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Abstract

A fullerene graph is a 3-regular 3-connected plane graph with only pentagonal
and hexagonal faces. For a fullerene graph F , a set H of disjoint hexagons is called
a resonant pattern (or sextet pattern) if it has a perfect matching such that every
hexagon in H is M -alternating. F is said to be k-resonant if any i (0 ≤ i ≤ k)
disjoint hexagons of F form a resonant pattern. Every fullerene graph is shown to
be 1-resonant and exactly nine fullerene graphs are k-resonant (k ≥ 3). But not all
fullerene graphs are 2-resonant. For a fullerene graph Fn with n vertices, the size
of a maximum resonant pattern of Fn is the Clar number, denoted by c(Fn). It is
known that c(Fn) ≤ n−12

6 . The fullerene graphs Fn with c(Fn) =
n−12

6 are extremal.
In this paper, we show that every extremal fullerene graph with no less than 60
vertices is 2-resonant. However, non-2-resonant extremal fullerene graphs with less
than 60 vertices exist.
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1 Introduction

Fullerene graphs are 3-connected 3-regular plane graph having only pentagonal faces and

hexagonal faces. In chemistry, a fullerene consists entirely of carbon atoms, each carbon

atom is connected to three carbon atoms by chemical bonds. The archetype of fullerenes,

icosahedral C60, known as the buckministerfullerene, was firstly discovered by Kroto et

al. [10] in 1985 and confirmed by later experiments [9, 16]. The stability of fullerene

graphs is always the focus of investigations. Up to now a number of invariants that could

be used as a predictor of fullerene stability has been proposed, such as Kekulé count,

Clar number, etc., which stimulated dozens of works to investigate the number of perfect

matching [3, 8, 25] and the Clar number [19, 22, 24] of fullerene graphs.

Let F be a fullerene graph. A perfect matching (or Kekulé structure) of F is a set

of pairwise disjoint edges M such that every vertex of F is incident with an edge in M .

A cycle of F is M-alternating if its edges appear alternately in and off M . A set H

of mutually disjoint hexagons is called a resonant pattern (or sextet pattern) if F has a

perfect matching M such that every hexagon in H is M -alternating. For a fullerene graph

Fn on n vertices, we denote by c(Fn) the size of a maximum resonant pattern and call this

number the Clar number of Fn. It has shown that c(Fn) ≤ n−12
6

[22]. If equality holds,

we call Fn extremal.

A fullerene graph F is k-resonant if any i (0 ≤ i ≤ k) disjoint hexagons of F form a

resonant pattern. The concept of resonance originates from Clar’s aromatic sextet theory

[2]: within benzenoid hydrocarbon isomers, one with larger Clar number is more stable.

The k-resonance was firstly proposed by Zheng [27] for benzenoid systems. Then the

k-resonance of many other molecular graphs is investigated extensively [1, 5, 11, 13, 14,

15, 20, 21, 23, 26]. But 2-resonance for benzenoid systems, open-ended nanotubes and

fullerenes remains open.

Ye et al. [18] showed that every fullerene graph is 1-resonant and there are exactly

nine fullerene graphs which are k-resonant (k ≥ 3). But not all fullerene graphs are

2-resonant. It is known that all leapfrog fullerene graphs are 2-resonant (see [18]). The

class of leapfrog fullerene graphs satisfies the IPR (a fullerene with no adjacent pentagons

is said to satisfy the isolated pentagon rule and is called an IPR fullerene ). This leads

Ye et al. [18] to ask whether every IPR fullerene graph is 2-resonant. Kaiser et al. [6]

answered the question in the affirmative.

Theorem 1.1. ([6] Theorem 1) Every IPR fullerene graph is 2-resonant.
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Note the IPR fullerene graphs do not include the subgraph L or R (see Fig. 1). So

later Yang and Zhang [17] generalized the result of Theorem 1.1 to the fullerene graphs

which do not contain the subgraph L or R.

L R

Fig. 1. The subgraphs L and R.

Theorem 1.2. ([17] Theorem 1.1)The fullerene graphs which do not contain the subgraph

L or R are 2-resonant except for F42, F
1
44, F

2
44, F

1
46, F

2
46, F

3
46, F

4
46, F

1
48, F

2
48, F

3
48, F

4
48.

