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Abstract

In this paper linear programming (LP)-based algorithms are presented to com-
pute alternative structures (realizations) of biochemical reaction networks (CRNs)
with mass action kinetics. The proposed algorithms have polynomial time complex-
ity which enables us to handle large scale, biologically relevant problems. The main
new contributions are the following: firstly, a new, effective LP-based method is
presented that is guaranteed to compute the dense super-structure of a CRN, and
secondly, it is shown that dynamically equivalent sparse structures can be computed
efficiently and precisely by applying the theory of sparse nonnegative solutions of
under-determined linear systems. It is shown through illustrative examples that
the proposed methods outperform and thus can substitute the previously described
MILP-based methods that are hard to tract computationally if the number of deci-
sion variables is high.

1 Introduction

The rigorous structural and dynamical analysis of biologically motivated kinetic systems

such as intracellular signalling pathways and gene regulation networks has gained an
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increased attention in recent years. The amount and quality of experimental data are

continuously improving due to the fast development of sensors and computer systems.

These trends naturally imply a need for the parallel improvement of modelling and com-

putational methods to be able to handle the growing amount of data and to analyse more

complex, possibly biologically relevant processes and networks.

In this paper, by Chemical Reaction Networks (CRNs) we mean deterministic kinetic

systems obeying the mass action law. It is known that such systems form a wide class of

smooth nonlinear systems that are able to produce all important qualitative phenomena

in nonlinear dynamics such as oscillations, multiplicities and even chaos [1]. Thus, the

kinetic system form can be useful for the description of nonnegative models outside of

(bio)chemistry, e.g. for epidemic, transportation or economic models as well [2, 3].

The general applicability of kinetic models is definitely extended by the strong results

of chemical reaction network theory (CRNT). CRNT was initiated in the 1970’s and

80’s with the first publications about the relations between the structure and qualitative

dynamics of CRNs treated as a general nonlinear system class [4, 5, 6]. Since then,

numerous deep and useful results have been published in this continuously developing

field (see, e.g. [1, 7, 8])

It has been known at least from the 1970’s that structurally/parametrically different

reaction schemes might produce exactly the same dynamics in the concentration space.

This phenomenon is usually called macro-equivalence [4] or dynamical equivalence. Nec-

essary and sufficient geometric conditions for macro-equivalence were shown in [9] with

a technical comment in [10]. For the computation of dynamically equivalent structures

with preferred properties such as detailed or complex balance, (weak) reversibility, the

inclusion of minimal/maximal number of reactions or complexes, optimization-based pro-

cedures have been published in [11, 12, 13, 14]. The concept of linear conjugacy is an

extension of dynamical equivalence, allowing a positive diagonal state transformation

between the solutions of linearly conjugate CRNs [15]. The previously mentioned compu-

tational methods were generalized for linearly conjugate systems in [16, 17]. Moreover, the

important problem of finding a weakly reversible linearly conjugate CRN structure with

minimal deficiency was solved in [18]. Biologically relevant examples for the structural

non-uniqueness of CRNs were shown in [19].

Linear programming (LP) can be defined as the problem of minimizing (or maximizing)
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a linear function with respect to linear constraints, where all the variables are real-valued.

Constraints can be both equalities and inequalities because in this context they can be

transformed into each other [20]. Solution techniques, such as the simplex algorithm and

interior point based methods are widely investigated and implemented in freely available

software tools. Currently applied solution methods usually guarantee the polynomial-

time solution of the LP problems. There are numerous important problems in science and

engineering that can be solved through LP [21, 22].

Mixed integer linear programming (MILP) differs from LP in that some of the decision

variables are integer valued. This fact has a fundamental effect on the complexity of the

solution. The corresponding MILP problem is a combinatorial optimization problem

which is generally NP-hard. Several solution techniques are developed to search for the

solution with heuristic-driven search methods (e.g. branch-and-bound, price-and-bound

techniques) and some of them are implemented in freely available solvers. It should be

noted that the size and the structure of the original problem together with the type of

solver seriously influence the solution efficiency. MILP techniques are widely applied in

the case of scheduling problems, process control, traffic control etc. [23].

Using the fact that certain propositional logic problems can be transformed into MILP

problems by introducing appropriate logical variables [24, 25], the computation of pre-

ferred kinetic realizations were straightforwardly written in an MILP framework in [11].

