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Abstract

Let G = (V, E) be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and
edge set E(G). The Randić matrix R = (rij) of a graph G whose vertex vi has
degree di is defined by rij = 1/

√
didj if the vertices vi and vj are adjacent and

rij = 0 otherwise. The Randić energy RE is the sum of absolute values of the
eigenvalues of R. We provide lower and upper bounds for RE in terms of no. of
vertices, maximum degree, minimum degree and the determinant of the adjacency
matrix of graphs G.

1 Introduction

Throughout the paper we consider only simple graphs, herein called just graphs. Let

G = (V,E) be a graph on vertex set V = {v1, v2, . . . , vn} and edge set E = E(G) .

Also let di be the degree of vertex vi for i = 1, 2, . . . , n. The minimum vertex degree is

denoted by δ = δ(G) and the maximum by Δ = Δ(G). Let Ni be the neighbor set of the

vertex vi ∈ V (G). If the vertices vi and vj are adjacent, we denote that by vivj ∈ E(G).

The adjacency matrix A(G) of G is defined by its entries aij = 1 if vivj ∈ E(G) and 0

otherwise. Let λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn denote the eigenvalues of A(G) . λ1 is called
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the spectral radius of graph G . When more than one graph is under consideration, then

we write λi(G) instead of λi. Some well known results are the following:

n∑
i=1

λi = 0 (1)

and
n∏

i=1

λi = detA. (2)

The Randić matrix R(G) = (rij)n×n is defined as [1, 2, 9]

rij =

{
1√
di dj

if vivj ∈ E(G)

0 otherwise.

Denote the eigenvalues of the Randić matrix R = R(G) by ρ1, ρ2, . . . , ρn and label

them in non-increasing order. The multi set SpR = SpR(G) = {ρ1, ρ2, . . . , ρn} will be

called the R-spectrum of the graph G.

The (ordinary) energy of a graph G is [10]

E = E(G) =
n∑

i=1

|λi|.

For recent papers on lower and upper bounds on E(G), see [4, 5, 8].

The Randić energy [1, 2, 9] of G is defined as

RE = RE(G) =
n∑

i=1

|ρi| .

For several lower and upper bounds on Randić energy, see [1, 2, 9].

Let p ≥ 0. The tree Sup of order n = 2p + 1, containing p pendent vertices, each

attached to a vertex of degree 2, and a vertex of degree p, will be called the p-sun (see

Fig. 2 in [9]). Let p, q ≥ 0. The tree DSup, q of order n = 2(p + q + 1), obtained from a

p-sun and a q-sun, by connecting their central vertices, will be called a (p, q)-double sun

(see Fig. 2 in [9]). Recently, Gutman et al. [9] gave the following conjecture on Randić

energy:
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Conjecture 1. [9] Let T be a tree of order n. If n is odd, then the maximum RE(T ) is

achieved for T being the
(
n−1
2

)
-sun. If n is even, then the maximum RE(T ) is achieved

for T being the
(
�n−2

4
�, �n−2

4
�
)
-double sun.

The paper is organized as follows. In Section 2, we give a list of some previously known

results. In Section 3, we obtain some upper bounds on RE(G) of graph G. In Section 4,

we present some lower bounds on RE(G) of graph G.

2 Preliminaries

In this section, we shall list some previously known results that will be needed in the next

two sections.

Lemma 2.1. [13] Let B be a p × p symmetric matrix and let Bk be its leading k × k

submatrix. Then, for i = 1, 2, . . . , k,

λp−i+1(B) ≤ λk−i+1(Bk) ≤ λk−i+1(B) (3)

where λi(B) is the i-th greatest eigenvalue of B.

Lemma 2.2. [15] Let G be a simple graph of order n. Then

λ1 ≥

√√√√ 1

n

n∑
i=1

d2i .

Moreover, the above equality holds if and only if G is a regular graph or G is a bipartite

semiregular graph.

Lemma 2.3. [11] Let G be a graph of order n. Then

ρ1 = 1.

Lemma 2.4. [6] Let G be a bipartite graph of order n. Then

ρi = −ρn−i+1 , i = 1, 2, . . . ,
⌈n
2

⌉
.
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Lemma 2.5. [12] Let G be a connected r-regular graph of order n. Then

μi = r − λn−i+1 , i = 1, 2, . . . , n,

where λi and μi are the largest i-th eigenvalue of the adjacency and the Laplacian matrix

of graph G, respectively.

