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Abstract. We use flag graphs to describe benzenoid and coronoid systems.  Factoring out symmetries, we 
obtain a symmetry-type graph, which may be interpreted as a surface with boundary plus an additional 
combinatorial structure, which is then used to partition benzenoids into 14 classes, thereby re-interpreting in 
a purely combinatorial way the classification proposed by Gutman and Cyvin. Formulations in terms of 
automorphism groups or point groups (which are exactly twice as large for benzenoids) are equivalent. A 
boundary-edges code is used to describe benzenoids: combinatorial properties, including assignment to the 
14 classes, can be recoverd from this code. 

1   Introduction 
Benzenoid hydrocarbons are important from both practical and theoretical chemical 

viewpoints [5,11–13,15,21,24,25,30]. Many of their properties can be understood, at least 

qualitatively, using simple models which take into account little more than the symmetry 

and combinatorial structure, as embodied in the molecular graph (the graph of the 

hydrogen-depleted molecule, i.e., the carbon skeleton). In the present paper we take some 

ideas from the mathematical theory of maps on surfaces and describe their application to 
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benzenoids (and coronoids), where they can be used to give a combinatorial description of 

the possible symmetries of these systems in terms of properties of the flag graph. The flag 

graph itself contains all information necessary to reconstruct the underlying 

benzenoid/coronoid system, allowing reconstruction of the adjacency matrix, vertices, 

edges, faces and holes (if any). The flag-graph description also allows us generalise 

beyond purely chemical examples.  

We will find it useful to distinguish between chemical and mathematical approaches to 

symmetry,  which give rise to two different but equally natural labelling schemes that 

hinge on the difference between point groups and automorphism groups. This potentially 

confusing difference of language is discussed in detail below.   

To keep the treatment reasonably self-contained, we repeat here some necessary 

definitions and notation, following as far as possible the presentation by Gutman and 

Cyvin in their Introduction to the Theory of Benzenoid Hydrocarbons [21]. The basic 

concept is of the benzenoid system BB (a mathematical model for a polycyclic benzenoid 

hydrocarbon molecule in which the graph induced by the carbon skeleton is retained and 

hydrogen atoms are suppressed) [13]. Several definitions and naming systems for these 

objects are current, and we present below two of the several definitions given by these 

authors ([21] pp.11-15). 

1.1  Definition of benzenoid and coronoid systems  
An intuitive description of a benzenoid system B is given by Definition A ([21], p.11): 

‘A benzenoid system is a connected geometric figure obtained by arranging congruent 

regular hexagons in a plane so that two hexagons are either disjoint or have a common 

edge. This figure divides the plane into one infinite (external) region and a number of finite 

(internal) regions. All internal regions must be regular hexagons.’1 A supplementary 

definition D ([21], p.15) describes isomorphism in this context: two benzenoid systems 

belonging to the plane σ are isomorphic if they can be brought into coincidence by any 

combination of translations in σ, rotations in σ and a reflection in a plane perpendicular to 

σ. This is effectively a statement of the types of symmetry operation that are to be 
                                                           
1Note that this definition excludes helicenes, where the graph is planar, but cannot be 

drawn without overlap on the tessellation of the plane with congruent hexagons. Helicenes 

and benzenoids taken together constitute the class of  fusenes [8, 20]. 
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considered in the construction of the groups. Here we note that this is a more restricted set 

than those considered by chemists in treatments of symmetry of benzenoid molecules (e.g. 

[16]). Benzenoid systems in the mathematical sense are 2D objects. In 2D, reflection in the 

plane σ has the same effect as the identity operation. In contrast, the molecule, even if 

rigorously planar at equilibrium geometry, is seen in chemistry as an intrinsically 3D 

object, with nuclei that may move out of plane during the course of vibrations and with a 

three-dimensional electron cloud surrounding those nuclei; in these circumstances it is 

appropriate to extend the symmetry group by reflections in the plane σ, and the point group 

of the molecule will therefore be twice as large as the automorphismgroup of the 

corresponding benzenoid system BB, as the point group will be the direct product of the 

automorphism group with the abstract group of order two.  

Other definitions of benzenoid exist. One uses dualists, defined as acollection of 

vertices placed in the centre of each hexagonal benzenoid ring,plus edges connecting 

vertices of rings sharing a CC bond; angles of dualists matter, unlike in normal graphs. 

Benzenoids are called cata-condensed when the dualist is acyclic, peri-condensed when 

the dualist contains three-membered rings, and corona-condensed when the dualist 

contains larger rings that are not perimeters of fused triangles; for cata-condensed 

benzenoids, dualists allow a simple notation based on digits 0 and 1 [2,4]. 