However, the original MILP approach seriously limits the network size that can be treated

computationally within a reasonable time interval, and it is known that networks of bi-

ological relevance often contain several hundred complexes and reactions. Therefore, the

aim of this paper is to propose and analyse computationally efficient methods preferably

not containing integer variables for determining dynamically equivalent sparse and dense

realizations containing the minimal or maximal number of reactions, respectively.

The structure of the paper is the following: in Section 2, the modelling framework

is described. In Section 3, the existing computational methods are reviewed and the

proposed new methods are introduced. In Section 4, the correctness of the proposed

methods are shown through randomly generated and biologically meaningful examples,

too. In Section 5, the main results are summarized.
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2 Structural and dynamical description of CRNs

In this Section, the general notations and definitions for representing CRNs are introduced.

The applied notations are based on the introductory parts of [11, 12, 13].

2.1 Basic notions

We consider CRNs as closed deterministic chemical systems under isothermal and isobaric

conditions. The fundamental elements of the system are the so-called chemical species

Xi, i = 1, ..., n taking part in r reactions that obey the mass action law. The state vector

is built up from the concentrations of the species, i.e. xi = [Xi], i = 1, ..., n the values of

which are nonnegative.

Complexes Ci, i = 1, ...,m are formally nonnegative linear combinations of the species,

i.e. Ck = ∑n
i=1 αikXi for k = 1, ...,m where αik are the nonnegative integer stoichiometric

coefficients. An elementary reaction step between the source and product complexes, Ci

and Cj, respectively, is denoted by

Ci → Cj (1)

According to the mass action law, the reaction rate corresponding to reaction (1) is

given by

ρij(x) = kij
n∏
l=1

xαli
l , (2)

where kij > 0 is the reaction rate coefficient.

It can happen that both reactions Ci → Cj and Cj → Ci are present in the network.

Such pairs of reactions are called reversible reactions. In this particular framework, these

reactions are handled as separate elementary reactions.

2.2 Graph representation

We can assign the following directed graph to the reaction network: the directed graph

D = (Vd, Ed) consists a finite nonempty set Vd of vertices and finite set of Ed of ordered

pairs of distinct vertices called directed edges. The vertices represent the complexes:

Vd = {C1, ...Cm} and the edges stand for the reactions: (Ci, Cj) ∈ Ed if complex Ci is

transformed to Cj in one of the reactions in the network. The reaction rates appear as

nonnegative weights on the edges in the directed graph. This graph-based representation

described in the form of matrices will be used in the forthcoming parts of this paper.
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By the structure of a given CRN we mean the unweighted graph of the reaction

network.

2.3 ODE-based description

CRN systems can be represented with differential equations and vica versa. In this paper

- similar to [11] - the following representation is used which is defined in [26].

ẋ = Y · Ak · ψ(x) (3)

where x ∈ Rn is the vector of the concentrations of the species, Y ∈ Rn×m is the matrix

containing the stoichiometric coefficients of the complexes namely Yij = αij, Ak ∈ Rm×m

contains the edge weights of the weighted directed graph of the CRN and ψ : Rn → Rm

is a vector mapping defined by:

ψj(x) =
n∏
i=1

x
Yij

i , j = 1, ...,m (4)

The structure of matrix Y is the following: the ith column of Y contains the compo-

sition of complex Ci, so the Yij value is the stoichiometric coefficient of Ci corresponding

to the specie Xj.

The matrix Ak has the following elements:

[Ak]ij =

−
∑m
l=1,l 6=i kil if i = j

kji if i 6= j
(5)

meaning that the diagonal elements of Ak contain the negative sum of the weights of the

edges starting from the complex Ci while the off-diagonal elements [Ak]ij, i 6= j contain

the weights of the directed edges (Cj, Ci) coming into Ci. Therefore Ak is a column

conservation matrix: the sum of the elements in each column is zero. Based on these Ak

is often called as the Kirchhoff matrix of the CRN.

Using the notation

M = Y · Ak, (6)

eq. (3) becomes

ẋ = M · ψ(x) (7)

where M contains the coefficients of the monomials in the polynomial ODE describing

the time-evolution of the state variables.
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2.4 Dynamically equivalent realizations of CRNs

The matrix pair (Y, Ak) is called a realization of a CRN described by M if the following

conditions hold: eq. (6) is fulfilled while all the elements of Y are nonnegative integers,

and Ak is a column conservation matrix having nonpositive diagonal and nonnegative

off-diagonal elements.

It can be shown that multiple alternative realizations of a reaction network are possible

since M can often be factorized on several ways into an (Y, Ak) form. If (Y 1, A1
k) and

(Y 2, A2
k) exist as alternative realizations and

M = Y 1 · A1
k = Y 2 · A2

k (8)

is fulfilled, then these realizations are called dynamically equivalent.

