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Abstract 

Splice site prediction in the pre-mRNA is a very important task for understanding gene structure and 

its function. To predict splice sites, SVM (support vector machine)-based classification technique is 
frequently used because of its classification accuracy. High performance of SVM largely depends on 

DNA encoding method. However, existing encoding approaches do not reveal the characteristics of 

DNA sequences very well enough to provide as much information as sequences have. In this paper, we 

propose new effective DNA encoding method for feature extraction which can give more information 
of DNA sequence. Our encoding method can provide density information of each nucleotide along 

with positional information and chemical property. Extensive performance study shows that the pro-

posed method can provide better performance than existing encoding methods based on several per-
formance criteria such as classification accuracy, sensitivity, specificity and auROC (area under re-

ceiver operating characteristicscurve). 
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1. Introduction 

As more whole-genome sequences are increasingly generated with the continued development 

of new high-throughput methods for DNA sequencing, gene identification becomes one of the 

important tasks for computational biology. In order to understand how the genome works, we 

need to identify a set of coding fragments known as exons, which are separated by non-coding 

intervening fragments known as introns. As shown in Figure 1, the boundaries between exons 

and introns are called splice sites. The vast majority of all splice sites are characterized by the 

presence of specific dimers: GT for donor and AG for acceptor sites. However, only about 

0.1%~1% of all GT and AG occurrences in the genome represents true splicing sites. Thus 

accurate prediction of splice site is naturally required for a systematic study of eukaryotic 

genes. 

For this reason, there have been a lot of research works for predicting gene‟s structure and its 

function. Several machine learning algorithms have been developed for splice site prediction 

such as Bayesian networks, ANN (artificial neural network), discriminant analysis, and SVMs. 

Among them, SVMs and related kernel methods are most frequently used for solving such 

problems [1-10] due to their high accuracy and capability to deal with high-dimensional large 

data sets.  

 

Figure1.Central dogma and splice sites 

When we use SVM based classification technique, the feature extraction is a very important 

step for better classification accuracy. For feature extraction, DNA encoding method has the 

advantage of simple process. It can also provide the characteristics of DNA sequences to 

transform splice site sequence to a feature vector. However, existing encoding approaches do 

not reveal the characteristics of DNA sequence very well enough to provide as much informa-
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tion as DNA sequences have. In this paper, we propose a new effective DNA encoding me-

thod which can give more information of DNA sequence. Our encoding method can provide 

density information of each nucleotide along with their positional information and chemical 

property.  

The paper is organized as follows: In Section 2, we briefly survey related work about splice 

site prediction. We describe our proposed encoding method in detail in Section 3. We explain 

experimental environment and analyze its results in Section 4. Section 5 discusses some of the 

properties of the proposed encoding. Finally, Section 6 presents our conclusion. 

2. Related Work 

A large number of computational methods have been applied for solving biological sequence 

(e.g. DNA, protein) analysis, finding gene regulation, protein-protein interaction and so on. 

Of them, splice site prediction which is known as an important component of computational 

gene finder has received much attention to biological scientists. Their methods are mainly 

based on HMM (hidden Markov model), NN (neural network), and several statistical analysis. 

Even though a large number of splice site prediction tools are publicly available, they still 

need to improve their performance for high prediction accuracy and capability of handling a 

large scale DNA sequences. Table 1 summarizes the characteristics of representative predic-

tion tools [11]. 

Table 1.Expert systems for splice site recognition 

Tools name Organism for training data set Learning model* 

GENESPLICER Arabidopsis, human HMM + MDD 

NETPLANTGENE Arabidopsis NN 

NETGENE2 Human, Arabidopsis NN + HMM 

NNSPLICE0.9 Drosophila, human NN 

SPLICEDETECTOR Arabidopsis,maize Logit linear models 

BCM-SPL Human,Drosophila,yeast,plant,C.elegans LDA 

SPLICEVIEW Eukaryotes Score with consensus 

*MDD:maximal dependence decomposition, LDA: linear discriminant analysis 

SPLICEVIEW [12] searches for a match with a consensus sequenceon a set of aligned func-

tional sites considering the correlations between nucleotides of those sites. 

