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Abstract 

 In DNA computation, the DNA encoding is a key problem, and its quantity and quality 

directly affect the computing efficiency and solution extractions. In recent years, the DNA 

sequences design has been one of the most practical and important research topics in DNA 

computing. However, DNA sequences design should simultaneously satisfy various 

combinational and thermodynamic constraints, which has been proved to be NP-hard 

problem. In the paper, a dynamic membrane evolutionary algorithm (DMEA) is proposed to 

solve the DNA sequences design. The method combines the fusion and division rules of P 

systems with active membranes and ADE/PSO search strategy. The results of simulation 

experiments show that the proposed algorithm is valid and outperforms other evolutionary 

algorithms. 
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1. Introduction 

DNA computing is a new computation paradigm with DNA molecules and enzymes working as 

carrier, and biochemistry trials as information processing instruments. In recent years, DNA 

computing has been extensively used to solve various NP-complete and intractable problems, such 

as Hamiltonian path problem [1], the satisfaction problem (SAT) [2], traveling salesman problem 

(TSP) [3], maximal clique problem [4], and Ramsey number problem [5]. In DNA computing, 

since the information of the problem to be solved needs to map into DNA sequences, the design of 

DNA sequences is important to successful DNA computing. A set of good DNA sequences must 

satisfy many combinatorial and thermodynamic constraints, and can prevent unwanted 

hybridization errors during the computation, and enable easy retrieval of the answer in the 

extraction phase. However, DNA sequences design is not an easy task since it is a NP-hard problem, 

and is difficult to be solved by the traditional optimization methods. 

In recent ten years, various kinds of methods and strategies have been proposed to solve the 

DNA sequences design problem. Arita and Kobayashi [6] proposed a template-map strategy to 

select a huge number of dissimilar sequences by using only a significantly small number of 

templates and maps. Penchovsky and Ackermann [7] designed DNA sequences by a random search 

algorithm. Shin et al. [8] proposed a constrained multi-objective evolutionary algorithm to solve 

DNA sequences optimization for reliable DNA computing. Khalid et al. [9] used the continuous 

particle swarm optimization to solve the DNA sequence design. Wang et al. [10] developed GA/SA 

algorithm for DNA sequences design. Qiu et al. [11] designed a hardware microprocessor to 

discover the DNA code under the thermodynamic constraints. Zhang et al. [12] proposed a taboo 

search algorithm to design a set of DNA sequences. Kawashimo et al. [13] presented a local search 

algorithm for designing sets of short DNA sequences to satisfy thermodynamic constraints with 

minimum free energy criteria. Zhang et al. [14] proposed an invasive weed optimization algorithm 

to optimize encoding sequences. Xiao et al. [15] proposed quantum chaotic swarm evolutionary 

algorithm to select good DNA sequences. Zhang et al. [16-18] proposed an improved dynamic 

genetic algorithm to solve various DNA sequences design problems based on minimum free energy 

or H-distance. The improved dynamic genetic algorithm could conquer the shortages and enhance 

the global search capability of traditional genetic algorithm based on the characteristic of DNA 

word set design. Xiao et al. [19] developed a membrane evolutionary algorithm based on crossover 

and mutation rules to optimize DNA sequences design. 

Initiated by Gheorghe Paun [20] in 1998, membrane computing is a branch of natural 

computing dealing distributed parallel computing devices of a biochemical type. Membrane 

-988-



 

 

computing aims to abstract computing ideas and models from the structure and functioning of 

living cells, as well as from the interactions of living cells in tissues or higher order biological 

structures. These computing ideas and models from the biology have been turned out to be useful 

for the purpose of computing. Since Gheorghe Paun introduced it, the area of membrane computing 

has developed rapidly, and it also has turned out that membrane computing has significant potential 

to be applied to various hard problems, such as PSPACE-complete problem [21], 0-1 knapsack 

problem [22], Tripartite matching problem [23], Hamilton path problem [24], and Maximum clique 

problem [25]. In recent years, the nature-inspired algorithms based on membrane computing have 

been used to solve complex problems. Nishida [26, 27] firstly developed a membrane algorithm 

with nested membrane structure to solve the traveling salesman problem. After Nishida, Leporati 