One remark about the figures in the present paper, and the way that molecular graphs 

are typically drawn, is that graph-theoretical diagrams generally use single lines for edges, 

ignoring the presence of alternating single and double bonds in the usual chemical Kekulé 

formulas for benzenoids. In both, hydrogen atoms are suppressed. 

Molecules similar to benzenoids, but with internal holes, have also been synthesised 

[15,30]. These are described as ‘coronoids’ [5,11,12,21]. A benzenoid system can be 

defined with respect to cycles on the hexagonal lattice (definition C, [21], p.13): given 

such a cycle, B is formed by the vertices and edges lying on the cycle and in its interior. 

This definition is easily adapted for coronoids. Single coronoid systems have exactly one 

hole, and can be defined by assuming two cycles on the hexagonal lattice, C′ and C″, with 

C″ ‘completely embraced’ by C′ [21, p.119]: the single-coronoid system C consists of the 

vertices and edges on C′ and C″, together with those in the interior of C, but outside C″. 

This idea can be extended to systems with more holes by adding curves C″′, … Clearly, if 

C is to describe a molecule, C″, C″′, … must have size greater than 6, to form inner 
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perimeters where some vertices are have degree 2, corresponding to CH groups in the 

molecule, and considerations of steric strain imply that holes should be even bigger. The 

mathematical definition of a coronoid system CC does not require these restrictions 

(although holes of size 6 are explicitly forbidden in [21]).  

A primitive coronoid system consists of a single chain of hexagons in a macro-cyclic 

arrangement. Every coronoid system with h+1 hexagons is either a primitive coronoid or is 

constructed from a coronoid system with h hexagons by adding a hexagon on the outer (or 

if possible, inner) perimeter ([21], p.119).  

The number of internal vertices of a benzenoid or coronoid system (incident with three 

hexagonal faces) is denoted ni. A benzenoid system is either cata-condensed (if ni  = 0) or 

peri-condensed (if ni  ≥ 1).) Primitive coronoids with holes of size greater than 6 

correspond to the cycloarenes [30], i.e., molecules in which catacondensed rings form a 

macrocyclic system with a cavity into which carbon-hydrogen bonds project. 

The synthesis of kekulene, a coronoid with an internal hole having a periphery of 18 

carbon atoms was achieved by Diederich and Staab in 1978 [15] and later improved by 

Staab and coworkers, as recounted in the book on coronoids by Cyvin, Brunvoll and Cyvin 

[11, p.5]. A generalization of aromatic systems [6] with a central conjugated n-membered 

ring surrounded by benzenoid rings (as in coronene, which has a benzenoid ring in the 

centre) is the concept of [n]circulenes [24]; for instance, with a central five-membered ring 

(n = 5), the bowl-shaped molecule of corannulene has been thoroughly investigated. 

Benzenoids could of course be considered as the limiting case of the coronoids, as 

‘coronoids with zero holes’, but it is useful from both chemical and mathematical points of 

view to preserve the distinction implied by the use of separate symbols B and C . 

1.2 A topological distinction between benzenoid and coronoid 

systems 
A fundamental topological distinction between benzenoids and coronoids can be 

seen clearly using the first homotopy group, also known as the fundamental group, �1(S,P), 

which can be defined for any surface S (orientable or non-orientable, with or without 

boundary) as follows:  starting at a arbitrary point P we may draw different oriented loops 

beginning and ending in P. If two loops can be transformed one into another via 

continuous transformation, they are homotopic. For the classes of homotopic loops a 

-6-



natural group operation can be defined [19]:  for representative loops  a1 and a2 of 

homotopic classes, we find a representative loop b = a1a2 of the product homotopy class by 

joining the end of  a1 with the beginning of  a2 (after detaching them from the point P), as 

shown in Figure 1 (left), whereas the representative of the inverse homotopy class is a1
–1, 

the same curve as a1 but with opposite orientation. 

 

Figure 1: The process of forming the product b = a1a2 of loops a1 and a1 on any surface S. 

Thus we obtain a free group – a group without relations between its generators, in 

which each generator has an infinite order (see [19], pp.65-66) ) – known as the first 

homotopy group or fundamental group  �1(S,P). Generators of this group are in one-to-one 

correspondence with ‘holes’ in the surface. Given a surface with boundary, there is a 

unique way to complete it to a surface without boundary by patching disks to boundary 

‘holes’. We restrict attention to surfaces that can be obtained from a sphere or a plane by 

excising a finite number of topological disks. In benzenoid systems all loops may be 

contracted via continuous transformation to a point, but in coronoids this is not the case 

(see Figure 1). Two coronoids have the same number of holes if and only if their 

fundamental groups are isomorphic. 

