On Randić Energy of Graphs

Kinkar Ch. Das ${ }^{a}$, Sezer Sorgun ${ }^{a, b}$
${ }^{a}$ Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea e-mail: kinkardas2003@googlemail.com
${ }^{b}$ Department of Mathematics, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey
e-mail: srgnrzs@gmail.com

(Received 13 October, 2013)

Abstract

Let $G=(V, E)$ be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. The Randić matrix $R=\left(r_{i j}\right)$ of a graph G whose vertex v_{i} has degree d_{i} is defined by $r_{i j}=1 / \sqrt{d_{i} d_{j}}$ if the vertices v_{i} and v_{j} are adjacent and $r_{i j}=0$ otherwise. The Randić energy $R E$ is the sum of absolute values of the eigenvalues of R. We provide lower and upper bounds for $R E$ in terms of no. of vertices, maximum degree, minimum degree and the determinant of the adjacency matrix of graphs G.

1 Introduction

Throughout the paper we consider only simple graphs, herein called just graphs. Let $G=(V, E)$ be a graph on vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E=E(G)$. Also let d_{i} be the degree of vertex v_{i} for $i=1,2, \ldots, n$. The minimum vertex degree is denoted by $\delta=\delta(G)$ and the maximum by $\Delta=\Delta(G)$. Let N_{i} be the neighbor set of the vertex $v_{i} \in V(G)$. If the vertices v_{i} and v_{j} are adjacent, we denote that by $v_{i} v_{j} \in E(G)$. The adjacency matrix $A(G)$ of G is defined by its entries $a_{i j}=1$ if $v_{i} v_{j} \in E(G)$ and 0 otherwise. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n-1} \geq \lambda_{n}$ denote the eigenvalues of $A(G)$. λ_{1} is called
the spectral radius of graph G. When more than one graph is under consideration, then we write $\lambda_{i}(G)$ instead of λ_{i}. Some well known results are the following:

$$
\begin{align*}
\sum_{i=1}^{n} \lambda_{i} & =0 \tag{1}\\
\text { and } \quad \prod_{i=1}^{n} \lambda_{i} & =\operatorname{det} A . \tag{2}
\end{align*}
$$

The Randić matrix $R(G)=\left(r_{i j}\right)_{n \times n}$ is defined as [1, 2, 9]

$$
r_{i j}= \begin{cases}\frac{1}{\sqrt{d_{i} d_{j}}} & \text { if } v_{i} v_{j} \in E(G) \\ 0 & \text { otherwise }\end{cases}
$$

Denote the eigenvalues of the Randić matrix $R=R(G)$ by $\rho_{1}, \rho_{2}, \ldots, \rho_{n}$ and label them in non-increasing order. The multi set $S p_{R}=S p_{R}(G)=\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{n}\right\}$ will be called the R-spectrum of the graph G.

The (ordinary) energy of a graph G is [10]

$$
E=E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| .
$$

For recent papers on lower and upper bounds on $E(G)$, see $[4,5,8]$.
The Randić energy $[1,2,9]$ of G is defined as

$$
R E=R E(G)=\sum_{i=1}^{n}\left|\rho_{i}\right| .
$$

For several lower and upper bounds on Randić energy, see $[1,2,9]$.
Let $p \geq 0$. The tree $S u_{p}$ of order $n=2 p+1$, containing p pendent vertices, each attached to a vertex of degree 2, and a vertex of degree p, will be called the p-sun (see Fig. 2 in [9]). Let $p, q \geq 0$. The tree $D S u_{p, q}$ of order $n=2(p+q+1)$, obtained from a p-sun and a q-sun, by connecting their central vertices, will be called a (p, q)-double sun (see Fig. 2 in [9]). Recently, Gutman et al. [9] gave the following conjecture on Randić energy:

Conjecture 1. [9] Let T be a tree of order n. If n is odd, then the maximum $R E(T)$ is achieved for T being the $\left(\frac{n-1}{2}\right)$-sun. If n is even, then the maximum $R E(T)$ is achieved for T being the $\left(\left\lceil\frac{n-2}{4}\right\rceil,\left\lfloor\frac{n-2}{4}\right\rfloor\right)$-double sun.

The paper is organized as follows. In Section 2, we give a list of some previously known results. In Section 3, we obtain some upper bounds on $R E(G)$ of graph G. In Section 4, we present some lower bounds on $R E(G)$ of graph G.