[28] also used the nested membrane evolutionary algorithm to optimize the minimum storage 

problem. Huang et al. [29] proposed a membrane algorithm based on the conventional genetic 

algorithm to solve multi-objective numerical optimization problems. Zhang et al. [30] proposed a 

membrane algorithm combining one-level membrane structure with binary-observation 

quantum-inspired evolutionary algorithm to solve the knapsack problem. In [31], a quantum 

membrane evolutionary based on the real-observation was proposed to solve the numerical 

optimization problems. In [32], Liu et al. proposed a hybrid membrane algorithm combining P 

systems with active membranes and real-observation quantum-inspired evolutionary algorithm to 

solve the time-frequency atom decomposition. In the paper, a dynamic membrane evolutionary 

algorithm based on DE/PSO is proposed to deal with DNA sequences design problem. 

2. The DNA sequence Design 

In DNA computing, good DNA sequences should have good chemical properties, and can 

avoid non-cross hybridized with others. The goal of the DNA sequence design optimization is to 

select a set of DNA sequences with equal-length n, and each sequence can satisfy certain 

combinatorial and thermodynamic constraints. In published papers, there are various kinds of 

criteria to constraint the set of sequences, such as Continuity, Similarity, H_measure, and so on. In 

the paper, the objective functions and constraints from [19] are used, where the objective functions 

H_measure and Similarity are chosen to estimate the uniqueness of each DNA sequence; Hairpin 

and Continuity are used to avoid the secondary structure of DNA sequence; GC content and melting 

temperature are used to maintain uniform chemical characteristics. Furthermore, in the paper, we 

also will introduce the minimum free energy to constrain the thermodynamic stability of DNA 

sequence. 
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2.1 Objective Functions 

(1) Continuity 

Continuity calculates the number of same bases in a single-stranded DNA. If there are same 

bases occurring continuously in a sequence, it will weaken the strands stability. The formulations 

are defined as follows [8]: 
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where (1 )ix i m2 2  denotes the DNA sequences with length n, m is the cardinality of a set of 

DNA sequences; j
ix  is the j-th base in DNA sequence ix , and t is the target. If i j , ( , )T i j  is 

i, otherwise is 0.  

(2) Hairpin Structure  

Hairpin structure calculates the probability of a single-stranded DNA to form a secondary 

structure. Hairpin evaluation function is shown as follows [8]: 
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where r is the minimum length to form hairpin ring, pinlen denotes the minimum length of the stem. 

A hairpin structure is formed at position c for the sequence ix . ( , )iHairpin x c  is 1, when 

reverse-complement distance of two sequence which sequence ix  is folded around the c-th base is 

more than pinlen/2, otherwise is 0. 

(3) Similarity 

To keep each sequence as unique as possible, Similarity is used to measures the similarity of 

two given sequences in the same direction. The evaluation function ( )SimilarityF �  of the similarity 

measure is defined by Eq. (4). 
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where “ ( )g� ” denotes g  gabs, ( )k
jx�  denotes the k  position right shift for DNA sequence jx , 

(*, *)S  is the number of corresponding places where two characters are the same. For more 

information, please refer to [8]. 

(4) H-measure 

H-measure calculates how many nucleotides are complementary to prevent 

cross-hybridization of two sequences including position shift. The evaluation function is defined as 

follows. 
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where R
jx  is the reverse sequences of sequence ix , ( )k R

jx�  is the number of corresponding 

places where two nucleotides are the same. 

(5) Melting Temperatures 

Melting temperature is the temperature at which half of a double stranded DNA starts to break 

into its single stranded form. In the paper, the nearest neighbor mode [37] is used to calculate 

melting temperature, and the evaluation function ( )TmF �  is defined as follows. 
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where ( )iH x#8  is the enthalpy of the generated sequence ix , ( )iS x#8  is the entropy of the 

generated sequence ix , ( )tar iTm x  is the target melting temperature, R  is the gas constant; TC  
is salt concentration. 

2.2 Constraints 

(1) GC  Content  

The GC content is the percentage of G  base and C  base in a DNA sequence. It is an 

important criterion for keeping the uniform chemical properties of DNA sequences. The 

formulation of GC is shown in Eq. (7). 
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where #C , #G  are the amount of C  and G  in sequences, respectively, and ix  is the 

amount of bases for DNA sequence ix . 