In this paper, by means of Theorem 1.2 we prove the following result.

Theorem 1.3. Every extremal fullerene graph Fn with n ≥ 60 is 2-resonant.

The above conclusion does not always hold for the extremal fullerene graphs with

vertices less than 60. For example, the three fullerene graphs F42, F
3
48, F

4
48 as shown in

Fig. 2 are extremal but not 2-resonant since the two grey hexagons do not form a resonant

pattern.

Fig. 2. Non-2-resonant extremal fullerene graphs F42, F
3
48 and F 4

48.

2 Preliminaries

Let G be a connected plane graph with vertex-set V (G) and edge-set E(G). For H ⊆

V (G) ∪ E(G), we let G − H be the subgraph of G obtained from G by removing the

elements in H. If X ⊂ V (G), then we write ∇(X) for the set of edges having one

endpoint in X and the other in X, where X = V (G) − X. For a subgraph H of G, we

also simply write ∇(H) for ∇(V (H)), and H for V (H).
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An edge-cut of a connected graph G is a set of edges C ⊂ E(G) such that G − C is

disconnected. An edge-cut C of G is cyclic if at least two components of G − C contain

a cycle. A graph G is cyclically k-edge-connected if deleting less than k edges from G

can not separate it into two components such that each of them contains at least one

cycle. The cyclic edge-connectivity of G, denoted by cλ(G), is the greatest integer k such

that G is cyclically k-edge-connected. For a fullerene graph F , Došlić [4] and Qi and

Zhang [12] proved that cλ(F ) = 5; Kardoš and Škrekovski [7] obtained the same result

by three operations on cyclic edge-cuts. The edges pointing outward of each pentagonal

(or hexagonal) face form a cyclic 5 (or 6) edge cut. We call these cyclic 5 and 6 edge-cuts

trivial. A cyclic edge-cut C of a fullerene graph F is non-degenerated if both components of

F −C contain precisely six pentagons. Otherwise, C is degenerated. Obviously, the trivial

cyclic edge-cuts are degenerated. There is a family of fullerene graphs, which have many

non-degenerated cyclic edge-cuts—the nanotubes. Nanotubes are cylindrical in shape with

two caps, each containing six pentagons and maybe some hexagons. The cylindrical part

of the nanotube can be obtained from a planar hexagonal grid by identifying objects lying

on two parallel lines. The way that the grid is wrapped is represented by a pair of indices

(p1, p2). The numbers p1 and p2 denote the coefficients of the linear combination of the

unit vectors a1 and a2 such that the vector p1a1 + p2a2 joins pairs of identified points, see

Fig. 3.

1
a

2
a

C

1 1 2 2
p a p a+

Fig. 3. An example of a nanotube of type (6,2).

Kardoš and Škrekovski [7] characterized the cyclic 5- and 6-edge-cuts in fullerene

graphs.

Theorem 2.1. ( [7] Theorem 2) A fullerene graph has non-trivial cyclic 5-edge-cuts if and

only if it is isomorphic to the graph Gm for some integer m ≥ 1, where Gm is the fullerene

graph comprised of two caps formed of six pentagons joined by m layers of hexagons (see

Fig. 4).
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Fig. 4. The graphs Gm are the only fullerene graphs with non-trivial cyclic 5-edge-cuts.

Theorem 2.2. ( [7] Theorems 3,4) (i)There are precisely seven non-isomorphic graphs

that can be obtained as components of degenerated cyclic 6-edge-cuts with less than six

pentagons (see Fig. 5).

(ii) A fullerene graph has a non-degenerated cyclic 6-edge-cut if and only if it is a

nanotube of type (p1, p2) with p1 + p2 = 6, or it is Gm with m > 2, where Gm is shown in

Fig. 4.

6 01D 6 02D 6 03D 6 04D 6 05D 6 06D 6 07D

Fig. 5. Degenerated cyclic 6-edge-cuts.

Corollary 2.3. ( [7] Corollary 5) There are exactly eight caps for the nanotubes of type

(p1, p2) such that p1 + p2 = 6 (see Fig. 6).