2 Preliminaries

In this section, we shall list some previously known results that will be needed in the next two sections.

Lemma 2.1. [13] Let \mathbf{B} be a $p \times p$ symmetric matrix and let \mathbf{B}_{k} be its leading $k \times k$ submatrix. Then, for $i=1,2, \ldots, k$,

$$
\begin{equation*}
\lambda_{p-i+1}(\mathbf{B}) \leq \lambda_{k-i+1}\left(\mathbf{B}_{k}\right) \leq \lambda_{k-i+1}(\mathbf{B}) \tag{3}
\end{equation*}
$$

where $\lambda_{i}(\mathbf{B})$ is the i-th greatest eigenvalue of \mathbf{B}.
Lemma 2.2. [15] Let G be a simple graph of order n. Then

$$
\lambda_{1} \geq \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_{i}^{2}}
$$

Moreover, the above equality holds if and only if G is a regular graph or G is a bipartite semiregular graph.

Lemma 2.3. [11] Let G be a graph of order n. Then

$$
\rho_{1}=1
$$

Lemma 2.4. [6] Let G be a bipartite graph of order n. Then

$$
\rho_{i}=-\rho_{n-i+1}, i=1,2, \ldots,\left\lceil\frac{n}{2}\right\rceil .
$$

Lemma 2.5. [12] Let G be a connected r-regular graph of order n. Then

$$
\mu_{i}=r-\lambda_{n-i+1}, i=1,2, \ldots, n
$$

where λ_{i} and μ_{i} are the largest i-th eigenvalue of the adjacency and the Laplacian matrix of graph G, respectively.

Lemma 2.6. [9] Let G be a graph of order n. Then

$$
\operatorname{det} R=\frac{\operatorname{det} A}{\prod_{i=1}^{n} d_{i}} .
$$

3 Upper bounds on the Randić energy of graphs

In this section we give some upper bounds on the Randić energy of graph G in terms of n and δ. For this we need the following result.

Lemma 3.1. [3] Let T be a tree of order n. Then

$$
\sum_{v_{i} v_{j} \in E(T)} \frac{1}{d_{i} d_{j}} \leq \frac{5 n+8}{18}
$$

Now we give an upper bound on Randić energy of trees T in terms of n.
Theorem 3.2. Let T be a tree of order n. Then

$$
R E(T) \leq 2 \sqrt{\left\lfloor\frac{n}{2}\right\rfloor \cdot \frac{5 n+8}{18}} .
$$

Proof: We have

$$
\sum_{i=1}^{n} \rho_{i}^{2}=2 \sum_{v_{i} v_{j} \in E(G)} \frac{1}{d_{i} d_{j}}
$$

By Lemma 2.4, from the above, we get

$$
\sum_{i=1}^{\lfloor n / 2\rfloor} \rho_{i}^{2}=\sum_{v_{i} v_{j} \in E(G)} \frac{1}{d_{i} d_{j}} .
$$

By Lemma 3.1, we get

$$
\begin{equation*}
\sum_{i=1}^{\lfloor n / 2\rfloor} \rho_{i}^{2} \leq \frac{5 n+8}{18} \tag{4}
\end{equation*}
$$

Now,

$$
\begin{aligned}
R E(G) & =\sum_{i=1}^{n}\left|\rho_{i}\right|=2 \sum_{i=1}^{\lfloor n / 2\rfloor}\left|\rho_{i}\right| \text { by Lemma } 2.4 \\
& =2 \sqrt{\left\lfloor\frac{n}{2}\right\rfloor \sum_{i=1}^{\lfloor n / 2\rfloor} \rho_{i}^{2}} \text { by Cauchy-Schwarz inequality } \\
& \leq 2 \sqrt{\left\lfloor\frac{n}{2}\right\rfloor \cdot \frac{5 n+8}{18}} \text { by (4). }
\end{aligned}
$$

Remark 3.3. Our result in Theorem 3.2 is very close to the the Randić energy of $\left(\frac{n-1}{2}\right)$ sun and $\left(\left\lceil\frac{n-2}{4}\right\rceil,\left\lfloor\frac{n-2}{4}\right\rfloor\right)$-double sun. But still the Conjecture 1 is open.