SPLICEDETECTOR [13] also uses the same approach as SPLICEVIEW does with some ad-

ditional information. PWM (positional weight matrix) determines the appearance probability 
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of a given base at each position of the signal which can also be optimized by a neural network 

method, as proposed in NETPLANETGENE[14], NETGENE2[15] and NNSPLICE[16]. 

On the other hand, SVM which is a powerful pattern recognition technique is successfully 

applied for splice site prediction problem because of its high classification accuracy and capa-

bility of handling large-scale DNA sequences. In order to apply SVM, effective DNA encod-

ing approach is necessary for transforming raw DNA sequences into vectors of feature space. 

On this account, several encoding methods are proposed and analyzed in many ways.  

Salekdehet. al. [2] proposed an encoding method which can consider the positional probabili-

ty of each nucleotide while introducing another 4 ambiguous values to represent possibility of 

occurrence of some other nucleotides. However, it cannot distinguish distance value between 

ACC-AGG and ACC-ATT in the case of one matched and two unmatched nucleotides even 

though AGG is a more important sequence than ATT for splice site prediction.  

In [1], for extracting more information from splice site sequences, they utilize three approach-

es, orthogonal encoding, codon usage, and sequential information. Huang et. al. [9] proposed 

four different encoding approaches and compared their performance. They are MN (mono 

nucleotide) encoding which maps each of 4 DNA bases into an integer number, PN (pairwise 

nucleotide)  encoding which maps 16 possible pairs into an integer number, and combining 

frequency difference between the true and false sites (FDTF) encoding. Their experimentation 

indicates that PN with FDTF method produces the best accuracy. In [17], they classified 4 

DNA bases as 4 different coordinates from the knowledge of biology which is based on nuc-

leotide classification. Their experimental results show that the 4D representation provides 

good performance in measuring the evolutionary relationship among different species. 

Zhang et. al. [6] used weight matrix model for DNA encoding. The problem of this type of 

weight matrix is that it assumes each position is equally important and therefore each attribute 

(i.e. nucleotide) is independent. But attributes are not always independent and some positions 

may be essential while others may be trivial in the area of splice site prediction.  

AKMA Batenet. al. [7] produced their best result in reduced Markov encoding where the con-

ditional probability of a nucleotide at any location depends on its immediate predecessor. But 

the correlation between adjacent nucleotides does not reveal the global feature of splice sites. 

Markovian probability becomes complex and unrealistic when we consider high order Mar-

kov model for global feature. 
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However, none of the above methods consider density information of each nucleotide in DNA 

sequences which may be desirable information for splice site prediction. In this paper, we 

propose a new effective DNA encoding method which can give more information about DNA 

sequences. Our encoding method includes density information of each nucleotide along with 

positional information and chemical property.The extensive performance study shows that our 

method can provide better performance than existing encoding methods based on several per-

formance criteria such as classification accuracy, sensitivity, specificity and auROC. 

3. DNA Encoding  

 Encoding has its own advantages while extracting features from functional sites (e.g. splice 

site, promoter site, translation site, etc.) as well as in the visualization and similarity analysis 

of those sequences.  As for DNA encoding, it might be a very simple approach to assign two 

binary digits to each nucleotide (A=00, G=01, C=10, T=11). However, it cannot give any cha-

racteristics of DNA sequences even though it has the advantage of simplicity. Another simple 

approach is to assign four binary digits which have only single „1‟ value among 4 digits 

(A=0001, G=0010, C=0100, T=1000). This sparse encodingmight give benefit when we com-

press DNA sequences, but this encoding treats the four nucleotides equally and failed to con-

sider the probability of natural mutation in DNA sequences. 

Besides, many graphical representations have been proposed for visualizing DNA sequences 

while mapping each nucleotide or dinucleotide into coordinates of 2D [18-21] or 3D [22]. 