6 01ND 6 02ND 6 03ND 6 04ND 6 05ND 6 06ND 6 07ND 6 08ND

Fig. 6. The (minimal) caps of (p1, p2)-nanotubes with p1 + p2 = 6.

A fragment B of a fullerene graph F is a subgraph of F consisting of a cycle together

with its interior. A pentagonal fragment is a fragment with only pentagonal inner faces. A

face f of F is a neighboring face of B if f is not a face of B and f has at least one edge in

common with B. A fragment B of F is maximal if all its neighboring faces are hexagonal.
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For a fragment B, all 2-degree vertices of B lie on its boundary. We call a path P on the

boundary of B connecting two 2-degree vertices degree-saturated if P contains no 2-degree

vertices of B as intermediate vertices. Maximal pentagonal fragments play an important

role in characterizing extremal fullerene graphs.

Theorem 2.4. ( [19] Theorem 3.11) Let Fn (n ≥ 60) be an extremal fullerene graph and

B1, B2, . . . , Bk all maximal pentagonal fragments of Fn. Then Bi ∈ {P,B2, B3, B4, B5, B6}

for all 1 ≤ i ≤ k, where P,B2, B3, B4, B5, B6 are shown in Fig. 7.

P 2
B

3
B

4
B

6
B

5
B

Fig. 7. Maximal pentagonal fragments P,B2, B3, B4, B5, B6.

3 Proof of Theorem 1.3

From now on, let Fn be an extremal fullerene graph with n ≥ 60 and B1, B2, . . . , Bk

all maximal pentagonal fragments of Fn. If there exists a vertex v belonging to three

pentagons in Fn, then the maximal pentagonal fragment containing v must be B3 by

Theorem 2.4. So next we distinguish B3 ⊂ Fn or B3 * Fn to prove Theorem 1.3.

In what follows we assume B3 ⊂ Fn. Denote by P1, . . . , P6 and f1, . . . , f8 the pentag-

onal inner faces and neighboring faces of B3 as shown in Fig. 8(a). Then all of f1, . . . , f8

are hexagons as B3 is a maximal pentagonal fragment of Fn. Let G = B3∪f2∪f3∪f6∪f7.

Then we have the following result.

Proposition 3.1. Fn is an (6,0)-nanotube with the two caps as the components of the

non-degenerated cyclic 6-edge-cut 6ND04 (see Fig. 8(b) the (6,0)-nanotube Fn).

Proof. SinceG (=B3∪f2∪f3∪f6∪f7) contains six pentagons and f1, f4, f5, f8 are hexagons,

at least one pentagon is included in G. In other words, ∇(G) forms a cyclic 6-edge-cut.

Moreover, ∇(G) is a non-degenerate cyclic 6-edge-cut, otherwise, n ≤ 24 + 16 = 40 by

Theorem 2.2(i), contradicting that n > 60. So by Theorem 2.2(ii) Fn is either Gm with

m > 2 (see Fig. 4 the graph Gm) or a nanotube of type (p1, p2) with p1 + p2 = 6. If

the former case holds, then Fn has a maximal pentagonal fragment consisting of a central
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P
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P

2
P

3
P 3
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4

P 4
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+

( )a ( )b

Fig. 8. (a) B3 and its neighboring faces; (b) The (6,0)-nanotube Fn: the two black
vertices are adjacent.

pentagon surrounded by five pentagons, contradicting Theorem 2.4. If the latter case

holds, then the two caps of Fn can be choosen in Fig. 6 by Corollary 2.3. Now checking

for all the caps shown in Fig. 6 and combining with Theorem 2.4 we can know Fn has the

minimal cap G which is one component of the non-degenerated cyclic 6-edge-cut 6ND04,

and the Proposition holds.

Divide G into the inner and outer layers, where the inner layer consists of P2, P3, P4, P5

and the outer layer is comprised of P1, P6, f2, f3, f6, f7. Next we give some labels for Fn.