Lemma 2.6. [9] Let G be a graph of order n. Then

detR =
detA
n∏

i=1

di

.

3 Upper bounds on the Randić energy of graphs

In this section we give some upper bounds on the Randić energy of graph G in terms of

n and δ. For this we need the following result.

Lemma 3.1. [3] Let T be a tree of order n. Then∑
vivj∈E(T )

1

didj
≤ 5n+ 8

18
.

Now we give an upper bound on Randić energy of trees T in terms of n.

Theorem 3.2. Let T be a tree of order n. Then

RE(T ) ≤ 2

√⌊n
2

⌋
· 5n+ 8

18
.

Proof: We have
n∑

i=1

ρ2i = 2
∑

vivj∈E(G)

1

didj
.

By Lemma 2.4, from the above, we get

�n/2	∑
i=1

ρ2i =
∑

vivj∈E(G)

1

didj
.

By Lemma 3.1, we get
�n/2	∑
i=1

ρ2i ≤
5n+ 8

18
. (4)
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Now,

RE(G) =
n∑

i=1

|ρi| = 2

�n/2	∑
i=1

|ρi| by Lemma 2.4

= 2

√√√√⌊n
2

⌋ �n/2	∑
i=1

ρ2i by Cauchy–Schwarz inequality

≤ 2

√⌊n
2

⌋
· 5n+ 8

18
by (4) .

Remark 3.3. Our result in Theorem 3.2 is very close to the the Randić energy of
(
n−1
2

)
-

sun and
(
�n−2

4
�, �n−2

4
�
)
-double sun. But still the Conjecture 1 is open.

Now we present some well known results needed in the following theorem. The results

can be found in [7]. A strongly regular graph with parameters (n, r, λ, μ), denoted

SRG(n, r, λ, μ), is a r-regular graph on n vertices such that for every pair of adjacent

vertices there are λ vertices adjacent to both, and for every pair of non-adjacent vertices

there are μ vertices adjacent to both. We assume throughout that a strongly regular graph

G is connected and that G is not a complete graph. Consequently, r is an eigenvalue of

the adjacency matrix of G with multiplicity 1 and the remaining eigenvalues must satisfy

the equation

x2 − (λ− μ)x− (r − μ) = 0.

Thus the eigenvalues of G are

r and x1, x2 =
λ− μ±

√
(λ− μ)2 + 4(r − μ)

2
. (5)

It is well known that the eigenvalues of G are

• r of multiplicity 1,

• λ− μ+
√

(λ− μ)2 + 4(r − μ)

2
of multiplicity

1

2

[
n− 1− 2r + (n− 1)(λ− μ)√

(λ− μ)2 + 4(r − μ)

]
,

• λ− μ−
√

(λ− μ)2 + 4(r − μ)

2
of multiplicity

1

2

[
n− 1 +

2r + (n− 1)(λ− μ)√
(λ− μ)2 + 4(r − μ)

]
.
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G1

Fig. 1. Petersen Graph G1.

G2

Fig. 2. Graph G2.

Two strongly regular graphs G1 and G2 have been shown in Fig. 1 and Fig. 2.

Particularly, G1 is well known Petersen graph.

Lemma 3.4. [14] Let G be a connected d-regular graph on n vertices with three distinct

Laplacian eigenvalues 0, r and s (r �= s). Then G is strongly regular graph with parameters

(n, d, rs/n+ 2d− (r + s), rs/n).

Now we are ready to give an upper bound on Randić energy RE(G) of graphs G in

terms of n and δ.

Theorem 3.5. Let G be a connected graph of order n with minimum degree δ. Then

RE(G) ≤ 1 +

√
(n− 1)(n− δ)

δ
(6)

with equality holding if and only if G ∼= Kn or G ∼= SRG
(
n, r, r(r−1)

n−1
, r(r−1)

n−1

)
.
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Proof: We have
n∑

i=1

ρ2i = 2
∑

vivj∈E(G)

1

di dj
=

n∑
i=1

1

di

∑
vivj∈E(G)

1

dj

≤
n∑

i=1

1

δ

∑
vivj∈E(G)

1

dj
as di ≥ δ

=
n

δ
. (7)

Now,

RE(G) =
n∑

i=1

|ρi| = 1 +
n∑

i=2

|ρi| by Lemma 2.4

≤ 1 +

√√√√(n− 1)

(
n∑

i=1

ρ2i − 1

)
by Cauchy–Schwarz inequality (8)

≤ 1 +

√
(n− 1)(n− δ)

δ
by (7).