Based on these, one can define structural properties such as minimal or maximal

number of nonzero elements in matrix Ak and search for alternative representations of the

given network which fulfill these criteria.

In this particular case, we want to determine the sparse and dense realizations denoted

by (Y s, Ask) and (Y d, Adk), respectively. We call a realization sparse if the number of the

non-zero elements in matrix Ask is minimal. A realization is called dense if it contains the

maximal number of non-zero elements in matrix Adk. It was shown in [11] that the dense

realization is a unique superstructure containing all mathematically possible reactions.

It should be noted, that while the dense realization is necessarily unique the sparse re-

alization may not be unique: possibly several different sparse structures and/or parameter

set can represent the same dynamical behaviour.

In general the alternative realizations may contain complexes that do not appear in

the original network. In this paper we restrict the focus of our search to alternative CRNs

where the set of complexes are the subset of the set of complexes of the original network.

Example To illustrate the notion of dynamical equivalence on a small-scale example,

we will use a classical 3-dimensional kinetic Lorenz system that was introduced in [27].

The classical Lorenz system can be transformed to kinetic form through coordinates-

shifting and an appropriate time-scaling (see [27] for the computation details). After
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these transformations, the kinetic ODEs of the system are

ẋ1 = σx1x
2
2x3 − σx2

1x2x3 + σ(w1 − w2)x1x2x3

ẋ2 = (ρ+ c3)x2
1x2x3 + (w2 − w1ρ− w1w3)x1x2x3 − x1x

2
2x3 − x2

1x2x
2
3 + w1x1x2x

2
3 (9)

ẋ3 = x2
1x

2
2x3 − w2x

2
1x2x3 − w1x1x

2
2x3 + (w1w2 + βw3)x1x2x3 − βx1x2x̄

2
3

where σ = 10, ρ = 28, β = 8/3, and W = [w1 w2 w3] = [24 25 26]. It is shown in [27]

that using these parameters, (9) shows chaotic behaviour with an attractor that is very

similar to the attractor of the classical non-kinetic Lorenz system.

The complex composition matrix of the system is given by:

Y l =

 1 0 2 1 2 1 1 1 2 2 2 1 2
1 1 1 2 2 0 1 2 1 0 1 2 2
1 1 1 1 1 1 2 2 2 2 0 0 2

 ,
where the ith column contains the composition of complex Ci (i.e. C1 = X1 + X2 + X3,
C2 = X2 +X3 etc.). The non-zero off-diagonal elements of the network’s Kirchhoff matrix
Alk are the following:

[Al
k]2,1 = 679.3324, [Al

k]6,1 = 1940.3342, [Al
k]13,1 = 669.3342, [Al

k]11,3 = 59, [Al
k]12,3 = 10,

[Al
k]13,3 = 44, [Al

k]10,4 = 0.5, [Al
k]12,4 = 34, [Al

k]13,4 = 9.5, [Al
k]13,5 = 1, [Al

k]8,7 = 22.6666,

[Al
k]12,7 = 1.3334, [Al

k]10,9 = 1.

Then the monomial coefficient matrix can be written as

M = Y l · Alk =

 −10 0 −10 10 0 0 1 0 0 0 0 0 0
−1271 0 54 −1 0 0 24 0 −1 0 0 0 0

669.3342 0 −25 −24 1 0 −2.6667 0 0 0 0 0 0

 .
The graph representation of this network can be seen in Fig. 1a. An alternative sparse
and dense realization can be seen in Figs 1b and 1c, respectively. The reaction rates of
the sparse realizations are depicted as edge weights in Figs 1a and 1b. In Fig. 1c, the
structure of the dense realization can be seen, while the non-zero off-diagonal elements of
the corresponding Kirchhoff matrix Adk (containing 51 reactions) are the following