They are efficient to recognize DNA sequences at a single glance, however, not enough to 

show sequence characteristics. Lastly, several statistical methods were proposed for analyzing 

DNA sequences. But these approaches are very hard to encode because of their numerical 

complexity.  

Generally, in the case of DNA sequence encoding, two characteristics (i.e. degeneracy and 

uniqueness) are required to avoid loss of information, and guarantee unique mapping between 

DNA sequence and its Cartesian graph. DNA encoding for splice site prediction should be 

satisfied with these two criteria. In this paper, we propose new encoding approach for splice 

site prediction. Our approach considers chemical characteristics of DNA and density informa-

tion of each nucleotide in its every position while satisfying the above criteria. 
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3.1 Chemical property of each nucleotide 

DNA isnucleic acid that contains genetic instruction used in the development and functioning 

of all known living organism.  It is a polymer whose monomer units are nucleotides.There are 

mainly four different types (i.e. Adenine, Guanine, Cytosine, Thymine) of nucleotides found 

so far. Each nucleotide has different chemical structure andchemical binding between  them as 

shown in Figure 2 and 3.Depending on chemical property (i.e. ringstructure,hydrogen bond 

and functionality) of each nucleotide, DNA sequence might represent different biological cha-

racteristics. 

  
 

 

(a) Adenine (b) Guanine (c) Cytosine (d) Thymine 

Figure 2. Chemical structure of each nucleotide 

As shown in Figure 2, Adenine and Guanine have two rings (i.e. hexagon and pentagon).  On 

the contrary, Cytosine and Thymine have only one ring structure(i.e. hexagon only). Thus, 

they belong to different groups in terms of ring.In the same way, as shown in Figure 3, Gua-

nine and Cytosine show strong hydrogen bondcompared with Adenine and Thymine.Lastly, 

they are grouped on different chemical functionality i.e. amino group and keto group. 

 

Figure 3. Complementary DNA binding 

Table 2 summarizes such chemical property of each nucleotide. 

T 
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able 2.Chemical property of each nucleotide 

Chemical property Class Nucleotides 

Ring Structure 
Purine {A, G} 

Pyrimidine {C, T} 

Functional Group 
Amino {A, G} 

Keto {G, T} 

Hydrogen Bond 
Strong-H {C, G} 

Weak-H {A, T} 

 

In order to include such chemical property in DNA encoding, we put 3 coordinates (x, y, z) to 

represent three chemical group and assign 1 or 0 values. Each nucleotide, si= (xi, yi, zi) is 

represented according to following formula. 

 

That is, coordinate value of each nucleotide is determined by their chemical property of the 

nucleotide. Purine {A, G} and pyrimidine {C, T} both have rings – purinehas two rings, py-

rimidine has one. So, they will fall into same coordinate (here, 𝑥 coordinate). Similarly amino 

{A, C} and keto {G, T} group fall into 𝑦 coordinate because they have same functionality. 

Eventually, 𝑧coordinate is plotted by strong-H {C, G} and weak-H {A, T} group because they 

possess same Hydrogen bond.  

3.2 Nucleotide density 

Another desirable feature of DNA sequence is the occurrence of each nucleotide in DNA se-

quence. For this, we add another coordinate di in (xi, yi, zi). Inthis added coordinate di, we 

represent frequency information and also distribution of each nucleotide in DNA sequence. 

For this purpose, we define di value which represents density of each nucleotide by following 

formula. 

Let = {𝐴, 𝑇, 𝐶, 𝐺} and 𝑆 =  𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑙 is a DNA sequence of length lwhere si∈∑ and 

𝑖 = 1, 2, 3,… , 𝑙. We further define that |S| represents the length of the string S and |Si| is the 

length of substring[1, 𝑖]. Then, the density di of any nucleotide si in the positionican be for-

mally derived as 

𝑑𝑖 =  
1

 𝑆𝑖  
 𝑓(𝑠𝑖
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where𝑓 𝑞 =  
1         𝑖𝑓𝑠𝑖 = 𝑞
0      𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 , 𝑖 = 1, 2, 3, … , 𝑙  and 𝑞 ∈  . 