The first part of the proof is done.

Now suppose that the equality holds in (6). Then all the above inequalities must be

equalities. From the equality in (7), we get d1 = d2 = · · · = dn = δ. Therefore G is

isomorphic to an r-regular graph, (say).

From the equality in (8), we get |ρ2| = |ρ3| = · · · = |ρn| . Moreover, we have

1 + (n− 1)|ρ2| = 1 +

√
(n− 1)(n− r)

r
,

that is,

|ρ2| =
√

n− r

r(n− 1)
.

We consider two cases (i) ρ2 = ρn , (ii) ρ2 = −ρn .

Case (i) : ρ2 = ρn. In this case ρ1 = 1 and ρi = − 1
n−1

, i = 2, 3, . . . , n as
n∑

i=1

ρi = 0.

Hence G ∼= Kn .

Case (ii) : ρ2 = −ρn. We have ρ2 > 0. In this case the three distinct Randić eigenvalues

of graph G are (1, ρ2, −ρ2) with eigenvalue 1 of multiplicity 1. Since G is r-regular,
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we have A(G) = r R(G) . Therefore the three distinct adjacency eigenvalues of G are

(r, rρ2, −rρ2) with eigenvalue r of multiplicity 1. By Lemma 2.5, the three distinct

Laplacian eigenvalues of graph G are (0, r − rρ2, r + rρ2), that is,(
0, r −

√
r(n− r)

n− 1
, r +

√
r(n− r)

n− 1

)
as ρ2 =

√
n− r

r(n− 1)
.

Moreover, G is connected. By Lemma 3.4, we get G ∼= SRG
(
n, r, r(r−1)

n−1
, r(r−1)

n−1

)
.

Conversely, let G ∼= Kn . Then S(G) =
(
1, − 1

n−1
, − 1

n−1
, . . . , − 1

n−1

)
. Hence RE(G) =

2.

Let G be isomorphic to strongly regular graph with parameters
(
n, r, r(r−1)

n−1
, r(r−1)

n−1

)
.

By (5), the distinct eigenvalues of the adjacency matrix are

r,

√
r(n− r)

n− 1
,−
√

r(n− r)

n− 1
,

that is, the distinct eigenvalues of the Randić matrix are

1,

√
n− r

(n− 1)r
,−
√

n− r

(n− 1)r
.

Hence

RE(G) = 1 + (n− 1)

√
n− r

(n− 1)r
= 1 +

√
(n− 1)(n− r)

r
.

Remark 3.6. Two strongly regular graphs G1 and G2 have been shown in Fig. 1 and

Fig. 2. For G1, we have r = 3, n = 10 and r(r−1)
n−1

is not an integer. Hence G1 �

SRG
(
n, r, r(r−1)

n−1
, r(r−1)

n−1

)
. For G2, we have n = 16, r = 6 and r(r−1)

n−1
= 1. Hence

G2
∼= SRG

(
n, r, r(r−1)

n−1
, r(r−1)

n−1

)
.

Remark 3.7. Using Theorem 3.5, we obtain an upper bound on RE(G) + RE(G) in

terms of n, Δ and δ:

RE(G) +RE(G) ≤ 2 +

√
(n− 1)(n− δ)

δ
+

√
(n− 1)(Δ + 1)

n−Δ− 1

= 2 +
√
n− 1

(√
n− δ

δ
+

√
Δ+ 1

n−Δ− 1

)
.
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4 Lower bounds on the Randić energy of graphs

Now we give a lower bound on Randić energy RE(G) of graphs G in terms of n, Δ and

the determinant of the adjacency matrix of graph G.

Theorem 4.1. Let G be a connected graph of order n with maximum degree Δ and degree

sequence π(G) = (d1, d2, . . . , dn). Then

RE(G) ≥ 1 +

√√√√√√√ n

Δ
− 1 + (n− 1)(n− 2)

⎛⎜⎜⎝ | detA|n∏
i=1

di

⎞⎟⎟⎠
2/(n−1)

, (9)

where detA is the determinant of the adjacency matrix of graph G . Moreover, the equality

holds in (9) if and only if G ∼= Kn or G ∼= SRG
(
n, r, r(r−1)

n−1
, r(r−1)

n−1

)
.