 

Figure 2: Loops in benzenoids and coronoids: (left) any loop in a benzenoid can be contracted to a 
point; (middle and right) the product of representative loops a1 and a1 (middle) is b = a1a2 (right), 

which is a representative of the homotopy class of a1a2. 

Figure 2 shows an important topological distinction between benzenoids and 

coronoids. In a benzenoid, all loops are contractible to a point but in a coronoid, loops 

surrounding the holes cannot be contracted. In [21] only those coronoids with a single hole 
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are considered. These single coronoid systems are characterized by the fact that the 

fundamental group �1(S,P) is generated by a single element and hence isomorphic to the 

group of integers under addition. 

1.3  A combinatorial distinction between benzenoid and coronoid 

systems 
Benzenoid system BB and coronoid system C contain vertices and edges. Pisanski 

and Balaban [28] introduced the idea of studying their hexagonal faces, each of which is 

divided into 12 right triangles called flags. One of the first appearances of flags in 

connection with graphs on surfaces was around 1980, in a paper by Lins [26]. Flags may 

be viewed as vertices of a flag graph F(B) or F(C). The theory of flag graphs for closed 

surfaces [7,27] has been adapted for surfaces with boundary, such as B and C, in [28]. 

In the present paper we depart in one respect from the approach to flag graphs taken 

in [28]. There it was required that all vertices of the flag graph have degree 3, and semi-

edges leading across the boundary were therefore introduced. In the present description, 

the flag graphs are not required to be 3-regular, and no semi-edges are needed. 

Specifically, the vertices of a flag graph F(G) derived from an embedded graph G 

correspond to the flags of G. A flag is defined by a triple (v, e, f) consisting of a vertex v of 

G, an edge e of G that is incident on v, and a face f of G that is incident with both. Edges of 

the flag graph are defined by adjacency of the flags. Two flags are adjacent if they share 

two members of the triple. Colours are assigned to the edges of the flag graph according to 

the prescription: if the adjacent flags differ in v, the colour is 0, if they differ in e, the 

colour is 1 and if they differ in f, the colour is 2. If G is embedded in a surface without 

boundary, F(G) is cubic, and removal of all edges of colour 1 gives a subgraph consisting 

of a disjoint union of 4-cycles, each corresponding to an edge of G. Removal of all edges 

coloured 0 from F(G) gives a subgraph consisting of a disjoint union of cycles in one-to-

one correspondence with the vertices of G, and each of size equal to twice the degree of the 

corresponding vertex of G. Likewise, removal of all edges of colour 2 breaks F(G) into 

cycles corresponding to faces of G. All vertex, edge and face information from the original 

graph is thus encoded in F(G). 

For B and C , the embedding surface has one (B) or more (C) boundaries. In the 

latter case, the flag graph contains some vertices of degree two, corresponding to flags 

whose triples contain vertices and edges in the boundary. If in such a case we remove those 
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edges of F(G) that are coloured 0 and belong to a 0,2 four-cycle, the resulting graph will be 

composed of a disjoint union of cycles in which the two-coloured cycles (coloured 

alternately 1 and 2) correspond to internal vertices, and of the remaining k+1 cycles, one 

corresponds to the outside boundary, and (if k > 0) k are in one-to-one correspondence with 

the internal perimeters, i.e., with the holes. In the case that G has no boundary, deletion of 

the edges with 0 colour gives only the (1,2) two-coloured cycles, corresponding to all 

vertices of G. 

 

Figure 3: Flag graphs obtained as duals of a benzenoid (top) and a coronoid (bottom). Flags are 
represented as congruent right triangles in the barycentric subdivision of faces. Circles correspond 
to 0-1 cycles of edges with alternating numbers 0 and 1; the parallel pairs of edges linking the 
circles correspond to 2-edges. 

As an easy concrete example, the flag graph of benzene consists of 12 vertices 

arranged in the 12-cycle with edges alternately coloured 0-1. Figure 3 shows examples of 

the construction and analysis of flag graphs for larger benzenoid and coronoid systems. 

 Using flag-graphs we may make a mathematical distinction between two systems, 

both formally derived from the coronene molecule: a benzenoid in which a central hexagon 

is present and a coronoid in which the central hexagon is absent (Figure 4). Note that no 

chemical significance in terms of molecular structure can be given to the absence of the 
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central hexagon if the vertices around the hole are still intended to represent carbon atoms 

trigonally bonded to carbon neighbours only. 

 

 

Figure 4: Flag graphs of a benzenoid and a coronoid with the same graph and boundary cycle. 