[Ad
k]2,1 = 679.6342, [Ad

k]3,1 = 0.1, [Ad
k]4,1 = 0.1, [Ad

k]5,1 = 0.1, [Ad
k]6,1 = 602.3658, [Ad

k]7,1 = 0.1,

[Ad
k]8,1 = 0.1, [Ad

k]9,1 = 0.1, [Ad
k]10,1 = 669.1342, [Ad

k]11,1 = 0.1, [Ad
k]12,1 = 0.1, [Ad

k]13,1 = 0.1,

[Ad
k]1,3 = 0.1, [Ad

k]2,3 = 0.1, [Ad
k]4,3 = 0.1, [Ad

k]5,3 = 44.6, [Ad
k]6,3 = 0.1, [Ad

k]7,3 = 0.1,

[Ad
k]8,3 = 0.1, [Ad

k]9,3 = 0.1, [Ad
k]10,3 = 0.1, [Ad

k]11,3 = 16.2, [Ad
k]12,3 = 9.3, [Ad

k]13,3 = 0.1,

[Ad
k]1,4 = 0.1, [Ad

k]2,4 = 0.1, [Ad
k]3,4 = 0.1, [Ad

k]5,4 = 9.6, [Ad
k]6,4 = 0.1, [Ad

k]7,4 = 0.1,

[Ad
k]8,4 = 0.1, [Ad

k]9,4 = 0.1, [Ad
k]10,4 = 0.1, [Ad

k]11,4 = 0.1, [Ad
k]12,4 = 24.4, [Ad

k]13,4 = 0.1,

[Ad
k]13,5 = 1, [Ad

k]1,7 = 0.1, [Ad
k]2,7 = 0.6, [Ad

k]3,7 = 0.1, [Ad
k]4,7 = 0.1, [Ad

k]5,7 = 0.1,

[Ad
k]6,7 = 0.1, [Ad

k]7,7 = −25.4, [Ad
k]8,7 = 23.2166, [Ad

k]9,7 = 0.1, [Ad
k]10,7 = 0.1, [Ad

k]11,7 = 0.1,

[Ad
k]12,7 = 0.68335, [Ad

k]13,7 = 0.1, [Ad
k]10,9 = 1.1, [Ad

k]13,9 = 0.1.
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(a) A possible sparse CRN structure realizing (9).
The corresponding matrices are (Y l, Al

k). Reac-
tion rates appear as edge weights.

(b) Another possible sparse CRN structure realizing
(9). Reaction rates appear as edge weights.

(c) The dense realization of (9). Edge weights are
listed in Ad

k.

Figure 1: Alternative realizations of a CRN defined in Example 2.4.
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2.5 Optimization framework for computation of dynamically
equivalent structures

The original method of computing alternative realizations is based on the natural for-

mulation of the problem as a MILP problem [28]. However, some alternative LP-based

methods (see e.g. [19] or [29]) have also been published in the literature recently. We will

shortly review these known solutions to be able to compare them with our new methods.

2.5.1 Mixed Integer Linear Programming approach

An MILP problem can be stated as follows [28]:



min
x
cTx

Ax ≤ b
x ≥ 0
xi ∈ R, i = 1, ..., k
xj ∈ Z, j = k + 1, ..., l

(10)

where x is the l-dimensional vector of decision variables consisting of k real and l − k

integer elements. Matrix A and vector b define the linear inequality constraints. With

the above formulation, equality constraints can also be treated by rewriting the problem

to contain purely inequality constraints [20]. The linear function cTx with c ∈ Rl is the

objective function to be minimized. If all decision variables are real (i.e. k = l), then eq.

(10) defines a standard linear programming (LP) problem.

Now let us formulate the CRN alternative realization problem as an MILP. This for-

mulation has also a crucial role in one of the new LP-based methods presented later in

Section 3.2. We will represent the Kirchhoff matrix defined in Section 2.3 as:

Ak =


−a11 a12 . . . a1m
a21 −a22 a2m
...

...
am1 am2 . . . −amm

 . (11)

The Kirchhoff property of Ak can be expressed by the following linear constraints:

m∑
i=1

[Ak]ij = 0, j = 1, . . . ,m (12)

[Ak]ij ≥ 0, i, j = 1, . . . ,m, i 6= j (13)

[Ak]ii ≤ 0, i = 1, . . . ,m, . (14)
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Let us call eq. (6) and eq. (12)-(14) altogether as kinetic constraints because they clearly

characterize the kinetic system structure of the model, and they can be considered as a

constraint set in an optimization problem.

To formulate a MILP structure, where the real-valued decision variables corresponds

to the off-diagonal elements of Ak, the following additional bounds for these elements are

given:

[Ak]ij ≤ lij, i, j = 1, . . . ,m, i 6= j (15)

lii ≤ [Ak]ii, i = 1, . . . ,m. (16)

where lij for i, j = 1, . . . ,m are appropriately chosen bounds (with sufficiently large ab-

solute values). Then the nonzero property of the individual reaction rate coefficients can

now be written as

δij = 1↔ [Ak]ij > ε, i, j = 1, . . . ,m, i 6= j. (17)

where δij are binary decision variables, ’↔’ denotes the ’if and only if’ relation, and ε

is a small positive number used for distinguishing between practically zero and non-zero

values.