Proof: Similarly as in Theorem 3.5, we get

n∑
i=1

ρ2i = 2
∑

vivj∈E(G)

1

di dj
≥

n∑
i=1

1

Δ

∑
vivj∈E(G)

1

dj
as di ≥ δ

=
n

Δ
. (10)

By Arithmetic-Geometric mean inequality, we have

2
∑

2≤i<j≤n

|ρi||ρj| ≥ (n− 1)(n− 2)

(
n∏

1=2

|ρi|
)2/(n−1)

= (n− 1)(n− 2) (| det R|)2/(n−1)

= (n− 1)(n− 2)

⎛⎜⎜⎝ | det A|n∏
i=1

di

⎞⎟⎟⎠
2/(n−1)

by Lemma 2.6 .

Using the above two results, we get(
n∑

i=2

|ρi|
)2

=
n∑

i=2

ρ2i + 2
∑

2≤i<j≤n

|ρi||ρj|,
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that is,

n∑
i=2

|ρi| ≥

√√√√√√√ n

Δ
− 1 + (n− 1)(n− 2)

⎛⎜⎜⎝ | det A|n∏
i=1

di

⎞⎟⎟⎠
2/(n−1)

.

Using the above result, we get

RE(G) =
n∑

i=1

|ρi| ≥ 1 +

√√√√√√√ n

Δ
− 1 + (n− 1)(n− 2)

⎛⎜⎜⎝ | det A|n∏
i=1

di

⎞⎟⎟⎠
2/(n−1)

.

The first part of the proof is done.

Now suppose that the equality holds in (9). Then all the above inequalities must be

equalities. Then we must have d1 = d2 = · · · = dn = δ and |ρ2| = |ρ3| = · · · = |ρn|. Simi-

larly as in Theorem 3.5, one can see easily thatG ∼= Kn orG ∼= SRG
(
n, r, r(r−1)

n−1
, r(r−1)

n−1

)
.

Conversely, letG ∼= Kn . Then S(G) =
(
1, − 1

n−1
, − 1

n−1
, . . . , − 1

n−1

)T
. HenceRE(G) =

2.

Let G be isomorphic to strongly regular graph with parameters
(
n, r, r(r−1)

n−1
, r(r−1)

n−1

)
.

By (5), the distinct eigenvalues of the adjacency matrix are

r,

√
r(n− r)

n− 1
,−
√

r(n− r)

n− 1
.

Using some results before Lemma 3.4, we have

| detA| = r

(
r(n− r)

n− 1

)n−1
2

.

Now,

1 +

√√√√√√√ n

Δ
− 1 + (n− 1)(n− 2)

⎛⎜⎜⎝ | detA|n∏
i=1

di

⎞⎟⎟⎠
2/(n−1)

= 1 +

√
(n− 1)(n− r)

r
= RE(G)

as di = r, i = 1, 2, . . . , n.
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Now we give another lower bound on Randić energy RE(G) of graphs G in terms of

n, the degree sequence, and the determinant of the adjacency matrix of graph G.

Theorem 4.2. Let G be a connected graph of order n with degree sequence π(G) =

(d1, d2, . . . , dn). Then

RE(G) ≥ 1 + (n− 1)

⎛⎜⎜⎝ | detA|n∏
i=1

di

⎞⎟⎟⎠
1/(n−1)

, (11)

where detA is the determinant of the adjacency matrix of graph G .

Proof: Using Lemmas 2.3 and 2.6 with arithmetic–geometric mean inequality, we get

RE(G) = 1 +
n∑

i=2

|ρi| ≥ 1 + (n− 1)

⎛⎜⎜⎝ | detA|n∏
i=1

di

⎞⎟⎟⎠
1/(n−1)

.

This completes the proof.

G3 G4

Fig. 3. Graphs G3 and G4.

Remark 4.3. The lower bounds on the Randić energy given in (9) and (11) are incompa-

rable. Two graphs G3 and G4 have been shown in Fig. 3. For graph G3, the lower bounds

in (9) and (11) are 3.302 and 3.335, respectively. On the other hand, for graph G4, the

lower bounds in (9) and (11) are 3.763 and 3.749, respectively.
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