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Abstract

In the class of Kragujevac trees, the elements having minimal atom–bond connectivity

index are determined. By this, an earlier conjecture [MATCH Commun. Math. Comput.

Chem. 68 (2012) 131–136] is confirmed and slightly corrected.

1 Introduction

The atom–bond connectivity (ABC) index is a molecular–graph based structure de-

scriptor, invented by Estrada in the 1990s [2]. Initially, it attracted little attention

in mathematical chemistry, but after the publication of Estrada’s second paper [3],

the situation has dramatically changed. Nowadays, the chemical applicability of the

ABC index is reasonably well documented [2–5], and its mathematical properties are

studied in due detail.

Let G be a simple graph on n vertices, and let its vertex set be V (G) and edge

set E(G). By uv we denote the edge connecting the vertices u and v. The degree of

a vertex v is denoted by dv .
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A vertex of degree one is referred to as a pendent vertex . An edge whose one

end-vertex is pendent is referred to as a pendent edge. It is worth noting that in

minimal-ABC trees all pendent edges connect a pendent vertex with a vertex of

degree two [11].

The atom–bond connectivity index of the graph G is defined as

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

du dv
. (1)

When the mathematical properties of a graph–based structure descriptor are in-

vestigated, one of the first questions is for which trees (with a given order n) is this

descriptor minimal and maximal. In the case of the ABC index it was easily demon-

strated [6] that the maximal-ABC tree is the star. On the other hand, the other –

seemingly equally easy – problem of characterizing the minimal-ABC tree has ap-

peared to be a much harder nut to crack. In spite of numerous efforts [1, 7–12] this

problem is still unsolved; for review see [13].

In order to possibly envisage the structure of minimal-ABC trees, extensive nu-

merical studies have been undertaken [1, 7, 8]. Within these studies, a class of trees

emerged, that was believed to contain the minimal-ABC tree. Eventually, a conjec-

ture on the actual structure of the minimal-ABC tree was formulated [1] (see below).

Later studies [9,10] revealed that the conjecture was false, and that the true structure

of the minimal-ABC tree is more complex than the computer–aided studies indicated.

The trees that were considered as candidates for having minimal ABS-value, have

an interesting structure and are worth of further investigation. Since all the researches

[1, 7, 8] were done at the University of Kragujevac, we propose that these trees be

named Kragujevac trees or, if pronunciation is difficult, Krag trees. These are defined

as follows.

Let B1, B2, B3, . . . be branches whose structure is depicted in Fig. 1.
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Fig. 1. The branches of proper Kragujevac trees.

Definition 1. A proper Kragujevac tree is a tree possessing a central vertex of degree

at least 3, to which branches of the form B1 and/or B2 and/or B3 and/or . . . are

attached. The set of all proper Kragujevac trees of order n will be denoted by Kgn .

Definition 2. An improper Kragujevac tree is a tree obtained by inserting a new

vertex (of degree 2) on a pendent edge of a proper Kragujevac tree. The set of all

improper Kragujevac trees of order n will be denoted by Kg∗
n .

In the subsequent section we show that the value of the ABC index of an improper

Kragujevac tree does not depend on the position of the inserted degree-two vertex

(cf. Lemma 5). In view of this, we will assume that this vertex is inserted into a B3

branch, and such a branch (with 8 vertices) will be denoted by B∗
3 , see Fig. 2.

B3
*

Fig. 2. A branch of improper Kragujevac trees.

In the work [1] the computer–aided search for minimal-ABC tree was (implicitly)

restricted to Kragujevac trees. The results obtained there could this be understood

as a conjecture on minimal-ABC (proper and improper) Kragujevac trees. Assuming
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that n is sufficiently large (which values are specified in [1]), this modulo 7 conjecture

reads as follows:

Conjecture 3. Let Tmin be the minimal-ABC index tree in the set Kgn ∪Kg∗
n .

(a) If n ≡ 0 (mod 7), then Tmin possesses three B4-branches, whereas all other

branches are of B3-type.

(b) If n ≡ 1 (mod 7), then all branches of Tmin are of B3-type.

(c) If n ≡ 2 (mod 7), then Tmin possesses a single B∗
3-branch, whereas all other

branches are of B3-type.

(d) If n ≡ 3 (mod 7), then Tmin possesses a single B4-branch, whereas all other

branches are of B3-type.