The linear inequalities corresponding to eq. (17) can be translated to the following

linear inequalities [28]

0 ≤ [Ak]ij − εδij, i, j = 1, . . . ,m, i 6= j (18)

0 ≤ −[Ak]ij + lijδij, i, j = 1, . . . ,m, i 6= j. (19)

Finally, minimization or maximization of the objective function

C(δ) =
m∑

i,j=1
i6=j

δij (20)

leads to the computation of sparse or dense realizations, respectively.

It is important to mention that the solution of MILP problems is generally NP-hard,

hence MILP problems are usually solved by computationally very intensive heuristics-

driven techniques which are sometimes unreliable in case of a large-scale problem. In

summary, we can conclude that MILP problems do not scale well to many networks

which are large enough to describe complex real-life systems. Meanwhile, pure LPs can

be solved in polynomial time.
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2.5.2 Computing sparse realizations with a known iterative LP-based tech-
nique

In [29], an LP-based algorithm is presented to search for sparse linear models of gene

regulation networks. The algorithm uses an iterative method to approximate the elements

of the Ak matrix. The approach is quite efficient: as it is mentioned in [29], the method

usually doesn’t need more than a few (less than 10) iterations to converge.

We briefly describe how to apply this method for the computation of sparse CRN

realizations. Let Apk denote the Ak in the pth step. Firstly set all off-diagonal elements of

A0
k to 1. Let us define a weight wpij for each element of Apk and initialize them as wpij = 1

for each i, j = 1, . . . ,m. In the pth iteration step, let us recalculate the weights wpij as

follows:

wpij = β

β + |[Ak]p−1
i,j |

for i, j = 1, . . .m (21)

for an appropriate β > 0 value. The off-diagonal elements of Apk are obtained by solving

a linear programming problem constrained by eq. (6), eq. (12)-(14) with the following

objective function:

J = min
m∑

i,j=1
wpij|[Ak]

p
i,j| (22)

The incorporated kinetic constraints ensure that in each iteration the obtained matrix

Apk represents a dynamically equivalent realization and it has the Kirchoff property. The

algorithm repeats eq. (22)-(21) until the objective value J will not change significantly

between two successive steps. At the end of the iteration process the algorithm returns

with Apk obtained in the last iteration step as a sparse realization of the network. In the

following, we will refer to this algorithm as Iterative LP.

2.5.3 Computing dense realizations using multiple LP steps

This method was published in [19], and it can find dense realizations in polynomial time.

The method uses m ·(m−1) LP computation steps to generate the result. We will use the

method for comparison with our new approach, therefore we summarize it for convenience

(more details can be found in [19]).

For each p, q = 1, . . .m, p 6= q, solve the optimization problem:

max fpq = [Ak]p,q (23)

with respect to the eq. (6), eq. (12)-(14) together with appropriate bounds eq. (15)-(16).

The reaction Cq → Cp is present in the dense realization only if max fpq > 0. Let us
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denote the solution corresponding to (p, q), p 6= q by Āpqk . Now we will use these solutions

to compute the final optimization step to generate the dense realization using the following

quantities:

εij =
 1
m(m− 1)

m∑
p,q=1;p6=q

Āpqk


i,j

, i 6= j (24)

As we can see, εij ≥ 0∀i 6= j and εij > 0 iff the reaction Cj → Ci is in the dense

realization. By solving the following LP feasibility problem for Ak with arbitrary linear

cost function, the dense realization can be obtained:
Y · Ak = M∑m
i=1[Ak]i,j = 0 j = 1, . . .m

εij ≤ [Ak]i,j ≤ Ui,j i, j = 1, . . .m, i 6= j

[Ak]i,i ≤ 0 i = 1, . . .m

(25)

where Ui,j are proper upper bounds with sufficiently large positive value. In the

following, we will refer to this algorithm as Element-wise LP.

3 Improved methods for computing CRN structures

In this Section two new methods will be proposed that are fast, LP-based techniques to

generate sparse and dense realizations of CRNs.