Let H0, H1, . . . , Hk+1 be all the layers of Fn, where H0, Hk+1(H1, Hk) are the inner (outer)

layers of G and hexagonal layer Hi is adjacent to Hi−1 and Hi+1 for 2 ≤ i ≤ k − 1. For

1 ≤ i ≤ k + 1, we set Li = Hi−1 ∩Hi (see Fig. 8(b)). Then L1 (Lk+1) is a cycle of length

10 and Li (2 ≤ i ≤ k) is a cycle of length 12. We call two vertices u, v on Li opposite

if the length of the two u, v paths on Li is the same. Note that both H1 and Hk have

four hexagons and Hi (2 ≤ i ≤ k − 1) has six hexagons, each of which is adjacent to two

faces in every adjacent layer of Hi. For convenience, we label the hexagonal faces of Fn

as follows: give the labels h11, h
2
1, h

3
1, h

4
1 to the four hexagonal faces of H1 along clockwise

direction such that h11, h
2
1 (h31, h

4
1) are adjacent. Assume that the labels of the faces in

H1, H2, . . . , Hi (i ≥ 1) are given, then label the faces of Hi+1 h
1
i+1, h

2
i+1, . . . , h

6
i+1 along

clockwise direction such that h1i+1, h
1
i , h

2
i are pairwise adjacent. Finally give the labels

h1k, h
2
k, h

3
k, h

4
k to the four hexagonal faces of Hk arbitrarily. In the following, we always use

the above symbols to indicate the (6,0)-nanotube Fn.

Regarding to the (6,0)-nanotube Fn, we have the following result.
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Lemma 3.2. Let h1, h2 be two disjoint hexagons of Fn. Then for any 1 ≤ i ≤ k, there is

a matching Mi of Fn− (h1 ∪ h2) such that for any 1 ≤ j ≤ i, each vertex of Lj is covered

either by h1 or h2 or Mi and one of the following three cases holds.

(1) two of h1j , h
2
j , . . . , h

6
j (the case j 6= 1, k) or two of h11, h

2
1, h

3
1, h

4
1 or two of h

1
k, h

2
k, h

3
k, h

4
k

are h1, h2, and no vertex of Lj matches to a vertex of Lj+1 in Mi;

(2) one of h1j , h
2
j , . . . , h

6
j (the case j 6= 1, k) or one of h11, h

2
1, h

3
1, h

4
1 or one of h

1
k, h

2
k, h

3
k, h

4
k

is h1 or h2, and a unique vertex of Lj matches to a vertex of Lj+1 in Mi;

(3) none of h1j , h
2
j , . . . , h

6
j (the case j 6= 1, k) or none of h11, h

2
1, h

3
1, h

4
1 or none of

h1k, h
2
k, h

3
k, h

4
k is h1 or h2, and two opposite vertices of Lj match to two opposite vertices

of Lj+1.

Proof. We use induction on i to prove the lemma.

Label the vertices of H0 as shown in Fig. 9(a). Let v13, v14 be the neighbors of v1, v6,

respectively, not on H0. For the first step, if two of h11, h
2
1, h

3
1, h

4
1 are h1 and h2, then the two

hexagons are h11, h
3
1 or h11, h

4
1 by symmetry. If h11, h

3
1 are the two hexagons h1, h2, then we

can set M1 = {v1v10, v11v12, v5v6}, and M1 satisfies the conditions (see Fig. 9(b)). If h11, h
4
1

are the two hexagons h1, h2, then M1 = {v5v6, v7v8, v11v12} also satisfies the conditions. If

one of h11, h
2
1, h

3
1, h

4
1 equals h1 or h2, say h11 = h1, then M1 = {v1v13, v5v6, v7v8, v9v10, v11v12}

is the desired matching and M1 satisfies the conditions (see Fig. 9(c)). If none of

h11, h
2
1, h

3
1, h

4
1 is h1 or h2, then M1 = {v1v13, v2v3, v4v5, v6v14, v7v8, v9v10, v11v12} is the de-

sired matching (see Fig. 9(d)).

( )b( )a ( )c ( )d

1

1h
1

1h
1

1h

2

1h
2

1h
3

1h
3

1h

4

1h
4

1h

1
M

i
h

1
v 1

v
1

v
1

v2
v

2
v

3
v

3
v

4
v

4
v

5
v 5

v

5
v

5
v

6
v 6

v 6
v

6
v

7
v 7

v
7

v

8
v 8

v
8

v

9
v

9
v

9
v10

v
10

v 10
v

10
v

11
v

11
v

11
v

11
v

12
v 12

v
12

v

12
v

13
v

13
v

13
v

14
v

14
v

Fig. 9. Illustration for the first step in the proof of Lemma 3.2.