Thediacts as nucleotide‟s positional weight within a sequence. For example, consider a se-

quence “ATAGTCATAA”. The density of „A‟ is 1, 0.67, 0.43, 0.44, and 0.50 in the position 1, 

3, 7, 9 and 10 respectively, „T‟ is 0.5, 0.40, and 0.37 in the position 2, 5 and 8 respectively, „C‟ 

is 0.17 in the position 6 and „G‟ is 0.25 in the position 4.The following table clearly explains 

density information for the above example sequence. 

  Table 3.  Density information of example sequence “ATAGTCATAA” 

𝒊 𝒔𝒊 𝒇(𝒔𝒊) |𝑺𝒊| 𝒅𝒊 = 𝒇(𝒔𝒊)/|𝑺𝒊| 

1 A 1 1 1.00 

2 T 1 2 0.50 

3 A 2 3 0.67 

4 G 1 4 0.25 

5 T 2 5 0.40 

6 C 1 6 0.17 

7 A 3 7 0.43 

8 T 3 8 0.375 

9 A 4 9 0.44 

10 A 5 10 0.50 

    On the other hand, A can be represented as (1, 1, 1), T can be represented by (0, 0, 1) as per 

the equation described in section 3.1. Similarly, G and C‟s representation in (x, y, z) format is 

(1, 0, 0) and (0, 1, 0) respectively. We add density as a fourth dimension to represent each 

nucleotide in (x, y, z, d) format. 

Finally, the example sequence “ATAGTCATAA” is represented by {(1, 1, 1, 1), (0, 0, 1, 0.5), 

(1, 1, 1, 0.67), (1, 0, 0, 0.25), (0, 0, 1, 0.4), (0, 1, 0, 0.17), (1, 1, 1, 0.43), (0, 0, 1, 0.37), (1, 1, 

1, 0.43), (1, 1, 1, 0.50)}where ( , , , ) stands for a single nucleotide with their x, y, z and d val-

ues as described. 

3.3 Classifier model construction 

A binary SVM is adopted to classify NN269 [23] sequences into two classes, true sites and 

false sites. Let𝑆 =  𝑠1 , 𝑠2 , 𝑠3 , … , 𝑠𝑙 denoteasplice site of NN269 datasets of length 𝑙 and𝑅 =

 𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑙 is the input feature vector, where 𝑟𝑘 =  𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑑𝑖 ∈ ℝ  , 𝑘 = 1, 2, 3, … , 𝑙 

is the coordinate value ofa nucleotide (𝑠𝑘). The classification of DNA sequence 𝑆 finds an 

optimal mapping from ℝ4𝑙 the space of coordinate values into {+1,−1} where +1  corres-

ponds to true splice site and −1 to false splice site respectively. 
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Let some target function 𝑓 :ℝ4𝑙 → {+1,−1}  and𝐷 = { 𝑅𝑗 , 𝑦𝑗   | 𝑗 = 1, 2, 3,… ,𝑁}⊆ℝ4𝑙  de-

notes the set of training examples, where 𝑦𝑗  = 𝑓 (𝑅𝑗 ) denotes the desired class, true site or 

false site, for the input feature vector 𝑅𝑗  of all coordinate values of sequence 𝑆𝑗 ; 𝑁 denotes the 

number of training sequences. We need to compute a model 𝑓 : ℝ4𝑙 → {+1,−1}by𝐷. 

SVM first transforms the input to a higher dimensional space with a kernel function Ƙ and then 

linearly combines them with a weight vector 𝒘 to obtain the output. The binary SVM is 

trained to classify the input vectors to correct the class of splice sites. 