3.1 Computing sparse realizations

The results in [30, 31] show that in the case of large size, underdetermined system of linear

equations (even in the case of non-negative decision variables) formulated as Ax = b, the

l1-norm based minimization can produce a sparse solution out of the infinitely many

possible solutions of the problem. In this context, sparse solution means that the given x

vector contains the minimal number of non-zero elements. In other words, under specific

conditions, the combinatorial optimization problem of finding the sparse realization can be

efficiently approached as a convex optimization problem. This is possible if the solution

vector x with length n is sparse enough: it should not have more than ρ · n nonzero

elements. In [32] an empirical limit ρ = 0.3 is suggested, we also used this value.

The l1 minimization method is applied in our case as follows. Recall that in a given

CRN there are n species and m complexes. The equality constraints of the optimization

problem are the kinetic constraints (see eq. (6), (12)-(14)). For a single column of Ak

containing m elements, the number of kinetic constrains will be n + 1. Hence, in case of
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n+ 1 < m the emerging equality-type constraints as a system of linear equations remains

underdetermined. Therefore, a column-wise l1-norm based minimization is completed and

the resulting vectors are considered as the column vectors of the sparse realization of the

CRN:

min
m∑
i=1

abs([Ak]i,j) for ∀j = 1, . . .m, i 6= j (26)

Let us denote the ratio of non-zero and zero elements in [Ak]·,j as τ . If τ < ρ ·m, then

the minimization successfully finds the sparse solution. In the following, we will refer to

this algorithm as the l1-norm based algorithm.

3.2 Computing dense realizations

The proposed method is based on the construction of the MILP problem formulation

given in sub-section 2.5.1. The main idea was to formulate the problem by relaxing the

integrality constraints and then solve the remaining LP problem. By maximizing the

sum of the relaxed auxiliary variables, the number of directed edges (i.e. the number

of non-zero off-diagonal elements of Ak) is maximized, too, in the reaction graph of the

CRN.

The constraint matrices were built up again using the kinetic constraints. Similarly

to the MILP case, a set of auxiliary variables were defined: a σi variable for each state

variable xi. All these auxiliary variables are real valued. The constraints keeping track of

nonzero reaction rate coefficients are given by

σi = 1←→ xi > εe (27)

where εe is a minimal (naturally positive) edge weight under which the edge is excluded

from the network (i.e. the corresponding reaction rate coefficient is considered zero).

After the relaxation of the integrality constrains the relation in eq. (27) becomes:

ε · σi ≤ xi (28)

where σi ∈ [0; 1] and ε > 0 is a sufficiently small number, but ε > εe. By considering ε as

a scaling factor, after short reformulation we obtain:

−xi + σi ≤ 0 (29)

σi ∈ [0; ε] (30)
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where eq. (29) is formulated as a constraint and eq. (30) is formulated as lower and upper

bounds in the LP problem.

Now the optimization problem is defined as follows:

max
m∑
i=1

σi (31)


Y · Ak = M∑m
i=1[Ak]i,j = 0 j = 1, . . .m

0 ≤ σi ≤ ε i = 1, . . .m
−xi + σi ≤ 0 i = 1, . . .m

(32)

Let us show that the solution of the above optimization problem indeed determines

the dense network: suppose that a given edge (corresponding to the decision variable

xi) can be present in the network which means that there is no such kinetic constraint

which forbids that xi could be larger than zero. In this case, according to the constraint

formulated in eq. (29), σi > 0 will occur which yields xi ≥ ε. Because of ε > εe, the edge

will be present in the network. In the opposite case, when the edge represented by xi

should be excluded from the network according to the kinetic constraints, xi = 0 leading

to σi = 0 according to eq. (29). As a result of the maximization, a dense realization with

edge weights larger than εe is obtained. In the following, we will refer to this algorithm

as the LP-MAX algorithm.

4 Results

Both the l1-norm based search and the LP-MAX methods were involved in a comparative

study in which extensive simulations were completed to evaluate the performance of the

proposed methods. Large scale problems were investigated to present the capability of

dealing with biologically relevant problems, too. The MILP-based methods presented

in Section 2.5.1 and the LP-based methods presented in Section 2.5.2 and Section 2.5.3

were used as a basis of comparison. To solve the LP problems, we used the CLP solver

[33] from the COIN-OR community. The formulated MILP problems were solved by the

DIP solver [34] from the COIN-OR community [35] because it can solve these type of

problems quite efficiently. All the simulations were done on a 8-core 3.0GHz computer.

The computational problems were handled in MATLAB environment with the help of the

CRNReals Toolbox [36].
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4.1 Computing alternative realizations of a CRN describing a
classical 3-dimensional Lorenz system

Using the 3-dimensional Lorenz system introduced in Section 2.4, the validation of the

proposed methods on a small-scale CRN can be completed. It is known from [27] that

this system can be represented by CRNs having 3 species and 13 complexes with sparse

realizations containing 13 off-diagonal non-zero elements, and its dense realization contains

51 off-diagonal non-zero elements.