Now we present some well known results needed in the following theorem. The results can be found in [7]. A strongly regular graph with parameters (n, r, λ, μ), denoted $S R G(n, r, \lambda, \mu)$, is a r-regular graph on n vertices such that for every pair of adjacent vertices there are λ vertices adjacent to both, and for every pair of non-adjacent vertices there are μ vertices adjacent to both. We assume throughout that a strongly regular graph G is connected and that G is not a complete graph. Consequently, r is an eigenvalue of the adjacency matrix of G with multiplicity 1 and the remaining eigenvalues must satisfy the equation

$$
x^{2}-(\lambda-\mu) x-(r-\mu)=0 .
$$

Thus the eigenvalues of G are

$$
\begin{equation*}
r \text { and } x_{1}, x_{2}=\frac{\lambda-\mu \pm \sqrt{(\lambda-\mu)^{2}+4(r-\mu)}}{2} \tag{5}
\end{equation*}
$$

It is well known that the eigenvalues of G are

- r of multiplicity 1 ,

$$
\begin{aligned}
& \text { - } \frac{\lambda-\mu+\sqrt{(\lambda-\mu)^{2}+4(r-\mu)}}{2} \text { of multiplicity } \frac{1}{2}\left[n-1-\frac{2 r+(n-1)(\lambda-\mu)}{\sqrt{(\lambda-\mu)^{2}+4(r-\mu)}}\right], \\
& \text { - } \frac{\lambda-\mu-\sqrt{(\lambda-\mu)^{2}+4(r-\mu)}}{2} \text { of multiplicity } \frac{1}{2}\left[n-1+\frac{2 r+(n-1)(\lambda-\mu)}{\sqrt{(\lambda-\mu)^{2}+4(r-\mu)}}\right] .
\end{aligned}
$$

Fig. 1. Petersen Graph G_{1}.

G_{2}
Fig. 2. Graph G_{2}.
Two strongly regular graphs G_{1} and G_{2} have been shown in Fig. 1 and Fig. 2. Particularly, G_{1} is well known Petersen graph.

Lemma 3.4. [14] Let G be a connected d-regular graph on n vertices with three distinct Laplacian eigenvalues $0, r$ and $s(r \neq s)$. Then G is strongly regular graph with parameters $(n, d, r s / n+2 d-(r+s), r s / n)$.

Now we are ready to give an upper bound on Randić energy $R E(G)$ of graphs G in terms of n and δ.

Theorem 3.5. Let G be a connected graph of order n with minimum degree δ. Then

$$
\begin{equation*}
R E(G) \leq 1+\sqrt{\frac{(n-1)(n-\delta)}{\delta}} \tag{6}
\end{equation*}
$$

with equality holding if and only if $G \cong K_{n}$ or $G \cong S R G\left(n, r, \frac{r(r-1)}{n-1}, \frac{r(r-1)}{n-1}\right)$.

Proof: We have

$$
\begin{align*}
\sum_{i=1}^{n} \rho_{i}^{2} & =2 \sum_{v_{i} v_{j} \in E(G)} \frac{1}{d_{i} d_{j}}=\sum_{i=1}^{n} \frac{1}{d_{i}} \sum_{v_{i} v_{j} \in E(G)} \frac{1}{d_{j}} \\
& \leq \sum_{i=1}^{n} \frac{1}{\delta} \sum_{v_{i} v_{j} \in E(G)} \frac{1}{d_{j}} \text { as } d_{i} \geq \delta \\
& =\frac{n}{\delta} \tag{7}
\end{align*}
$$

Now,

$$
\begin{align*}
R E(G) & =\sum_{i=1}^{n}\left|\rho_{i}\right|=1+\sum_{i=2}^{n}\left|\rho_{i}\right| \text { by Lemma } 2.4 \\
& \leq 1+\sqrt{(n-1)\left(\sum_{i=1}^{n} \rho_{i}^{2}-1\right)} \text { by Cauchy-Schwarz inequality } \tag{8}\\
& \leq 1+\sqrt{\frac{(n-1)(n-\delta)}{\delta}} \text { by }(7) .
\end{align*}
$$

The first part of the proof is done.
Now suppose that the equality holds in (6). Then all the above inequalities must be equalities. From the equality in (7), we get $d_{1}=d_{2}=\cdots=d_{n}=\delta$. Therefore G is isomorphic to an r-regular graph, (say).