For this purpose, SVM constructs a discriminate function by solving the following optimiza-

tion problem: 

Minimize 

1

2
𝒘𝑇𝒘+  𝛾 𝜉𝑗

𝑁

𝑗=1

 

subject to the constraint 

𝑦𝑗 𝒘
𝑇ɸ 𝑅𝑗 + 𝑏 ≥ 1 − 𝜉𝑗 𝑎𝑛𝑑𝜉𝑗 ≥ 0, 

where slack variables 𝜉𝑗  represent the magnitude of error in the classification, ɸrepresents the 

mapping function to a higher dimension,𝑏 is the bias used to classify samples, and 𝛾 > 0 is 

the sensitivity parameter that decides the trade-off between the training error and the margin 

of separation [29-30]. 

The minimization of the above optimization problem is equivalent to maximizing the follow-

ing quadratic function: 

𝑚𝑎𝑥
𝛼

 𝛼𝑗

𝑁

𝑗=1

−
1

2
 𝛼𝑗𝛼𝑖𝑦𝑗𝑦𝑖

𝑁

𝑗 ,𝑖=1

К(𝑅𝑗 , 𝑅𝑖) 

subject to0 ≤ 𝛼𝑗≤𝛾and 𝛼𝑗𝑦𝑗
𝑁
𝑗=1 = 0. 

Function Ƙ( 𝑅𝑗 , 𝑅𝑖 ) = 𝝓 (𝑅𝑗 )
𝑇𝝓 𝑅𝑖  isthe kernel function and the weight vector 

𝒘= 𝑦𝑗𝛼𝑗𝝓
𝑁

𝑗=1
 𝑅𝑗  .Once the parameters 𝛼𝑗 are obtained from the optimization, the model 

function for any input pattern 𝑅𝑖 , 𝑓  𝑅𝑖  is given by: 
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𝑓  𝑅𝑖 = 𝑠𝑔𝑛  𝛼𝑗𝑦𝑗

𝑁

𝑗=1

К 𝑅𝑗 , 𝑅𝑖 + 𝑏 , 

where 𝑠𝑔𝑛 𝑘 =   
+1  𝑖𝑓𝑘 ≥ 0 
−1  𝑖𝑓𝑘 < 0

 . 

 

4. Experimental Results  

4.1 Dataset, experimental environment and performance metric 

To evaluate the performance of our proposed encoding method, weconducted several experi-

ments on NN269 [23] dataset. Table 4 shows the different important characteristics of the da-

taset. The dataset was created to compare different splice site models. The donor datasets have 

7 base pairs (bp) of the exon and 8bp of the following intron (starting with GT).The acceptor 

data sets have 70 bp in the intron (ending with AG) and 20 bp of the following exon. 

Table 4.Dataset characteristics 

Dataset 
Acceptor Donor 

True False Total True False Total 

Training 1116 4672 5788 1116 4140 5256 

Testing 208 881 1089 208 782 990 

Total 1324 5553 6877 1324 4922 6246 

The existing Reduced MM1-SVM [7] outperforms the other methods like Information Con-

tent (IC Shapiro) and MM1-SVM. On the other hand, MM1-SVM/WMM1-SVM [8] performs 

better than Loi-Rajapakse [24], NNSplice [16] and GeneSplicer [25].So, we compare the per-

formance of our algorithm with Reduced MM1-SVM only. At first, we show the overall per-

formance of the proposed encoding ondifferent SVM kernels. After that, we evaluate the per-

formance of sparse encoding in the same experimental environment. Then we add density in 

sparse encoding and reevaluate the performance to show the importance of density in already 

existing model. Finally, we compare our classification accuracy with [7] for performance 

comparison.  

Our programs were written in Python 2.7, and run with the Windows XP operating system on 

a Pentium dual-core 2.13 GHz CPU with 2 GB main memory. We used BioPython 1.60 for 

sequence parsing, SMO (sequential minimal optimization) algorithm of WEKA 3.6 [26] for 

SVM classification and LibSVM [28] for kernel parameter selection. 
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To evaluate the classification performance, we used several evaluation methods such as the 

sensitivity (Sn), specificity (Sp), accuracy, receiver operating characteristics (ROC) curve,and 

the auROC as described in the following: 

n

T P
S =  1 0 0

T P + F N


p

T N
S =  1 0 0

T N + F P


T N + T P

A c c u r a c y =  1 0 0

T N + T P + F N + F P

  

where TP, TN, FP, FN represents true positive, true negative, false positive and false negative 

respectively. PlottingSn against 1-Sp produces the ROC [27] curve. ROC analysis is an effec-

tive and widely used method to assess the performance of classifiers. The larger values of Sn, 

Sp, accuracy and auROCindicates the better performance of a classifier. 