(e) If n ≡ 4 (mod 7), then Tmin possesses two B2-branches, whereas all other

branches are of B3-type.

(f) If n ≡ 5 (mod 7), then Tmin possesses two B4-branches, whereas all other

branches are of B3-type.

(g) If n ≡ 6 (mod 7), then Tmin possesses a single B2-branch, whereas all other

branches are of B3-type.

In this paper we provide a mathematical proof of the above conjecture for n ≡
k (mod 7) , k = 0, 1, 3, 5, 6, and show how it needs to be amended for n ≡ k (mod 7) , k =

2, 4. To do this we needs some preparations.

2 Preparatory considerations

Bearing in mind Eq. (1), define the function f as

f(x, y) =

√
x+ y − 2

x y
. (2)

Evidently, f(x, y) = f(y, x). In addition, if x = 2 then irrespective of the value of the

variable y,

f(x, y) =
1√
2
. (3)

This observation implies the following auxiliary results:

Lemma 4. [8] If at least one end-vertex of every edge of a tree T is of degree two,

then irrespective of any other structural detail of this tree, ABC(T ) = (n− 1)/
√
2.
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Lemma 5. Let X ∈ Kgn−1 and let the Kragujevac tree Y ∈ Kg∗
n be obtained by

inserting a new vertex (of degree two) on a pendent edge of X. Then ABC(Y ) =

ABC(X) + 1/
√
2. Consequently, the ABC index of an improper Kragujevac tree is

independent of the actual position of the inserted vertex.

In what follows, the degree of the central vertex of a Kragujevac tree will be

denoted by m. (Recall that by Definition 1, m ≥ 3). Some branches attached to a

Kragujevac tree will not be directly involved in our considerations. In order to reduce

the amount of computation (which anyway is complicated) we proceed as follows.

The degrees of vertices attached to the central vertex, which are not involved in

our computations will be denoted by p1, p2, . . . , pi, . . .. These vertices, as well as the

branches to which they belong will not be presented in the diagrams that follow. To

make this point clear, look at Fig. 3.

m m

p

p

p

p

1

m-1

2

i

Fig. 3. An example showing how some structural details of a Kragujevac tree (left),
irrelevant for the present considerations, are represented by a simplified diagram
(right); for details see text.

3 Main results

Theorem 6. A minimal-ABC Kragujevac tree does not contain branches Bh with

h > 5.

Proof. Let X be a Kragujevac tree containing a branch Bh , h > 5 (that is, let the

parameter k in Fig. 4 be greater than 6). Let Y be the tree obtained from X as

indicated in Fig. 4. Recall that the structure of the branch B∗
3 is depicted in Fig. 2.

We show that ABC(X) > ABC(Y ).

Consider the difference ∆ = ABC(X)− ABC(Y ). We need to demonstrate that

∆ > 0.
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Fig. 4. The trees used in the proof of Theorem 6.

From the definition of the ABC index, bearing in mind Eq. (2), Fig. 3, and the

structure of the trees X and Y shown in Fig. 4, we obtain:

∆ =

[
m−1∑
i=1

f(m, pi) + f(m, k) + (k − 1)f(k, 2) + (k − 1)f(2, 1)

]

−

[
m−1∑
i=1

f(m+ 1, pi) + f(m+ 1, k − 4) + (k − 5)f(k − 4, 2)

+ (k − 5)f(2, 1) + f(m+ 1, 4) + 3f(4, 2) + f(2, 2) + 3f(2, 1)
]

which in view of Eq. (3) yields

∆ =
m−1∑
i=1

[f(m, pi)−f(m+1, pi)]+f(m, k)−f(m+1, k−4)+f(2, 1)−f(m+1, 4) . (4)

The right–hand side of the above expression is increasing with respect to pi (which

has been proven in [12]). In view of this, we may set pi = 2 (the lowest value) to

construct the worst case. Then Eq. (4) is simplified as

∆ = f(m, k)− f(m+ 1, k − 4) + f(2, 1)− f(m+ 1, 4) (5)

It is known [12] that f(x, y)− f(x− 1, y) strictly decreases with respect to y ≥ 1

and strictly increases with respect to x for fixed y ≥ 2. Bearing this in mind, we

rewrite Eq. (5) as

∆ = [f(m, k)− f(m+ 1, k)] + [f(m+ 1, k)− f(m+ 1, k − 1)]

+ [f(m+ 1, k − 1)− f(m+ 1, k − 2)] + [f(m+ 1, k − 2)− f(m+ 1, k − 3)]
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+ [f(m+ 1, k − 3)− f(m+ 1, k − 4)] + f(2, 1)− f(m+ 1, 4) .