Flag graphs can be used to obtain the symmetry information for the benzenoid as 

follows. The group A of edge-color preserving automorphisms of  F(G) acts regularly on G 

in the sense that for each pair of vertices u,v of F(G) there is at most one automorphism 

mapping u to v. This fact has interesting consequences. Namely, each orbit of A has the 

same size in F(G), both in edges and vertices. In particular, each orbit has |A| elements. 

This implies that the order of the group A divides n, the number of vertices of F(G). The 

quotient graph  F(G)/A is denoted by T(G) and is the symmetry-type graph of G. The 

projection that maps each vertex or edge to the corresponding orbit is a regular covering 

projection ( see [27]). The symmetry-type graph may have semi-edges that result from 

mirror symmetries. For example, the symmetry-type graph of benzene (Figure 5) consists 

of a single vertex with two semi-edges, one labelled 0 and the other labelled 1.  
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Figure 5: Flag graph F(G) (right) and symmetry-type graph T(G) (left) for the molecular graph G 
corresponding to the benzene molecule.  

The symmetry type graph can be obtained from the flag graph in a purely 

combinatorial way. Namely, each automorphism preserves edge-colors. Hence, for each 

pair of vertices of the flag graph there exists at most one automorphism mapping one to 

another. On the other hand, the symmetry type graph is connected. Thus, vertices of the 

symmetry type graph are found by breath-first search: they are those vertices close to a 

root vertex of the flag graph that are not in the same orbit as the root. For benzenoids, this 

mechanical procedure is often replaced by simple observation of geometric symmetries 

and hand calculation of the quotient graph. 

For instance, the flag-graph F of naphthalene has 24 flags (Figure 6). Subgraphs F0-

1, F1-2 and F0-2 recover the numbers of faces, edges and vertices, respectively. As the flag 

graph has 4 automorphisms, its symmetry-type graph T  has six vertices.  Since the 0-1 

subgraph T0-1 is connected, naphthalene is face-transitive, and as the 0-2 subgraph T0-2 has 

four components, naphthalene has 4 edge-orbits. Finally, since the 1-2 subgraph T1-2  has 

three components, naphthalene has three vertex-orbits.  A similar analysis could be carried 

out for any of the benzenoids or coronoids. 

1.4 A Boundary Edges Code for benzenoid systems 
A simple code for describing a benzenoid BB by its shape has been used in several 

places in the literature. After Hansen and coworkers [20,22],  we call it the Boundary 

Edges Code (BEC), but for benzenoids it is identical to perimeter code PC-2  of Herndon 

and Bruce [23] (see also Balaban [2]). The idea is to count the consecutive edges of B in 

the boundary cycle belonging to consecutive hexagons. We start with any hexagon at the 

boundary of B and travel around the boundary clockwise, i.e., such that we always have 

the interior of B on our right.  

Definition 1. Boundary Edges Code: Let e(B) = (k1, k2,…, kr) be a cyclical sequence of 

numbers 1, 2, 3, 4, 5, 6 counting the numbers of the consecutive boundary edges of a given 
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benzenoid BB belonging to the same hexagon, travelling clockwise along the boundary. 

Shift of a cyclic sequence does not change it: e+(B)= (k2,…, kr, k1) = e(B), and the reversed 

sequence e-–1(B)= (kr, …,k2, k1) are considered to be the same cyclic sequence, describing 

the same benzenoid system (reflected in the plane of the hexagonal net – see Definition D 

of Gutman and Cyvin [21]).  

 

Figure 6: Molecular graph B = naphthalene, flag graph F(B), symmetry-type graph T(B), spanning 
subgraphs F0-1, F1-2, F0-2 of the flag graph, and connected components of spanning subgraphs T0-1, 
T1-2, T0-2, corresponding to orbits of faces, vertices and edges of B.  

In the present work, benzenoids are drawn in a standard orientation, such that every 

hexagon has two vertical edges. If the initial hexagon of the boundary edge code is chosen 

as the leftmost element in the bottom row of a standard drawing of a benzenoid, we call 

the code a standard code. The choice of a standard code is useful, since it is uniquely 

determined by the drawing and it is not hard to check that there are at most 12 standard 

boundary-edges codes. In fact, a benzenoid with s symmetries (i.e., with automorphism 

group of order s) has exactly 12/s standard codes, i.e., 12/s different initial positions in the 

hexagonal net. 
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2   Classification of symmetry-types of benzenoid systems 
     The starting point for the study of symmetry-types of benzenoid systems is the well 

known classification of benzenoid systems into eight possible point symmetry groups D6h , 

C6h , D3h , C3h , D2h , C2h , C2v and Cs (e.g. [21], p.31). The same groups apply to coronoids. 