Suppose the conclusion is true for i, 1 ≤ i ≤ k and Mi has been already constructed

by inductive procedure. We consider the case i + 1. By the inductive hypothesis, three

cases are considered.

Case 1. Two of h1i , h
2
i , . . . , h

6
i are h1, h2. Then Hi+1 does not contain h1 or h2. By

symmetry, the two hexagons are h1i , h
3
i or h1i , h

4
i . If h1i , h

3
i equal h1, h2, then six vertices
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on Li+1 are covered by h1, h2 and the other six are divided into a path v1v2v3v4v5 and a

vertex v6 (see Fig. 10(a)). Denote by e1 (e2) the edge connecting v3 (v6) to its neighbor

on Li+2. Then Mi+1 = Mi ∪ {e1, e2, v1v2, v4v5} satisfies the conditions (see Fig. 10(a)).

The case for h1i , h
4
i being h1, h2 is the same (see Fig. 10(b) the desired matching Mi+1 =

Mi ∪ {e1, e2, v1v2, v4v5}).

1

1ih +

1

ih

ih

2

ih

3

ih

4

ih

5

ih

6

ih

2

1ih +

3

1ih +

4

1ih +

5

1ih +

6

1ih +

2e 2e

1e
1e

iL iH 1iL +

1

1ih +

1

ih
2

ih

iL
iH 1iL +

3

ih

3

1ih +

4

ih

5

ih

6

ih

6

1ih +

5

1ih +

4

1ih +

( )a ( )b

i
M

1
v 1

v

2
v

2
v

3
v 3

v

4
v

4
v

5
v

5
v

6
v

6
v

Fig. 10. Illustration for Case 1 in the proof of Lemma 3.2.

Case 2. One of h1i , h
2
i , . . . , h

6
i is h1 or h2, say h1i = h1. By the induction hypothesis,

a unique vertex of Li matches to a vertex of Li+1 in Mi, say e = uv ∈ Mi, where

u ∈ V (Li), v ∈ V (Li+1). Then by symmetry e ∈ E(h2i ) ∩ E(h3i ) or e ∈ E(h3i ) ∩ E(h4i ).

We only consider the former situation as the latter case can be analyzed similarly. If

h2i+1 6= h2, then at most one of h3i+1, h
4
i+1, h

5
i+1 is h2. If one of h3i+1, h

4
i+1, h

5
i+1, say h4i+1,

equals h2, then six vertices on Li+1 are covered by h1∪h2, and the remaining six vertices on

Li+1 are divided into two paths: an edge v1v2 and a path v3v4vv5 (see Fig. 11(a)). Denote

by e1 the edge connecting v5 to its neighbor on Li+2. Then Mi+1 = Mi ∪ {e1, v1v2, v3v4}

satisfies the conditions. If none of h3i+1, h
4
i+1, h

5
i+1 equals h2, then three vertices on Li+1

are covered by h1 and the remaining nine vertices form a path v1v2v3v4v5v6v7vv8 (see

Fig. 11(b)). Let e1 (e2) be the edge connecting v8 (v3) to its neighbor on Li+2. Then

Mi+1 = Mi ∪ {e1, e2, v1v2, v4v5, v6v7} satisfies the conditions.

Now suppose h2i+1 = h2. Then six vertices on Li+1 are covered by h1 ∪ h2 and the

remaining six form a path v1v2v3v4v5v6 (see Fig. 11(c)). Moreover, three vertices on Li

are covered by h1 and the remaining nine form a path u1u2u3u4u5u6u7uu8 (see Fig. 11(c)).

Since Hi−1 does not contain h1 or h2, two opposite vertices of Li−1 match to two opposite

vertices of Li in Mi by the inductive hypothesis, that is, {u1u2, u4u5, u6u7} ⊂Mi (see Fig.

11(c)). Let Mi+1 = Mi − {e, u6u7} ∪ {uu7, u6v6, e1, v1v2, v3v4}. Then Mi+1 again satisfies
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the conditions (see Fig. 11(d)), where e1 is the edge connecting v5 to its neighbor on Li+2.
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Fig. 11. Illustration for Case 2 in the proof of Lemma 3.2.