Computing the sparse realization took 17.172 seconds in case of the MILP based

method. Iterative LP were able to find a valid sparse realization in 0.0144 seconds while

the proposed l1-norm based sparse search can complete this task in 0.0166 seconds.

The dense realization was also successfully computed by all three algorithms. The

original MILP based algorithm completed it in 5.3477 seconds, Element-wise LP consumed

0.2524 seconds, and the LP-MAX algorithm needs 0.0446 seconds to compute the solution.

4.2 Performance analysis of the proposed algorithms on large
random networks

All the methods were tested on several large, randomly generated CRNs to be able to

test their performance and time consumption of the solution. n as the number of species

and m as the number of complexes were defined as parameters. First, a polynomial

representation of the system with the given parameters was generated. The coefficient

matrix Mc ∈ Rn×m of the monomials of the polynomial system is a random matrix where

10 ≤ [Mc]i,j ≤ 110, ∀i = 1, ..., n; j = 1, ...,m. Rows of the exponent matrix B ∈ Rm×n

correspond to monomials of the system, namely row i stores the exponents of the i -th

monomial. The system (M,B) is converted to a so-called canonical CRN representation

(Y,Ak) as it is described in [37].

Altogether more than 100 different scenarios were used to examine the performance

of the proposed algorithms. The networks used during these tests were different both in

their structure and in their size. In the following, the numerical results of some scenarios

are presented. More results can be found in an electronic supplement at

http://daedalus.scl.sztaki.hu/PCRG/works/CRN_Alter_Struct.zip.

In all cases the following numerical values were used: reactions having reaction rate

smaller than 10−6 were omitted from the networks. Let us consider two different realiza-
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Number of complexes
Number of reactions in the sparse realization
l1-norm based MILP-based Iterative LP

220 200 200 200
330 300 300 300
440 400 400 400
550 500 500 500

Computational time (s)
220 0.49 603.32 29.16
330 1.55 1597.21 134.17
440 3.35 2784.53 447.85
550 4.22 4330.62 1028.59

Table 1: Comparing the LP- and MILP-based methods while searching for the sparse
realization. The size of the computational problem grows as the number of complexes
increases.

tions of the same CRN, namely (Y,A1
k) and (Y,A2

k) and define the R matrix as follows:

R = abs(Y ·A1
k−Y ·A2

k). These two realizations were considered as dynamically equivalent

representations if R < 10−3.

In Table 1, the summary of the search for the sparse realization can be found. Each row

represents a different problem size: the number of species was fixed to 10 but the number

of complexes was increased to enlarge the computational task. In the first row block the

number of off-diagonal non-zero elements can be found in the resulting Ak matrices. One

can see the match in the values which implies that all the algorithms successfully found

the realization containing the minimal number of reactions. In the second row block,

the running time of the algorithms can be seen while evaluating the previously presented

scenarios. In Table 2, the result of the search for the dense superstructure is summarized.

The structure of the table is similar to Table 1. To summarize the above presented results

we can say, that the presented new, LP-based algorithms successfully compute both the

dense and sparse realizations while outperform all the previously presented methods. With

the help of these methods the computation of the alternative realizations of biologically

relevant, large size networks can be done efficiently.

4.3 Computing alternative realizations of the ErbB network

As it was mentioned before, we would like to use our methods to study the possible struc-

tures of large scale, biologically relevant networks. As a case study the ErbB network

described in [38] was investigated. The ErbB signalling pathways regulate several phys-
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Number of complexes
Number of reactions in the dense realization
LP-MAX MILP-based Element-wise LP

220 4380 4380 4380
330 10528 10528 10528
440 18438 18438 18438
550 30936 30936 30936

Computational time (s)
220 6.25 1413.16 156.41
330 35.53 2251.98 703.77
440 66.71 3828.73 1736.76
550 304.75 5422.87 4093.58

Table 2: Comparing the LP- and MILP-based methods while searching for the dense
realization. The size of the computational problem grows as the number of complexes
increases.

iological responses such as cell survival, proliferation and motility. The malfunction or

hyperfunction of these pathways are involved in the explanation of various types of human

cancers. These types of pathways are under active examination as possible drug targets.