From the equality in (8), we get $\left|\rho_{2}\right|=\left|\rho_{3}\right|=\cdots=\left|\rho_{n}\right|$. Moreover, we have

$$
1+(n-1)\left|\rho_{2}\right|=1+\sqrt{\frac{(n-1)(n-r)}{r}},
$$

that is,

$$
\left|\rho_{2}\right|=\sqrt{\frac{n-r}{r(n-1)}} .
$$

We consider two cases (i) $\rho_{2}=\rho_{n}$, (ii) $\rho_{2}=-\rho_{n}$.
Case $(i): \rho_{2}=\rho_{n}$. In this case $\rho_{1}=1$ and $\rho_{i}=-\frac{1}{n-1}, i=2,3, \ldots, n$ as $\sum_{i=1}^{n} \rho_{i}=0$. Hence $G \cong K_{n}$.

Case (ii) : $\rho_{2}=-\rho_{n}$. We have $\rho_{2}>0$. In this case the three distinct Randić eigenvalues of graph G are $\left(1, \rho_{2},-\rho_{2}\right)$ with eigenvalue 1 of multiplicity 1 . Since G is r-regular,
we have $A(G)=r R(G)$. Therefore the three distinct adjacency eigenvalues of G are $\left(r, r \rho_{2},-r \rho_{2}\right)$ with eigenvalue r of multiplicity 1. By Lemma 2.5 , the three distinct Laplacian eigenvalues of graph G are $\left(0, r-r \rho_{2}, r+r \rho_{2}\right)$, that is,

$$
\left(0, r-\sqrt{\frac{r(n-r)}{n-1}}, r+\sqrt{\frac{r(n-r)}{n-1}}\right) \quad \text { as } \rho_{2}=\sqrt{\frac{n-r}{r(n-1)}} .
$$

Moreover, G is connected. By Lemma 3.4, we get $G \cong S R G\left(n, r, \frac{r(r-1)}{n-1}, \frac{r(r-1)}{n-1}\right)$.
Conversely, let $G \cong K_{n}$. Then $S(G)=\left(1,-\frac{1}{n-1},-\frac{1}{n-1}, \ldots,-\frac{1}{n-1}\right)$. Hence $R E(G)=$ 2.

Let G be isomorphic to strongly regular graph with parameters $\left(n, r, \frac{r(r-1)}{n-1}, \frac{r(r-1)}{n-1}\right)$. By (5), the distinct eigenvalues of the adjacency matrix are

$$
r, \sqrt{\frac{r(n-r)}{n-1}},-\sqrt{\frac{r(n-r)}{n-1}},
$$

that is, the distinct eigenvalues of the Randić matrix are

$$
1, \sqrt{\frac{n-r}{(n-1) r}},-\sqrt{\frac{n-r}{(n-1) r}} .
$$

Hence

$$
R E(G)=1+(n-1) \sqrt{\frac{n-r}{(n-1) r}}=1+\sqrt{\frac{(n-1)(n-r)}{r}} .
$$

Remark 3.6. Two strongly regular graphs G_{1} and G_{2} have been shown in Fig. 1 and Fig. 2. For G_{1}, we have $r=3, n=10$ and $\frac{r(r-1)}{n-1}$ is not an integer. Hence $G_{1} \not \not ⿻$ $S R G\left(n, r, \frac{r(r-1)}{n-1}, \frac{r(r-1)}{n-1}\right)$. For G_{2}, we have $n=16, r=6$ and $\frac{r(r-1)}{n-1}=1$. Hence $G_{2} \cong S R G\left(n, r, \frac{r(r-1)}{n-1}, \frac{r(r-1)}{n-1}\right)$.

Remark 3.7. Using Theorem 3.5, we obtain an upper bound on $R E(G)+R E(\bar{G})$ in terms of n, Δ and δ :

$$
\begin{aligned}
R E(G)+R E(\bar{G}) & \leq 2+\sqrt{\frac{(n-1)(n-\delta)}{\delta}}+\sqrt{\frac{(n-1)(\Delta+1)}{n-\Delta-1}} \\
& =2+\sqrt{n-1}\left(\sqrt{\frac{n-\delta}{\delta}}+\sqrt{\frac{\Delta+1}{n-\Delta-1}}\right)
\end{aligned}
$$

4 Lower bounds on the Randić energy of graphs

Now we give a lower bound on Randić energy $R E(G)$ of graphs G in terms of n, Δ and the determinant of the adjacency matrix of graph G.