4.2 Performance of the model 

We used density information to construct our feature vector because it indicates the positional 

weigh of nucleotide in a sequence. This weight depends on nucleotide‟s frequency. So, we get 

frequency distribution of nucleotides from density which helps SVM to classify splice sites. 

An example will clear the use of density and supremacy of the proposed method over others. 

Let consider five splice sites of length 10 where +1 stands for true and -1 for false class label. 

Their positional profile (PP) matrix is given in Fig. 4 (b). The encoded sequence of those 

splice sites based on positional profile and density information (DI) is shown in Table 5. 

 

 
ATCTATCAGG, +1 

         TCTCACACTC, +1 
CTACCTTAAA, -1 

CAGTGAGTAG, +1 
TACTTGTCTG, -1 

 

a) Aligned DNA Se-
quences 

 
p 

∑ 1 2 3 4 5 6 7 8 9 10 

A 
C 
G 
T 

0.20 0.40 0.20 0.0 0.40 0.20 0.20 0.40 0.40 0.40 

0.40 0.20 0.40 0.40 0.20 0.20 0.20 0.40 0.0 0.20 

0.0 0.0 0.20 0.0 0.20 0.20 0.20 0.0 0.20 0.40 

0.40 0.40 0.40 0.60 0.20 0.40 0.40 0.20 0.40 0.0 

 
b) Positional profile information table of aligned sequences in (a), p is indicating the 

positions 

 

Figure 4. Positional profile information of a set of aligned splice sites 

 

From table 5, we see that PP does not reflect nucleotide‟s frequency distribution in the se-

quence‟s feature vector. It just fills up each position in feature vector of any site with a value 

taken from the range [0, 1/N, 2/N, 3/N, …,N/N] where N is the number of aligned sequence. 

Table 5. Splice site encoding in positional profile versus density information 

Splice site Class PP DI 

ATCTATCAGG +1 0.2, 0.4, 0.4, 0.6, 0.4, 0.40, 0.2, 0.4, 0.2, 0.4 1, 0.5, 0.33, 0.5, 0.4, 0.5, 0.28, 0.25, 0.11, 0.2 

TCTCACACTC +1 0.4, 0.2, 0.4, 0.4, 0.4, 0.2, 0.2, 0.4, 0.4, 0.2 1, 0.5, 0.67, 0.5, 0.2, 0.5, 0.28, 0.5, 0.33, 0.5 

CTACCTTAAA -1 0.4, 0.4, 0.2, 0.4, 0.2, 0.4, 0.4, 0.4, 0.4, 0.4 1, 0.5, 0.33, 0.5, 0.6, 0.33, 0.43, 0.25, 0.33, 0.4 

CAGTGAGTAG +1 0.4, 0.4, 0.2, 0.6, 0.2, 0.2, 0.2, 0.4, 0.4, 0.4 1, 0.5, 0.33, 0.25, 0.4, 0.33, 0.43, 0.25, 0.33,0.3 

TACTTGTCTG -1 0.4, 0.4, 0.4, 0.6, 0.2, 0.2, 0.4, 0.4, 0.4, 0.4 1, 0.5, 0.33, 0.5, 0.4, 0.5, 0.28, 0.25, 0.11, 0.2 
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On the other hand, feature vectors extracted from density information shows the appropriate 

distribution of nucleotides in the sites. This distribution has advantages over others while 

SVM is used to classify them. Because, we know that splice sites show high frequency of GC 

content. Furthermore, exon shows a regular pattern based on relative synonymous codon 

usage (RSCU) but intron does not.  Frequency distribution of each nucleotide in site classifi-

cation based on SVM has added advantages because the dot product operation of two 

true/false sites will fall into same side of boundary decision most of the time.  