In our representation the ErbB signalling pathway model consists of 504 species, 1082

complexes and 1654 reactions. The model description was originally a sparse representa-

tion. With the help of the LP-MAX algorithm introduced in Section 3.2 the dense real-

ization is computed. The algorithm using the MILP approach was unable to complete the

optimization within reasonable time. The resulting dense realization contains 1683 reac-

tions: 29 mathematically possible extra reactions originating from 15 different complexes

compared to the published model. The overall computational time was 4993 seconds. The

extra reactions introduced into the network can be seen in Fig. 2. The list of the extra re-

actions can be found in Table 3. The notations of the complexes in Table 3. are the same

as in the original model description published at http://www.ebi.ac.uk/compneur-

srv/biomodels-main/publ-model.do?mid=BIOMD0000000255.

The sparse realization was also extracted from the dense realization with the help of

the l1-norm based sparse search. The resulting network had the same structure as the

original sparse representation. The computational time was around 430 seconds.
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Starting complex → ending complex

1. (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K + PIP3
→ PIP3 + (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:PIP2

2. (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:PIP2
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K
→ PIP3 + (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:PIP2

3. PIP3 + (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:PIP2
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:PIP2
→ PIP3 + (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)2

4. (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)2
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:PIP2
→ PIP3 + (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)2

5. PIP3 + (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)2
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)2
→ PIP3 + (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)3

6. (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)3
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)2
→ PIP3 + (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)3

7. PIP3 + (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)3
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)3
→ PIP3 + (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)4

8. (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)4
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)3
→ PIP3 + (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)4

9. PIP3 + (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)4
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)4
→ PIP3 + (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)5

10. (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)5
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)4
→ PIP3 + (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)5

11. (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K + PIP2
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:PIP2 + PIP2

12. (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:PIP2 + PIP2
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:PIP2
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)2 + PIP2

13. (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)2 + PIP2
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)2
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)3 + PIP2

14. (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)3 + PIP2
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)3
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)4 + PIP2

15. (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)4 + PIP2
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)4
→ (ErbB3:ErbB2) P:GAP:Grb2:Gab1 P:PI3K:(PIP2)5 + PIP2

Table 3: List of all the extra reactions in the dense realization of the ErbB signaling
pathway network. 29 mathematically possible extra reactions originating from 15 different
complexes were found.
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Figure 2: Structure of the Ak matrix representing the dense realization of the ErbB
network. The differences between the sparse and dense realizations are coloured and
marked by the arrows.

4.4 Possible parallelization

As the size of the emerging computational problem grows during the search for the al-

ternative realizations, the need for possible parallelization is increasing. Fortunately, as

the reader can notice, all the proposed algorithms can be parallelized easily because all

the optimization problems are built up by taking the Ak matrix column-wise. Moreover

all the results of the optimizations are incorporated into the final result independently of

each other.

This means that in case of having an Ak matrix with size m ×m the search for the

alternative realizations (both in case of sparse and dense realizations) can be split up into

m independent, parallel solvable problems. This gives the opportunity to gain even more

speedup in the solution process.

5 Conclusion

In the present paper linear programming based methods were presented to compute al-

ternative realizations of CRNs. By analysing the properties of the system model and

the MILP based description, simplified algorithms were developed which have polynomial

complexity.

The classical, combinatorial optimization based techniques were compared to the pro-
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posed, Linear Programming based methods to show the correctness of them. It is shown

that these methods successfully solve the problem while the possible computational prob-

lems which could emerge in case of an MILP problem are avoided. The proposed tech-

niques give the opportunity to find dense and sparse realizations of large scale networks

in limited time which enables us to deal with real biological systems. The algorithms can

be easily applied in a parallel framework, too.

In the future, the LP-based methods can be further developed to be able to incorpo-

rate additional constraints constructed for the state variables and to handle additional

prescribed properties regarding the structure of the generated network. With the help of

these developments it would be possible to eliminate the biologically meaningless networks

from the set of mathematically possible solutions.
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[37] V. Hárs, J. Tóth, On the inverse problem of reaction kinetics, in: M. Farkas, L.
Hatvani (Eds.), Qualitative Theory of Differential Equations , North–Holland, Ams-
terdam, 1981, pp. 363–379.

[38] W. W. Chen, B. Schoeberl, P. J. Jasper, M. Niepel, U. B. Nielsen, D. A. Lauffen-
burger, P. K. Sorger, Input–output behavior of ErbB signaling pathways as revealed
by a mass action model trained against dynamic data, Mol. Syst. Biol. 5 (2009)
239:1–19.

-92-