It is easy to see that ∆ increases as k increases. So, we should select the lowest value

of k to have the worst case. As claimed in the theorem, we have to show that if h ≥ 6

i.e., k ≥ 7, then the tree X is not minimal. Noting that for k ≤ 6, ∆ in Eq. (5) is

negative–valued, we put k = 7. This yields

∆ =

√
m+ 5

7m
+

1√
2
−

√
m+ 2

3(m+ 1)
−

√
m+ 3

4(m+ 1)
(6)

By means of a mathematical software like MATLAB, it can be checked that the

right–hand side of Eq. (6) is increasing with respect to m ≥ 3 and is positive–valued

for m = 3. Therefore, ∆ > 0 and we have shown that the transformation X → Y

decreases ABC.

If X is a proper Kragujevac tree, then Y is an improper Kragujevac tree and we

are done. If, however, X is an improper Kragujevac tree, then according to Definition

2, Y is not a Kragujevac tree, since it possesses two pendent paths of length 3. If

so, then by a result from [8], the tree Y can be transformed into another three Y ′,

replacing the two pendent paths of length 3 by three pendent paths of length 2, which

makes Y ′ a proper Kragujevac tree. For instance, if Y possess two B∗
3-branches, then

Y ′ is obtained by replacing then by a B3-branch and a B4-branch.

As shown in [6], ABC(Y ′) < ABC(Y ), and, then ABC(Y ′) < ABC(X). In other

words, if there is a Kragujevac tree with a Bh-branch, h > 5, then one can construct

another Kragujevac tree (of the same order) without such a Bh-branch, and with

smaller ABC-index.

The proof of Theorem 6 is thus completed.

Theorem 7. A minimal-ABC Kragujevac tree does not contain B5-branches.

Proof. We show that is there is a B5-branch in a Kragujevac tree, then another

Kragujevac tree can be constructed, having smaller ABC-value. We have to distin-

guish between five cases.

Case 1. Let X ∈ Kgn∪Kg∗
n, and X has two B5-branches, see Fig. 5. Then a tree Y

of order n can be constructed, also depicted in Fig. 5, such that ABC(Y ) < ABC(X).
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Fig. 5. The trees considered in Case 1 of the proof of Theorem 7.

Indeed, ∆ = ABC(X) − ABC(Y ) can be calculated in an analogous manner as

in the proof of Theorem 6. Then, by setting pi = 2 (pertaining to the lowest value of

∆), we get

∆ = 2f(m, 6) + f(2, 1)− 3f(m+ 1, 4)

which is positive–valued for m ≥ 3, implying ABC(Y ) < ABC(X).

If X ∈ Kgn , then Y ∈ Kg∗
n and we are done. If, however, X ∈ Kg∗

n , then Y has

two pendent paths of length 3 and is thus not a Kragujevac tree. Then, as explained

in the proof of Theorem 6, a tree Y ′ can be constructed, such that Y ′ ∈ Kgn and

ABC(Y ′) < ABC(Y ) < ABC(X).

Case 2. Let X ∈ Kgn ∪ Kg∗
n, and X has a B5-branch and a B3-branch, see Fig.

6. Then a tree Y of order n can be constructed, also depicted in Fig. 6, such that

ABC(Y ) < ABC(X).

m m

B B

B B

5 4

3 4

X Y
Fig. 6. The trees considered in Case 2 of the proof of Theorem 7.
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An argument analogous to what was used in Case 1 yields,

∆ = f(m, 6) + f(m, 4)− 2f(m, 5) > 0

and ∆ > 0 for all m ≥ 3. This time Y is necessarily a Kragujevac tree.

Cases 3 & 4, namely when X has, respectively, a B5-branch and a B2-branch, and

a B5-branch and a B1-branch, are fully analogous. The details of the transformation

X → Y are seen from Figs. 7 and 8.

m m

B B

B B

5 4

2 3

X Y
Fig. 7. The trees considered in Case 3 of the proof of Theorem 7.

m m

B B

B B

5 3

1 2

X Y

*

Fig. 8. The trees considered in Case 4 of the proof of Theorem 7.

