determined, cover some vertices of P1. Let P2 be the

subgraph induced by those vertices which are just at the left side of the right lateral

line of rectangle R. The hexagons along the left lateral line of R covering the remaining

vertices of P1 also cover the remaining vertices of P2. Hence h can be extended to a Clar

set of N(p, q, t) covering all vertices (see also Figure 10(b) and (c)). Furthermore, none

of the hexagons which intersect the top and bottom horizontal lines of R at exactly two

nonadjacent vertices is in H, and none of hexagons just upper the p
2
horizontal edges along

the bottom horizontal line of R is in H . These facts guarantee that the Clar set H is

irrelevant to the choice of t. Hence N(p, q, t) is extremal for all possible t.

5 Conclusions

Theorem 1.2 implies none of the spherical fullerenes and projective fullerenes is fully-

benzenoid and all extremal toroidal and Klein-bottle fullerenes are fully-benzenoid. This

paper also presents simple characterizations for fully-benzenoid toroidal and Klein-bottle

fullerenes. The fully-benzenoid polycyclic aromatic hydrocarbons whose resonant pat-

terns can be represented with only hexagons possess particularly high stability and lower

reactivity [4, 5]. Gutman and Babić [12] early gave a characterization of fully-benzenoid

hydrocarbons. Recently Gutman and Salem [11] showed that any fully-benzenoid hydro-

carbon has a unique Clar set. We point out that fully-benzenoid K(p, q, t) also has this

property, but fully-benzenoid fullerene H(p, q, t) and N(p, q, t) each has exactly three Clar

sets. For other researches on fully-benzenoid polycyclic aromatic hydrocarbons, we refer

to [6, 10, 13,22,23].

Hartung [17] developed a method to calculate the Clar number directly for many

infinitely families of spherical fullerenes. Such arguments also imply that, for any constant
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c, there exists a spherical fullerene F with n vertices such that c(F ) < n
6
−c. The problem

how to compute the Clar number of a given fullerene on the sphere or projective plane

efficiently is still open.
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