Automorphism group  D6  C6  D3  C3  D2  C2  Cs  C1 

Order    12    6    6    3    4    2    2    1 

Point group    D6h  C6h  D3h  C3h  D2h  C2h  C2v Cs 

Order    24    12    12    6    8    4    4    2 

Allowing for the different settings of the point groups, there is a further subdivision 

into 14 symmetry types of benzenoid system (Figure 7, and Tables 1 and 2 in the next 

section). We can give an alternative description in terms of the corresponding 14 symmetry 

schemes of the hexagonal net, as shown in Figure 8 (see [28], Theorem 6.1). To derive this, 

we introduce the symmetry scheme, a concept having its origin in the theory of covering 

graphs and quotient spaces; the idea of the fundamental domain is taken from Coxeter and 

Moser ([10], p.37). 

Definition 3. Let σ be a plane in which all benzenoid systems are embedded. The 

fundamental domain FD(G) = σ /G of a given planar group G with respect to the 

hexagonal net H is a part of the plane, subdivided by this net, whose ‘copies’ obtained by 

the action of the group G cover the whole plane. The symmetry scheme of the given 

(planar) group G with respect to the hexagonal net H is the fundamental domain of this 

group together with marked positions of the reflection axes and the pole and the angle of 

the corresponding rotation . The corresponding quotient net is denoted H/G. 

Theorem 1. There are 14 different symmetry schemes of a planar hexagonal net and hence 

of benzenoid and coronoid systems embedded into this net.  

Proof. This follows immediately from the classification made byGutman and Cyvin; the 

hierarchical arrangement of symmetry schemes (our Figures 7 and 8) unifies separate 

tables of Pisanski and Balaban (Figures 8, 9, and 10 in [28]) which show the same 

hierarchical description in terms of subgroups of automorphism groups D6, D3 and D2. 

Of the four definitions given in [21], Definition C characterises a benzenoid by its 

boundary cycle on the hexagonal lattice. This definition can now be used with our 14 

fundamental domains to obtain benzenoids with prescribed symmetry:  
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Theorem 2. Using the 14 symmetry schemes (Theorem 1) we obtain a benzenoid system 

with prescribed symmetry group simply by choosing some cycle (sequence of edges) 

containing the centre of the quotient net) in the symmetry scheme. Any such cycle describes 

the boundary of a benzenoid system.  

Proof. Let H denote the original planar hexagonal net. The fundamental schemes having 

rotation symmetries in the centre of a hexagon can be represented on a conic surface 

(obtained by identifying two boundary half-lines of the fundamental domain) and then 

projected back onto the whole plane again; thus we get a ‘rotational quotient’ net on the 

plane with respect to a given rotational group G, and any cycle in this quotient net, denoted 

H/G, defines a ‘quotient molecule’ BB/G. This quotient molecule has, in addition to the 

hexagons, one face with 6/r edges, where r = 1, 2, 3, 6. Vertices, edges and faces of the 

quotient molecule correspond with one exception to rotational orbits of vertices, edges and 

faces of B. The exception is the ‘degenerate’ central face 6/r, representing the quotient of 

the original central hexagon, whichis not a hexagonal face and does not correspond to any 

rotational orbit of faces of the original central hexagon. 

If reflection symmetries are present, then any quotient molecule is defined by a path 

(ending at a reflection line). In the example shown below in Figure 9, there is a branching 

point (corresponding to a pole of the rotation) in the centre of the hexagon. Inthe two cases 

D3h(ii) and C3h(ii) there is a vertex at the centre of rotational symmetry, and there is a 

branching point at this vertex. In the two cases, D2h(ii) and C2h(ii), there is an edge centre 

at the centre of the rotation at an edge centre, and a branching point at this edge centre. 

To obtain B from B/G it suffices to reverse the process: H is the covering space of 

H/G with respect to the group G and any cycle of edges in H/G containing the branching 

point lifts to a cycle in H. (For the theory of covering spaces, see Gross and Tucker [18].) 

This cycle is the boundary of B and uniquely determines B. If the cycle in H/G does not 

contain the branching point in its boundary, its ‘lift’ contains r congruent cycles. 
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Figure 7. Subgroup relations amongst the point groups and settings for benzenoid systems. The 
order of the point group is denoted by s. The large circles indicate the three symmetry schemes that 
are not obtained by descent from any other. 

 

 

 

 

 

 
 

Figure 8. The 14 symmetry schemes of the hexagonal net, corresponding to the subgroups and 
settings shown in Figure 7. Face-, edge- and vertex-centred point groups are subgroups of D6h, 
D2h(ii) and D3h(ii) , respectively. The 14 symmetry schemes of the hexagonal net are graphical 
representations (with the indicated generators and centres of rotation) of the 14 point groups and 
settings of benzenoid systems. 
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An example of the relationship between symmetry scheme and quotient is shown in 

Figure 9. Note that there is a branching point (corresponding to a pole of the C2 rotation) in 

the centre of the central hexagon. The central hexagon is thereby reduced to a triangle in 

the quotient. 