(2) Minimum Free Energy 

It is known that the secondary structure is more stable for DNA sequence with small free 

energy. The minimum free energy is the minimum value among free energies of all possible 

secondary structures of a sequence. In the paper, we will use the nearest-neighbor model [37] to 

calculate the minimum free energy. The formulation of GC  is shown as follows. 

( ) ( ) ( / ) ( / ) ( )o o o o o
i j

j
G x n G j G init w term G C G init w term A T G sym
 � � � � ��� � � � �    (8) 

where ( )oG j�  is the standard free energy changes for the 10 possible Watson-Crick 

nearest-neighbor. jn  is the number occurrences of each nearest neighbor j , and ( )oG sym�  is 

0.43 kcal/mol if the duplex is self-complementary, otherwise, it is zero. 

2.3 Fitness Function 

DNA sequences design optimization is a multi-objective optimization problem with 

constraints. In the paper, we formulate the objective function as a minimum problem, and use the 

weight-sum approach to deal with each objective function.  The fitness function can be described 

as follows. 
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where 9 :, , , ,i Similarity H measure Continuity Tm Hairpin* � ; maxGC , minGC  are the 

maximum and minimum value of GC  content, respectively; max
oG�  is the given maximum free 

energy; iw  is the weight of for each objective. For simplicity, we set each weight to be one. 

3. A Dynamic Membrane Evolutionary Algorithm for DNA Sequences Design 

P systems with active membranes are a very hot research topic in membrane computing, and 

the corresponding membrane algorithms have been used widely to solve various optimization 

problems [32, 33]. In the paper, the structure of the dynamic membrane algorithm with the fusion 

and division rules is shown in Figure 1. 
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Figure 1. The structure of dynamic membrane algorithm 

 

In this structure, the elementary membranes 1, 2, , m�  are embedded in the skin membrane 

0, and contain a multiset of objects and a set of evolutionary rules and communication rules. In the 

computing process, all elementary membranes may be merged into one membrane. Moreover, the 

merging membrane also may be divided into the elementary membranes 1, 2, , m� . For more 

details about P systems with active membranes, please refer to [32]. 

The procedure of improved membrane evolutionary algorithm is described as follows. 

Step 1: Specify one level membrane structure 0 1 1 2 2 0[ [ ] , [ ] , , [ ] ]m m�  with m  regions 

contained in the skin membrane denoted by 0 is constructed, and is shown in Figure 1. Randomly 

generate sN  initial string object in each elementary membrane. 

Step 2: In region from 1 to m , the particle swarm optimization (PSO) based on Gaussian 

distribution will be implemented simultaneously. The flow chart of the particle swarm optimization 

is shown in Figure 2. 

In PSO, proper parameters of the acceleration constants 1C  and 2C  are crucial to enhance 

the search ability of PSO during the optimization process. However, since the different 

optimization problem has different values for the acceleration constants, it is not an easy task to 

select the optimal values. In the paper, Gaussian probability distribution [38] is introduced to 

generate the accelerating coefficients of PSO. The equation of basic PSO is modified as follows. 

,

1
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i j

k k k k k
i j i j j i jv Randn pbest x randn gbest x� 
 ; � � ; �                (10) 

, ,
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k k k
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where ( )Randn  and ( )randn  are positive random numbers generated by using ( (0,1))abs N ; 

,
k
i jpbest  represents the best location in the search space ever visited by particle i , and k

jgbest  is 
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the best location discovered so far; 
,i j

kv  and ,
k
i jx  are the velocity and the current position of the 

-thj  dimension in the -thi  particle at the -thk  iteration. 

 

Calculate the fitness value

Update gbest and Pbest

Stopping
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End
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Start

Initialize positions
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Figure 2. The flow chart of the particle swarm optimization 

 

Step 3: Implement the merging operation, all elementary membranes are merged into one 

elementary membrane onem , and the strings of all elementary membranes enter the membrane 

onem . 

Step 4: In membrane onem , the adaptive differential evolution (ADE) will be used to update 

the strings object. The pseudocode of standard DE is shown as follows.  