Case 5. From Cases 1-4 we see that the minimal-ABC Kragujevac tree could only

posses a single B5-branch and additional B4-branches. Because m ≥ 3, there must

be at least two B4-branches. Then the transformation X → Y , indicated in Fig. 9,

could be applied, resulting in a Kragujevac tree (either Y or Y ′) without a B5-branch

and with ABC-value lower than ABC(X).
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Fig. 9. The trees considered in Case 5 of the proof of Theorem 7.

The proof of Theorem 7 is thus completed.

Theorem 8. A minimal-ABC Kragujevac tree has at most five B4-branches.

Proof. Consider the trees X and Y depicted in Fig. 10. In the worst case, when all

pi = 2, we get

∆ = 6f(m, 5) + 2f(2, 1)− 7f(m+ 2, 4)− f(m+ 2, 3)

which is positive–valued for all m ≥ 3.

m+2m

B

B

B

4

3

2

X Y

[
[

]
]6

7

Fig. 10. The trees used in the proof of Theorem 8.

Theorem 9. In minimal-ABC Kragujevac trees, B2– and B4-branches cannot simul-

taneously occur.

Proof. Consider the trees X and Y depicted in Fig. 11. Then

∆ = f(m, 5) + f(m, 3)− 2f(m, 4)

which is positive–valued for all m ≥ 3.
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4 3
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Fig. 11. The trees used in the proof of Theorem 9.

Theorem 10. If m ≥ 25, then in minimal-ABC Kragujevac trees, there are at most

two B2-branches.

Proof. Consider the trees X and Y depicted in Fig. 12. Then

∆ =
m−3∑
i=1

[f(m, pi)− f(m− 1, pi)] + 3f(m, 3)− 2f(m− 1, 4)− f(2, 1)

The value of ∆ is decreasing with respect to pi . Therefore, since we intend to show

that ∆ > 0, we have to examine the case when ∆ is minimal. For this, we choose pi

as large as possible. Based on Theorems 6, 7, and 9, we have pi ≤ 4. Setting pi = 4,

by direct calculation we show that ∆ > 0 if m ≥ 25.

The case when X ∈ Kg∗
n and therefore Y ̸∈ Kgn ∪Kg∗

n , is treated in the same

way as in Theorem 6.

m-1m

B

B

B

B

B

2

3

2

3

2

YX

*

Fig. 12. The trees used in the proof of Theorem 10.

Theorem 11. If m ≥ 19, then in minimal-ABC Kragujevac trees, there are no

B1-branches.
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Proof. In the previous theorems we have already shown that in minimal-ABC Kragu-

jevac trees only branches Bi , i = 1, 2, 3, 4 may occur. Therefore, in order that also

B1-branches must be absent, we have to separately consider four cases.

Case 1: B1– and B2-branches are simultaneously present. Then by the transfor-

mation X → Y , indicated in Fig. 13, a Kragujevac tree Y without B1-branch is

obtained, having smaller ABC index than X. For this transformation, choosing the

worst case pi = 4, we get

∆ = f(m, 3) + (m− 2)f(m, 4)− (m− 1)f(m− 1, 4)

which is positive–valued if m ≥ 9.

m m-1
B

B

B

3

2

1

X Y
Fig. 13. The trees considered in Case 1 of the proof of Theorem 11.

Case 2: B1– and B3-branches are simultaneously present. Then the transformation

X → Y , indicated in Fig. 14 is applicable, which for the worst case pi = 5 yields

∆ = f(m, 4) + (m− 2)f(m, 5)− (m− 1)f(m, 5)

which is positive–valued if m ≥ 15.

m m-1
B

B

B

4

3

1

X Y
Fig. 14. The trees considered in Case 2 of the proof of Theorem 11.
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Case 3: B1– and B4-branches are simultaneously present. Then the transformation

X → Y , indicated in Fig. 15 is applicable, which for the worst case pi = 5 yields

∆ = (m− 1)f(m, 5)− (m− 2)f(m, 5)− f(m− 1, 6)

which is positive–valued if m ≥ 19.

m m-1
B

B

B

5

4

1

X Y
Fig. 15. The trees considered in Case 3 of the proof of Theorem 11.

Case 4: All branches are of B1-type. Let X be such a Kragujevac tree. All edges of

X are incident to a vertex of degree two. Then by Lemma 4, the ABC(X) is equal

to the ABC index of the path with equal number of vertices. It is known [8] that

paths of order greater than 9 are not minimal-ABC trees. Therefore, also Case 4 is

impossible, and Theorem 11 follows.