 

Figure 9: The symmetry scheme and corresponding quotient net H/G for group G = C2h(i).  

2.1 The smallest benzenoids with a given symmetry scheme 
The smallest benzenoid systems (by hexagon count) for each symmetry scheme are 

given in Table 1. These examples give a good ‘visualisation’ of the groups. Each is shown 

in its canonical position, corresponding to the canonical code (see Appendix for 

definitions.).  

Table 1: Boundary-edges codes of smallest benzenoids in the 14 symmetry schemes 

Symmetry scheme Smallest benzenoid  Formula BEC 

1: D6h  C6H6 (6) 

2: C6h 

 

C72H36 (51113)6 

3: D3h(ia)  C18H12 (51)3 

4: D3h(ib) 
 

C33H15 (422)3 

5: D3h(ii)  C13H9 (4)3 

6: C3h(i) 
 

C30H18 (5113)3 

7: C3h(ii) 
 

C25H15 (512)3 

8: D2h(i)  C20H12 (414)2 

9: D2h(ii)  C10H8 (5)2 

10: C2h(i) 
 

C22H14 (5123)2 
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11: C2h(ii) 
 

C18H12 (513)2 

12: C2v(a)  C14H10 (3515 ) 

13: C2v(b) 
 

C18H12 (351153 ) 

14: Cs  C18H12 (325215) 

 

Hansen et al. [22] give details of how the BEC can be used to detect symmetry 

elements in both simply and multiply connected benzenoids. In the case of benzenoids, the 

whole group can be reconstructed, as follows. 

Theorem 3. Let c(BB)= (k1, k2,…, kr) be a cyclic sequence of numbers 1, 2, 3, 4, 5, 6 

counting the numbers of the consecutive boundary edges in a given benzenoid B belonging 

to the same hexagon. Then B is uniquely defined by c(B) and the symmetry group of G(B) 

is also uniquely determined by symmetries of c(B). 

Proof. For the smallest benzenoid B1, consisting of just one hexagon, and c(B1) = (6). Now 

we proceed by induction. By definition B ([21], 11-12) any benzenoid system Bh+1 with 

h+1 hexagons can be obtained by adding just one hexagon B1 to some benzenoid system 

Bh with h hexagons. After choosing the common edges of B1 and Bh, the boundary cycles 

of B1 and Bh merge into one uniquely determined cycle.  

To see that the rotational symmetry group GR(B) of B is uniquely determined by 

c(B), it suffices to realize that no boundary edge is fixed by a rotational symmetry. Thus, B 

has a rotation 2π/r if and only if c(B) can be written as a periodic cyclic sequence 

composed of r equal sub-sequences. For example, if c(B) = (3,3,3,3,3,3) = (36), then the 

corresponding B (coronene) has a rotation by 2π/6 and the quotient system has the 

boundary cycle (3). Likewise, we see that B has a reflection symmetry if and only if c(B) is 

a centrosymmetric sequence. For example (5,5) (naphthalene) must have reflection 

symmetry in B. 

In general, from the boundary of B we can determine the symmetry scheme corresponding 

to B (Table 2).  
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Table 2: The 14 possible symmetry schemes corresponding to the 8 possible groups for 
benzenoids. wR denotes the reverse of the string w. 

Case Group Centre of rotation Line of reflection 
 

BEC 

vert
ex 

edge face horizontal vertical 

1 D6h D6h = 
Z2�D6 

NO NO YES YES YES w6, w = wR 

2 C6h C6h = 
Z2�C6 

NO NO YES NO NO w6, not w = 
wR 

3 
D3h(ia) 

D3h = 
Z2�D3 

NO NO YES YES NO w3, w = wR 

4 
D3h(ib) 

 NO NO YES NO YES  

5 D3h(ii)  YES NO NO NO YES  
6 C3h(i) C3h = 

Z2�C3 
NO NO YES YES YES w3, not w = 

wR 
7 C3h(ii)  YES NO NO NO NO  
8 D2h(i) D2h = 

Z2�D2 
NO NO YES YES YES w2, w = wR 

9 D2h(ii)  NO YES NO YES YES  
10 
C2h(i) 

C2h = 
Z2�C2 

NO NO YES NO NO w2, not w = 
wR 

11 
C2h(ii) 

 NO YES NO NO NO  

12 
C2v(a) 

C2v = 
Z2� D1 

NO NO YES YES NO wwR 

13 
C2v(b) 

 NO YES NO NO YES  

14 Cs   Cs = 
Z2�C1 

NO NO NO NO NO not w = wR 

 

2.2 The concept of a quotient benzenoid (or coronoid) system 
The concept of symmetry scheme introduced above is very similar to the concept of 

orbifold (a topological space that is a quotient space of a Euclidean space under the linear 

action of a finite group) which appears under various names in the literature. For example, 

Coxeter and Moser used a similar concept that they called the fundamental region [10]. 