Case 3. None of h1i , h
2
i , . . . , h

6
i equals h1 or h2. By the hypothesis, two opposite vertices

of Li match to two opposite vertices of Li+1 in Mi. Let the two edges in Mi connecting

Li to Li+1 be u1v1, u7v7 such that u1, u7 ∈ V (Li), v1, v7 ∈ V (Li+1). Denote by u1u2 · · ·u12
(v1v2 · · · v12) the boundary labeling of Li (Li+1) along anticlockwise direction. Without

lose of generality we may assume v1 ∈ V (h6i+1).

If two of h1i+1, h
2
i+1, h

4
i+1, h

5
i+1 are the hexagons h1 and h2, say h1i+1 = h1, h

4
i+1 =

h2, then the six vertices v4, v5, v6, v10, v11, v12 are covered by h1 ∪ h2 and Mi+1 = Mi ∪

{v2v3, v8v9} satisfies the conditions (see Fig. 12(a)). If one of h3i+1, h
6
i+1 equals ht and

one of h1i+1, h
2
i+1, h

4
i+1, h

5
i+1 equals h3−t for t ∈ {1, 2}, say h6i+1 = h1, h

2
i+1 = h2, then

Hi−1 does not contain h1 or h2 and two opposite vertices of Li−1 match to two opposite

vertices of Li in Mi by the inductive hypothesis. Let s, t be the two opposite vertices

on Li. Then s, t ∈ V (h1i ∪ h4i ) or s, t ∈ V (h2i ∪ h5i ) or s, t ∈ V (h3i ∪ h6i ). If s, t ∈

V (h1i ∪ h4i ), say, s = u12, t = u6, then by the induction hypothesis, the vertices on Li

are covered by Mi, that is, {u2u3, u4u5, u8u9, u10u11} ⊂ Mi (see Fig. 12(b)). Let Mi+1 =

Mi−{u1v1, u7v7, u2u3, u4u5, u8u9, u10u11}∪{u1u2, u3u4, u5v5, u7u8, u9u10, u11v11, v3v4, v6v7}

(see Fig. 12(c)). Then Mi+1 satisfies the conditions. If s, t ∈ V (h2i ∪ h5i ), say, s =

u10, t = u4, then also by the induction hypothesis {u2u3, u5u6, u8u9, u11u12} ⊂ Mi and

Mi+1 = Mi − {u1v1, u7v7, u5u6, u11u12} ∪ {u5v5, u11v11, u1u12, u6u7, v3v4, v6v7} satisfies the

conditions. The case for s, t ∈ V (h3i ∪ h6i ) is the same. If h3i+1, h
6
i+1 equal h1 and h2,

respectively, then Hi−1 does not contain h1 or h2 and by the induction hypothesis, two

opposite vertices of Li−1 match to two opposite vertices of Li in Mi. Let s, t be the

two opposite vertices on Li. Then by symmetry s, t ∈ V (h1i ∪ h4i ) or s, t ∈ V (h2i ∪ h5i ).

Also if s, t ∈ V (h1i ∪ h4i ), say, s = u12, t = u6, then {u2u3, u4u5, u8u9, u10u11} ⊂ Mi (see

Fig. 12(d)) and Mi+1 = Mi−{u1v1, u7v7, u2u3, u8u9}∪{u1u2, u3v3, u7u8, u9v9, v4v5, v10v11}
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again satisfies the conditions (see Fig. 12(e)). Similarly for s, t ∈ V (h2i ∪ h5i ).
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Fig. 12. Two of h1i+1, . . . , h
6
i+1 being the hexagons h1, h2.