Theorem 4.1. Let G be a connected graph of order n with maximum degree Δ and degree sequence $\pi(G)=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$. Then

$$
\begin{equation*}
R E(G) \geq 1+\sqrt{\frac{n}{\Delta}-1+(n-1)(n-2)\left(\frac{|\operatorname{det} A|}{\prod_{i=1}^{n} d_{i}}\right)^{2 /(n-1)}} \tag{9}
\end{equation*}
$$

where $\operatorname{det} A$ is the determinant of the adjacency matrix of graph G. Moreover, the equality holds in (9) if and only if $G \cong K_{n}$ or $G \cong S R G\left(n, r, \frac{r(r-1)}{n-1}, \frac{r(r-1)}{n-1}\right)$.

Proof: Similarly as in Theorem 3.5, we get

$$
\begin{align*}
\sum_{i=1}^{n} \rho_{i}^{2} & =2 \sum_{v_{i} v_{j} \in E(G)} \frac{1}{d_{i} d_{j}} \geq \sum_{i=1}^{n} \frac{1}{\Delta} \sum_{v_{i} v_{j} \in E(G)} \frac{1}{d_{j}} \text { as } d_{i} \geq \delta \\
& =\frac{n}{\Delta} \tag{10}
\end{align*}
$$

By Arithmetic-Geometric mean inequality, we have

$$
\begin{aligned}
2 \sum_{2 \leq i<j \leq n}\left|\rho_{i}\right|\left|\rho_{j}\right| & \geq(n-1)(n-2)\left(\prod_{1=2}^{n}\left|\rho_{i}\right|\right)^{2 /(n-1)} \\
& =(n-1)(n-2)(|\operatorname{det} R|)^{2 /(n-1)} \\
& =(n-1)(n-2)\left(\frac{|\operatorname{det} A|}{\prod_{i=1}^{n} d_{i}}\right)^{2 /(n-1)} \quad \text { by Lemma } 2.6
\end{aligned}
$$

Using the above two results, we get

$$
\left(\sum_{i=2}^{n}\left|\rho_{i}\right|\right)^{2}=\sum_{i=2}^{n} \rho_{i}^{2}+2 \sum_{2 \leq i<j \leq n}\left|\rho_{i}\right|\left|\rho_{j}\right|,
$$

that is,

$$
\sum_{i=2}^{n}\left|\rho_{i}\right| \geq \sqrt{\frac{n}{\Delta}-1+(n-1)(n-2)\left(\frac{|\operatorname{det} A|}{\prod_{i=1}^{n} d_{i}}\right)^{2 /(n-1)}} .
$$

Using the above result, we get

$$
R E(G)=\sum_{i=1}^{n}\left|\rho_{i}\right| \geq 1+\sqrt{\frac{n}{\Delta}-1+(n-1)(n-2)\left(\frac{|\operatorname{det} A|}{\prod_{i=1}^{n} d_{i}}\right)^{2 /(n-1)}} .
$$

The first part of the proof is done.
Now suppose that the equality holds in (9). Then all the above inequalities must be equalities. Then we must have $d_{1}=d_{2}=\cdots=d_{n}=\delta$ and $\left|\rho_{2}\right|=\left|\rho_{3}\right|=\cdots=\left|\rho_{n}\right|$. Similarly as in Theorem 3.5, one can see easily that $G \cong K_{n}$ or $G \cong S R G\left(n, r, \frac{r(r-1)}{n-1}, \frac{r(r-1)}{n-1}\right)$.

Conversely, let $G \cong K_{n}$. Then $S(G)=\left(1,-\frac{1}{n-1},-\frac{1}{n-1}, \ldots,-\frac{1}{n-1}\right)^{T}$. Hence $R E(G)=$ 2.

Let G be isomorphic to strongly regular graph with parameters $\left(n, r, \frac{r(r-1)}{n-1}, \frac{r(r-1)}{n-1}\right)$. By (5), the distinct eigenvalues of the adjacency matrix are

$$
r, \sqrt{\frac{r(n-r)}{n-1}},-\sqrt{\frac{r(n-r)}{n-1}} .
$$

Using some results before Lemma 3.4, we have

$$
|\operatorname{det} A|=r\left(\frac{r(n-r)}{n-1}\right)^{\frac{n-1}{2}} .
$$

Now,

$$
1+\sqrt{\frac{n}{\Delta}-1+(n-1)(n-2)\left(\frac{|\operatorname{det} A|}{\prod_{i=1}^{n} d_{i}}\right)^{2 /(n-1)}}=1+\sqrt{\frac{(n-1)(n-r)}{r}}=R E(G)
$$

as $d_{i}=r, i=1,2, \ldots, n$.