However, the symmetry scheme is a little more than a quotient space; essential parts of a 

symmetry scheme are also the positions of poles of rotation, and orders of rotation and 

positions of mirror planes, from which the original hexagonal net (or a benzenoid system 

embedded into it) can be reconstructed. A part of the hexagonal net containing exactly one 

representative flag of each orbit of flags of a benzenoid system BB (or coronoid system C) 

exactly corresponds to the symmetry-type graph T(B) of B. This symmetry-type graph is 

really a quotient graph of the flag graph F(G) under the action of the group G(B) of those 

automorphisms of hexagonal net B that preserve B (see Figure 10, lower row, left) . We 
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could go one step further and define also the quotient system BB/G(B) whose vertices are 

orbits of vertices of B and whose edges are orbits of edges of B (see example in Figure 10, 

lower row, right). A quotient benzenoid (or coronoid) system is the ‘seed’ from which the 

whole molecular graph can be reproduced, if we also know the corresponding symmetry 

scheme. 

 

Figure 10: Example of a benzenoid system B, its flag graph F(B), its symmetry-type graph T(B ) 
and the quotient ‘kernel’ or ‘seed’ B/G(B).    

3 Calculation of invariants from the boundary edges code of 

a benzenoid 
Many relations connect the counts for structural components of benzenoids. (See 

[21].) The counts can be determined by manipulation of the boundary edges code c(B) = 

(k1,…,kr) of a benzenoid system B, as now briefly discussed. Trivially, we can obtain the 

number of boundary edges, eb , from 

eb = k1 + …+ kr  

and the number of boundary verticesas vb = eb. Boundary edges have 2 incident flags, 

whereas inner edges have 4. The number of boundary vertices of degree 3 is v2b = r. 

Boundary vertices have degree 2 or 3, and therefore  

v3b = vb - v2b = k1 + … kr  – r. 

Inner vertices have degree 3. Therefore inner vertices have 6 incident flags, boundary 

vertices of degree 3 have 4, and boundary vertices of degree 2 have 2. 
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The motivation for finding the number of hexagons is that if we know h(BB), then 

we can distinguish between benzenoids with various kinds of rotational symmetry, for 

example, if the centre of 3-fold rotation is at a vertex, then h(B) ≡ 0 (mod 3); if the centre 

of 3-fold rotation is in the face, then h(B) ≡ 1 (mod 3). 

In the past several algorithms have been used to obtain the hexagon count. We 

propose one based on the recursive formulation: 

h(B) = h(B') + 1,  

where B' is a benzenoid system obtained from B by taking one hexagon away. To obtain 

h(B) it suffices to be able to obtain the boundary code c(B) = c(B'). The idea for this is as 

follows. First. the procedure is initialised with 

h(6) = 1 and h(55) = 2 

and repeated use is made of  

h(… , a, 5, b, …) = h(…, a+1+b, …) + 1  and  h(…, a, 4, b, …) = h(…, a+1, b+1, …) + 1  

(by which we can consecutively eliminate numbers 5 and then 4 from the code). We 

assume a<  5 and b<  5. Then, with one proviso, we can use 

h(…, a, 3, b, …) = h(…, a+1, 1, b+1, …) + 1  

for consecutive elimination of numbers 3 in the boundary code.  The snag is that care must 

be taken at this stage to avoid attempting to remove a bridging hexagon, which would 

invalidate this last reduction formula(see Figure 11). Although the details of how to select 

a non-problematic hexagon with entry 3 in the code become somewhat complicated (and 

will be given elsewhere [Kovič and Pisanski [29]), it is always possible to make a suitable 

choice, since: 

Lemma 1. If a benzenoid B has only numbers 3, 2, 1 in the boundary edges code c(B), 

then there is at least one hexagon H corresponding to number 3, such that B' –H is still a 

connected region (and a benzenoid). 

Proof. If all the hexagons 3 are ‘bridges’, then we have a contradiction. We simply use the 

induction argument: after removing the bridge we obtain at least two non-problematic 
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boundary hexagons with number 3 in the boundary code, even if we do not make the 

assumption that there are only entries 3, 2, 1 in c(BB). 

 
 
Figure 11: A benzenoid that includes a bridging hexagon with entries 3 and 1 in the code. 
 