If one of h1i+1, h
2
i+1, h

4
i+1, h

5
i+1 equals h1 or h2, without lose of generality suppose h1i+1 =

h1. Then Mi+1 = Mi ∪ {e, v2v3, v4v5, v8v9} satisfies the conditions, where e is the edge

connecting v6 to its neighbor on Li+2 (see Fig. 13(a)). If one of h3i+1, h
6
i+1 equals h1 or

h2, say h6i+1 = h1, then Hi−1 does not contain h2 or one of h2i−1, h
3
i−1, h

5
i−1, h

6
i−1 equals

h2. If the former case holds, then by the inductive hypothesis two opposite vertices of

Li−1 match to two opposite vertices of Li in Mi. Let s, t be the two opposite vertices

on Li. Then s, t ∈ V (h1i ∪ h4i ) or s, t ∈ V (h2i ∪ h5i ) by symmetry. If s, t ∈ V (h1i ∪ h4i ),

say, s = u12, t = u6, then by the induction hypothesis, the vertices on Li are covered

by Mi, in other words, {u2u3, u4u5, u8u9, u10u11} ⊂ Mi (see Fig. 13(b). Let Mi+1 =

Mi − {u1v1, u7v7, u2u3, u8u9} ∪ {e, u1u2, u3v3, u7u8, u9v9, v5v6, v7v8, v10v11}. Then Mi+1 is

the desired matching (see Fig. 13(c)), where e is the edge connecting v4 to its neighbor

on Li+2. The case for s, t ∈ V (h2i ∪ h5i ) is the same. If the latter case holds, then by

symmetry h2i−1 = h2 or h3i−1 = h2. If h2i−1 = h2, then a unique vertex of Li−1 matches to a

vertex (say u) of Li. Since by the induction hypothesis the vertices on Li must be covered
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by h1 or h2 or Mi, u ∈ V (h4i ) or u ∈ V (h5i ) or u ∈ V (h6i ). As the similarity we only

consider the case u ∈ V (h4i ). Then we have the Mi edges u2u3, u4u5, u8u9 on Li as shown

in Fig. 13(d). Exchange some edges and we obtain Mi+1 = Mi−{u1v1, u7v7, u2u3, u8u9}∪

{e1, u1u2, u3v3, u7u8, u9v9, v5v6, v7v8, v10v11} satisfies the conditions (see Fig. 13(e)), where

e1 is the edge connecting v4 to its neighbor on Li+2. If h3i−1 = h2, then analogously a

unique vertex of Li−1 matches to a vertex (say u) of Li and u ∈ V (h4i ) or u ∈ V (h5i )

or u ∈ V (h6i ). Using the same analysis as the case h2i−1 = h2 we can find the desired

matching Mi+1 in each cases.

If none of h1i+1, h
2
i+1 · · ·h6i+1 equals h1 or h2, then Mi+1 = Mi ∪ {e1, e2, v2v3, v4v5, v8v9,

v10v11} satisfies the conditions, where e1 (e2) is the edge connecting v6 (v12) to its neighbor

on Li+2.
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Fig. 13. One of h1i+1, . . . , h
6
i+1 being the hexagon h1 or h2.

From Lemma 3.2 we can easily gain our main result.

Lemma 3.3. For the (6,0)-nanotube Fn, it is 2-resonant.
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Proof. To prove the lemma, it suffices to show Fn − (h1 ∪ h2) has a perfect matching for

any two disjoint hexagons h1, h2. By Lemma 3.2 Mk has been constructed. Next we find

a perfect matching Mk+1 of Fn − (h1 ∪ h2) from Mk as follows. For convenience, we give

the labels of Hk+1 as shown in Fig. 14(a).

If two of h1k, h
2
k, h

3
k, h

4
k are h1 and h2, then by symmetry we may assume h1k = h1, h

3
k =

h2 or h1k = h1, h
4
k = h2. By Lemma 3.2 no vertex of Lk matches to a vertex of Lk+1 in Mk.

So if h1k = h1, h
3
k = h2, then Mk+1 = Mk ∪ {v1v10, v5v6, v11v12} is a perfect matching of

Fn− (h1∪h2) (see Fig. 14(b)). If h1k = h1, h
4
k = h2, then Mk+1 = Mk ∪{v5v6, v7v8, v11v12}

is a perfect matching of Fn − (h1 ∪ h2) (see Fig. 14(c)).
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Fig. 14. (a) The labeling of Hk+1; (b)-(d) At least one of h1k, . . . , h
4
k being the hexagon

h1, h2.