Theorem 12. If a minimal-ABC Kragujevac tree possesses a B∗
3-branch, then (a) it

does not possess B2-branches, and (b) it has at most one B4-branch.

Proof. (a) Consider a Kragujevac tree X possessing a B2– and a B∗
3-branch. If the

order of X is sufficiently large, then X will possess more than three B3-branches.

Then by the transformation X → Y , see Fig. 16, the ABC index will be diminished.

Calculation analogous to what was used in the proofs of previous theorems, shown

that ABC(Y ) < ABC(X) will happen if m ≥ 25.

(b) Perform the transformation X → Y , indicated in Fig. 17.
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4

3

X Y

[
[

]
]3

3*

Fig. 16. The trees used in the proof of part (a) of Theorem 12.

m+1

m

B

B

B

B

B

B

B

3

3

2

4

3

3

4

X Y

*

Fig. 17. The trees used in the proof of part (b) of Theorem 12.

By means of Theorems 6–12 it was shown that most combinations of branches

Bi , i = 1, 2, 3, . . . must not occur in minimal-ABC Kragujevac trees. Only 10

combinations remain, depicted in Fig. 18.

B B

B

B

B

B

B

B B

B B

B

B

B

B

B B

B B

B

B

4 4

4

4

2

3

3

4 4

4 4

4

4

2

4

4 4

4 4

4

2

*

*

1 2 3

4 5 6

7 8 9 10

Fig. 18. Types of Kragujevac trees not eliminated by means of Theorems 6–12. The
black triangles indicate an arbitrary number of B3-branches attached to the central
vertex.
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4 Verifying and amending Conjecture 3

A B3-branch has 7 vertices. Therefore, all trees of a given type, as depicted in Fig.

18, have number of vertices (n) congruent modulo 7.

The only trees from Fig. 18 for which n ≡ 0 (mod 7) are those of type 3. By this,

Conjecture 3(a) is confirmed.

The only trees from Fig. 18 for which n ≡ 1 (mod 7) are those of type 10. By

this, Conjecture 3(b) is confirmed.

The only trees from Fig. 18 for which n ≡ 3 (mod 7) are those of type 5. By this,

Conjecture 3(d) is confirmed.

The only trees from Fig. 18 for which n ≡ 5 (mod 7) are those of type 4. By this,

Conjecture 3(f) is confirmed.

The only trees from Fig. 18 for which n ≡ 6 (mod 7) are those of type 8. By this,

Conjecture 3(g) is confirmed.

In Fig. 18 there are two types of trees for which n ≡ 2 (mod 7), namely 2 and

9. By direct calculation it can be shown that for n = 7k + 2 , k ≤ 168 (i.e., for

n ≤ 1178), the minimal-ABC Kragujevac tree is 9, which agrees with Conjecture

3(c). However, for k ≥ 169 (i.e., for n ≥ 1185), the minimal-ABC Kragujevac tree is

2. Thus, Conjecture 3(c) does not hold for trees with more than 1178 vertices, and

needs to be amended as:

(c) If n ≡ 2 (mod 7), then Tmin possesses four B4-branches, whereas all other

branches are of B3-type.

In Fig. 18 there are three types of trees for which n ≡ 4 (mod 7), namely 1, 6,

and 7. By direct calculation it can be shown that for n = 7k + 4 , k ≤ 287 (i.e.,

for n ≤ 2013), the minimal-ABC Kragujevac tree is 7, which agrees with Conjecture

3(e). However, for k ≥ 288 (i.e., for n ≥ 2020), the minimal-ABC Kragujevac tree is

1. Thus, Conjecture 3(e) does not hold for trees with more than 2013 vertices, and

needs to be amended as:

(e) If n ≡ 4 (mod 7), then Tmin possesses five B4-branches, whereas all other

branches are of B3-type.
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[2] E. Estrada, L. Torres, L. Rodŕıguez, I. Gutman, An atom–bond connectivity in-

dex: Modelling the enthalpy of formation of alkanes, Indian Journal of Chemistry

37A (1998) 849–855.

[3] E. Estrada, Atom–bond connectivity and the energetic of branched alkanes,

Chem. Phys. Lett. 463 (2008) 422–425.
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