We used5-folds cross validation on training dataset. Then the classifier is reevaluated with the 

test data.  

Table  6.Performance evaluation of NN269 acceptor and donor splice site 

 
TP TN FP FN Sn Sp Accuracy auROC Kernel 

Acceptor 
161 856 25 47 77.40 87.16 93.39 97.90 Poly 

165 857 24 43 79.30 87.28 93.85 97.91 RBF 

Donor 
183 760 22 25 87.98 97.19 95.25 98.30 Poly 

185 758 24 23 88.94 96.93 95.25 98.24 RBF 

Different kernel parameters were applied to obtain the best performance. For donor site, 

C=0.001 and E=2.0 are used while using polynomial kernel and C=8.0, 𝛾=0.007 for RBF ker-

nel. Similarly, we used C=3.0, E=2.5 in case of acceptor for polynomial kernel and 

C=8.0,𝛾=0.004 for RBF kernel. The best values for TP, TN, FP, FN, Sn,Sp, accuracy and au-

ROC are shown for both sites in Table 6. 

  

(a) Acceptor (b) Donor 

Figure 4. ROC curves showing the classification performance for NN269 dataset 

We drew ROC curves for acceptor and donor splice sites. The curves are drawn in case of 

thebest performance on both kernels. Figure 4 (a) shows that the model starts being stable 

considering only 25% FPR (false positive rate) for both kernels.  In case of donor, in Figure 4 

(b), the difference between auROC is negligible. So, the curves overlap each other. 
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Table 7. Classification performance with and without density 

Methods 
Splice 

Site 

Without density With density 

Accuracy auROC Accuracy auROC 

Proposed 
Acceptor - - 93.85 97.91 

Donor - - 95.25 98.30 

Sparse 
Acceptor 93.57 97.70 93.74 97.80 

Donor 93.79 97.60 95.25 98.30 

4.3 Effectiveness of density  

In this section, firstly we implement sparse encodingand evaluate the performance. Secondly, 

we add density as a fifth dimension and reevaluate the classification algorithm. Let define this 

new encoding as DS (density-based sparse). Thirdly, we compare the performance between 

them to show the effectiveness of density. Table 7 shows some performance measures of pro-

posed, sparse and DS encoding. 

For DS, the accuracy and auROC are increased in case of acceptor sites. The increment of 

those measures for donor sites is also remarkable. Our proposed method outperforms than 

sparse and DS encoding. So it is clear that the classifier performs better when density is added 

in sparse encoding. Figure5 shows the respective ROC curves. For acceptor, in Figure 5(a), 

the curves differentiate in some places but eventually DS curve stables on less FPR than 

sparse. 

  

(a) Acceptor (b) Donor 

Figure 5. ROC curves comparison between sparse and DS encoding 

As shown in Figure 5(b), the difference between sparse and DS encoding is vividly shown. 

The difference of auROC is 0.70. It can be concluded that the performance of density based 

sparse encoding is significantly superior to that of sparse encoding. 

-253-



4.4 Classification performance comparison  

In this experimental section, we compare the proposed model with Reduced MM1-SVM to 

verify the practical applicability of the model obtained. Reduced MM1-SVM extracts se-

quence feature using first order Markov model.It generates some emission probabilities for 

input sequence to learn the conserved sequence pattern at upstream and downstream regions 

surrounding the splice site motifs (i.e. GT-AG). Table 8 shows the classification performance 

of our model with Reduced MM1-SVM. 