If one of h1k, h
2
k, h

3
k, h

4
k is the hexagon h1 or h2, say h1k = h1, then by Lemma 3.2

a unique vertex of Lk matches to a vertex of Lk+1 in Mk. Let the matched vertex on

Lk+1 be u. Then u = v1 or u = v9 or u = v7 or u = v6. If u = v1, then Mk+1 =

Mk ∪ {v5v6, v7v8, v9v10, v11v12} is a perfect matching of Fn − (h1 ∪ h2) (see Fig. 14(d)). If

u = v9, then Mk+1 = Mk∪{v5v6, v7v8, v1v10, v11v12} is a perfect matching of Fn−(h1∪h2).

If u = v7, thenMk+1 = Mk∪{v5v6, v8v9, v1v10, v11v12} is a perfect matching of Fn−(h1∪h2).

Lastly suppose u = v6. Let v13, v14, . . . , v24 be the boundary of Lk and h1k−1, h
2
k−1, . . . , h

6
k−1

the six faces of Hk−1 as shown in Fig. 15(a). They by Lemma 3.2 none of h1k−1, h
2
k−1, h

3
k−1

equals h2 and v18v25 ∈ Mk, where v18v25 is an edge connecting v18 to its neighbor on

Lk−2 (see Fig. 15(a)). Now at most one of h4k−1, h
5
k−1, h

6
k−1 equals h2. If none does,

then two opposite vertices of Lk−1 match to two opposite vertices of Lk by Lemma 3.2

and the two opposite vertices on Lk are v18, v24. Thus {v13v14, v22v23, v20v21} ⊂ Mk (see

Fig. 15(b)). Let Mk+1 = Mk−{v20v21, v6v19}∪ {v19v20, v7v21, v5v6, v8v9, v11v12, v1v10} (see

Fig. 15(c)). Then Mk+1 is a perfect matching of Fn − (h1 ∪ h2). If h5k−1 or h6k−1 equals

h2, say h5k−1, then analogously {v13v14, v20v21} ⊂ Mk and Mk+1 = Mk − {v20v21, v6v19} ∪

{v19v20, v7v21, v5v6, v8v9, v11v12, v1v10} is a perfect matching of Fn−(h1∪h2). If h4k−1 equals
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h2, then two opposite vertices of Lk−2 match to two opposite vertices of Lk−1 by Lemma

3.2, and the two opposite vertices on Lk−1 are assured, say s, t (see Fig. 15(d)). Now the

Mk edges on Lk and Lk−1 are known (see Fig. 15(d) the Mk edges v26v27, v28v29, v30v31

on Lk−1 and v13v14, v23v24 on Lk). Let Mk+1 = Mk−{v6v19, v18v25, v26v27, v28v29, v13v14}∪

{v18v19, v25v26, v27v28, v29v14, v1v13, v9v10, v11v12, v7v8, v5v6} (see Fig. 15(e)). Then Mk+1

forms a perfect matching of Fn − (h1 ∪ h2).
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Fig. 15. The case u = v6.

If none of h1k, h
2
k, h

3
k, h

4
k equals h1 or h2, then by Lemma 3.2 two opposite vertices of Lk

match to two opposite vertices of Lk+1. By symmetry, the two opposite vertices on Lk+1

are v2, v7 or v4, v9. If v2, v7 do, then Mk+1 = Mk∪{v1v10, v11v12, v8v9, v5v6, v3v4} is a perfect

matching of Fn−(h1∪h2). If v4, v9 do, then Mk+1 = Mk∪{v1v10, v11v12, v7v8, v5v6, v2v3} is

a perfect matching of Fn− (h1∪h2). Until now the proof of Lemma 3.3 is completed.

Proof of Theorem 1.3: From Proposition 3.1 and Lemma 3.3 we can know if B3 ⊂ Fn,

then Fn is 2-resonant. So next we may assume B3 * Fn. For every Bi (1 ≤ i ≤ k), let f

be a face of Bi with t 2-degree vertices on its boundary. Then t 2-degree vertices separate

f into t degree-saturated paths and the length of these degree-saturated paths is no more

-112-



than three by Theorem 2.4, which means Fn cannot possess L as subgraph (see Fig. 1

the subgraphs L,R). Thus Fn is also 2-resonant by Theorem 1.2. Now Theorem 1.3 is

proved. �
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