Once we have h= h(B), we can deduce the remaining invariants by counting up the 
flags present in the benzenoid in two ways 
2eb + 4ei = 12h =2v2b + 4v3b +6vi  

v2b + 3v3b +3vi = 2e = 2eb + 2ei 

and invoking Euler's formula for benzenoids. 

(v2b + v3b +vi)  – (eb + ei) + h = 1.  

from which  

ei = 3h – eb/2 ,  vi = 2h –v2b/3 + 2v3b/3, and e = ei + eb. 

4  Conclusions  
We have introduced some techniques which may be useful in studying the structure 

and symmetry properties of benzenoid and coronoid systems. We have described the 

symmetries of benzenoid systems in terms of their symmetry schemes and described their 

shapes with the established boundary edges code, which consists of cyclic sequences of 

numbers 1, 2, 3, 4, 5, 6. From these sequences, the symmetries of the system and its 

quotient may be easily deduced. 

We have concentrated in this paper on the simple boundary-edges code (BEC), but 

we note that other definitions of a canonical code are often used. Often, instead of standard 
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codes, all codes describing a given benzenoid are generated, and the lexicographical 

minimum or maximum (depending on the authors) is selected. Many codes have been 

studied and several have been used for enumeration of benzenoids (e.g., 

[1,9,14,17,21,22,25]). Even our canonical code may correspond to more than one 

embedding of the figure in the planar hexagonal net (if we draw benzenoids on the 

hexagonal lattice in the convention that every hexagon has two vertical edges). Figure 12 

presents examples. 

 

Figure12: Three embeddings of the benzenoid (5,5) and two of the benzenoid (4,4,4). 

In fact, it is easy to show that: 

Theorem 4. The number emb(BB ) of different embeddings of a planar benzenoid B into a 

hexagonal net is emb(B ) = 12/s, where s is the number of automorphisms of the 

benzenoid. 

In connection with the extension of BEC codes to non-planar analgues of the 

benznenoids, we just mention that there exist non-isomorphic (non-planar) benzenoids 

with the same boundary (See [9], p. 28, and the detailed study by Graver [17]).  

Finally, we note that the two faces of a planar benzenoid are physically distinct in 

complexes where one face coordinates to a metal atom. The benzenoid then ‘lives’ in 3D, 

with implications for point group symmetry. Stereoisomerism can involve enantiomers or 

diasteromers, and is relevant beyond benzenoids: in photosynthetic light-harvesting 

systems, chlorophyllous pigments have diastereotopic faces, as the central magnesium is 

coordinated by the protein matrix (usually a His residue) preferentially from one side [31]. 

Extensions of flag-graph techniques may be able to include these extra features. 
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Appendix: Canonical boundary edges code 
Definition 1 is useful when we want to deduce symmetries of BB (as in the proof of 

Theorem 1). However, for enumeration purposes it is desirable to have a unique, canonical 

code. One such code can be defined as follows: 

Definition 2. The canonical boundary-edges codec(B ) = (k1, k2,…, kr) is lexicographically 

smallest among all standard codes for a benzenoid system B. 

To the twelve different positions of B in a hexagonal net correspond an equal number of 

boundary codes e(B), all candidates for the canonical code. Figure A1 shows them for an 

example, which also illustrates the various possible topographical features that can arise in 

a benzenoid. Gutman and Cyvin ([21] , p.21), define typical shapes, i.e.,  fissures, bays, 

caves and fjords on the boundary of a benzenoid system. With the boundary-edges code we 

can easily recognize such structures as: fjord  ↔ (…a,1,1,1,b,…),  cave ↔ (…,a,1,1,b,…),  

bay ↔ (…,a,1,b,…), fissure ↔ (…a,b,…) where a,b both differ from 1. 

 

(4142133511311152)          (5111311533124152)       (3124142511131153)     (3511311152414213) 
 

(4213351131115241)       (4142511131153312)      (533124142511311)       (5113111524142133) 

 

(513111524142133)     (3312414251113115)        (4251113115331251)      (4142133511311152) 
 
Figure A1: The canonical code for a benzenoid. In this example, the lexicographically smallest 
boundary-edge sequence is  c(B) = (3124142511131153) . 
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Examples of benzenoids BB for which the canonical code of Hansen, Lebatteux and 

Zheng [22] is different from all of our standard codes are shown in Figure A2:  all twelve 

start with the gray hexagon, which cannot be in the bottom row of hexagons, no matter 

how the molecule is embedded into the hexagonal net. 

 

Figure A2:  Three examples where the canonical code of Hansen, Lebatteux and Zheng [22] is 
different from all twelve of our standard codes. 

 

 

-26-