Table8.auROC comparison of the models 

 

Proposed 

SVM Poly 

Proposed 

SVM RBF 

Reduced 

MM1-SVM GRBF 

Reduced 

MM1-SVM Poly 
MM1-SVM Poly 

IC Shapiro 

SVM-Poly 

Acceptor 97.90 97.91 97.41 96.96 96.74 96.23 

Donor 98.30 98.24 97.90 97.65 97.62 96.66 

Compared to MM1-SVM [8], Reduced MM1-SVM and IC Shapiro from [7], our classifier-

provides a better performance. For acceptor sites, i) our model gives the best auROC 97.90 

(97.91) which is 0.94 (0.50) higher than that of Reduced MM1-SVM poly (Reduced MM1-

SVM GRBF), ii) 1.16 higher than that of MM1-SVM poly and iii) 1.67 higher than that of IC 

Shapiro SVM poly. In case of donor sites, i) our model produces the best auROC 98.30 (98.24) 

which is 0.65 (0.34) higher than that of Reduced MM1-SVM GRBF (Reduced MM1-SVM 

poly), ii) 0.68 higher than that of MM1-SVM poly and iii) 1.64 higher than that of IC Shapiro 

SVM poly. 

  

(a) Acceptor (b) Donor 

Figure 6. ROC curves comparison between proposed encoding and Reduced MM1-SVM 
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Figure 6 shows the comparison of performance between our model and Reduced MM1-SVM. 

As shown in Figure 6(a) and 6(b), our model is clearly superior for the identification of both 

acceptor and donor splice sites. 

5. Discussion 

The proposed encoding has some advantages over sparse and other recent encoding method 

for splice site prediction. Some of them are discussed in this section. 

i) The proposed chemical classification does not treat each nucleotide independently, rather 

nucleotides are linearly combined. As for example, 

𝑥𝐴 = 𝑥𝑇   +  𝑥𝐶  +  𝑥𝐺  

𝑦𝐴 = 𝑦𝑇  +  𝑦𝐶 +  𝑦𝐺  

𝑧𝐴 = 𝑧𝑇   +  𝑧𝐶  +  𝑧𝐺 . 

where𝑥𝐴, 𝑦𝐴 , 𝑧𝐴 represents the 𝑥, 𝑦, 𝑧 coordinate of Adenine respectively and so on.The linear 

combination has two way advantages. Firstly, it can detect the natural mutation of DNA se-

quence that sparse encoding can‟t. Secondly, the encoded data becomes linearly separable 

while using SVM. 

ii) As the length of splice sites are fixed, the proposed method can also be used for gene clas-

sification through homology-based approach.  Every nucleotide in a site can be viewed as a 

four dimensional point. So, a site is a continuous curve connecting those points. We determine 

the geometric center of those curves and determine the similarity score among them. Let 

S=  𝑃1, 𝑃2, … , 𝑃𝑙  where each 𝑃𝑖 =  𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑑𝑖  and𝑖 = 1, 2, 3,… , 𝑙 . Then the geometric 

center of S is  𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐 , 𝐷𝑐 =  
1

𝑙
 𝑥𝑖
𝑙
𝑖=1 ,

1

𝑙
 𝑦𝑖
𝑙
𝑖=1 ,

1

𝑙
 𝑧𝑖
𝑙
𝑖=1 ,

1

𝑙
 𝑑𝑖
𝑙
𝑖=1  where 

𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐 , 𝐷𝑐  represents the 𝑥, 𝑦, 𝑧, 𝑑 coordinate of the geometric center respectively. The im-

portance of geometric center is that it can be used to determine the similarity scoreof splice 

sites. 

6.  Conclusion 

The accurate prediction of splice site is the key point of gene identification. Several mathe-

matical models and encoding approaches are used for splice site prediction. The accuracy of 

these approaches depends on their feature extraction method. Our simple and easy approach 

of density information largely increases the accuracy of the classifiers. We consider the chem-

ical property of nucleotides for encoding approaches.Furthermore, frequency distribution of 
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each nucleotide in the splice site helps encoded feature vector of those sites correctly classify 

into high dimensional feature space. The density information directly focuses on the chemical 

properties (i.e. GC content‟s high expressiveness and regular exonic pattern) of splice sites 

that helps SVM to classify them correctly.Our encoding approach with nucleotide density is 

easy to implement and simple but produce better result than others. 
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