Now we give another lower bound on Randić energy $R E(G)$ of graphs G in terms of n, the degree sequence, and the determinant of the adjacency matrix of graph G.

Theorem 4.2. Let G be a connected graph of order n with degree sequence $\pi(G)=$ $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$. Then

$$
\begin{equation*}
R E(G) \geq 1+(n-1)\left(\frac{|\operatorname{det} A|}{\prod_{i=1}^{n} d_{i}}\right)^{1 /(n-1)} \tag{11}
\end{equation*}
$$

where $\operatorname{det} A$ is the determinant of the adjacency matrix of graph G.
Proof: Using Lemmas 2.3 and 2.6 with arithmetic-geometric mean inequality, we get

$$
R E(G)=1+\sum_{i=2}^{n}\left|\rho_{i}\right| \geq 1+(n-1)\left(\frac{|\operatorname{det} A|}{\prod_{i=1}^{n} d_{i}}\right)^{1 /(n-1)}
$$

This completes the proof.

Fig. 3. Graphs G_{3} and G_{4}.
Remark 4.3. The lower bounds on the Randić energy given in (9) and (11) are incomparable. Two graphs G_{3} and G_{4} have been shown in Fig. 3. For graph G_{3}, the lower bounds in (9) and (11) are 3.302 and 3.335, respectively. On the other hand, for graph G_{4}, the lower bounds in (9) and (11) are 3.763 and 3.749, respectively.

Acknowledgement. The authors are grateful to the referee for minor corrections, which lead to an improvement of the original manuscript. This work is supported by the Faculty research Fund, Sungkyunkwan University, 2012, and National Research Foundation funded by the Korean government with the grant no. 2013R1A1A2009341. The second author is grateful to the Scientific and Technological Council of Turkey (TUBITAK) for supporting his Postdoctoral studies through their fellowship programmes.

References

[1] Ş. B. Bozkurt, A. D. Güngör, I. Gutman, A. S. Çevik, Randić matrix and Randić energy, MATCH Commum. Math. Comput. Chem. 64 (2010) 239-250.
[2] Ş. B. Bozkurt, A. D. Güngör, I. Gutman, Randić spectral radius and Randić energy, MATCH Commum. Math. Comput. Chem. 64 (2010) 321-334.
[3] L. H. Clark, J. W. Moon, On the general Randić index for certain families of trees, Ars Comb. 54 (2000) 223-235.
[4] K. C. Das, S. A. Mojallal, Upper bounds for the energy of graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 657-662.
[5] K. C. Das, S. A. Mojallal, I. Gutman, Improving McClellands lower bound for energy, MATCH Commun. Math. Comput. Chem. 70 (2013) 663-668.
[6] B. Furtula, I. Gutman, Comparing energy and Randić energy, Maced. J. Chem. Chem. Engin. 32 (2013) 117-123.
[7] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York, 2001.
[8] I. Gutman, K. C. Das, Estimating the total π-electron energy, J. Serb. Chem. Soc. 78 (2013) 000-000.
[9] I. Gutman, B. Furtula, Ş. B. Bozkurt, On Randić energy, Lin. Algebra Appl., in press.
[10] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
[11] B. Liu, Y. Huang, J. Feng, A note on the Randić spectral radius, MATCH Commun. Math. Comput. Chem. 68 (2012) 913-916.
[12] B. Mohar, Some applications of Laplace eigenvalues of graphs, in: G. Hahn, G. Sabidussi (Eds.), Graph Symmetry, Kluwer, Dordrecht, 1997, pp. 225-275.
[13] J. R. Schott, Matrix Analysis for Statistics, Wiley, New York, 1997.
[14] W. Yi, F. Yizheng, T. Yingying, On graphs with three distinct Laplacian eigenvalues, Appl. Math. J. Chin. Univ. B 22 (2007) 478-484.
[15] B. Zhou, On spectral radius of nonnegative matrices, Australas. J. Comb. 22 (2000) 301-306.