 

In standard DE, F  and CR  are constant, but the performance of DE is sensitive to the 

choice of control parameter F . There are several attempts to dynamically adjust the parameter F  
in [34, 35], and have achieve good results. In the paper, we will introduce the self-adaptive method 

to control the parameters CR  and F  [36] and the equations are modified as follows. 

1 2 3( ) ( ) (0,1) ( ( ) ( ))i i i iCR t CR t N CR t CR t
 � ; �                              (12) 

4 5 6( ) ( ) (0,0.5) ( ( ) ( ))i i i iF t F t N F t F t
 � ; �                                  (13) 
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where 1 2 3, , {1, 2, , }i i i N* �  are random and mutually different integers; the parameters F  and 

CR  are generated for each variable from a normal distribution. Each individual i  has its own 

CR  and F . The parameters CR  and F  are firstly initialized for each individual in the 

population from the uniform distribution (0,1)U  and the normal distribution (0.5, 0.15)N , 

respectively. 

 

 
where n  is the number of objective parameters and N  is the population size, ,i jx  is the -thj  

decision variable of the -thi  individual in the population; ( )rand  stands for the uniform random 

number in [0, 1], and randj  is a randomly chosen index; 0F   is the scale factor, and [0,1]CR*  

is the probability of reproduction. 

In the paper, if the variable value ,i jx4  violates the boundary constraint, the violated variable 

value is reflected back from the violated boundary using the following rule [39]. 
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Step 5: Calculate the fitness of each string object by fitness function. 
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Step 6: Implement the communication rules, a copy of the best strings selected in the 

membrane onem  is sent to the skin membrane, and the current best strings are saved in the skin 

membrane. 

Step 7: The algorithm checks if the stopping conditions are achieved. If the stopping condition 

is met, then output results; otherwise go to Step 8. 

Step 8: The membrane onem  is divided into the same structure with the m  elementary 

membranes, and the currently best strings and -1sN  strings with the worst fitness will be sent to 

each elementary membrane in turn by the send-in communication rules, then go back to Step 2. 

In the paper, the stopping condition is the maximum number of iterations. The algorithm will 

stop if the maximum number of iterations is reached, and output the results. 

4. Simulation Results 

4.1 Algorithm Parameters 

The dynamic membrane evolutionary algorithm based on ADE/PSO for solving DNA 

sequence design is executed with Matlab 7.0. The parameters of the algorithm used in our example 

are shown in Table 1. For hairpins, we assumed that hairpin formation requires at least six 

base-pairings and a six base loop. 

Table 1. Parameters used in our algorithm 

Parameters Initial Value Meaning 

maxiter  1000 The maximum number of iterations 

m  20 The number of the elementary 
membrane 

sN  8 The string size in region from 1 to m  

TC  0.1 The salt concentration 
t  2 The threshold value of continuity 

max
oG�  -25 The given maximum free energy 

R  1.987 The gas constant 

4.2 Results and Analyses 

In this subsection, the results of the proposed algorithm are compared with existing 

approaches, taken from conventional evolutionary algorithm (CEA) [8], quantum chaotic swarm 

evolutionary algorithm (QCSEA) [15], and conventional membrane evolutionary algorithm 
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(CMEA) [19]. For each comparison, 10 runs have been performed by DMEA algorithm and the 

best performance is calculated by the fitness function. 

First, the DMEA is compared with results given in [8], which were obtained by using the 

conventional evolutionary algorithm (CEA) with multiple-point crossover, single-point mutation, 

and roulette wheel selection. In [8], the population size was 1000, maximum generation was 1000, 

crossover rate was 0.9, and mutation rate was 0.05. Results of the two algorithms are compared in 

Table 2 and Figure 3. Where the white columns denote the averages calculated from our sequences, 

and the grey columns denote the averages calculated from CEA. 

Table 2. Comparison results of the sequences in CEA algorithm and our sequences 

DNA Sequences (5’ �3’) Continuity Hairpin H-measure Similarity Tm 
GC 

(%) 

Our Sequences 

TGAGTTGGAACTTGGCGGAA 0 0 70 52 55.4044 50 

CAGCATGTTAGCCAGTACGA 0 0 60 55 53.5214 50 

TTGAGTCCGCGTGGTTGGTC 0 0 63 53 58.8391 60 

AATTGACACTCTGATTCCGC 0 0 68 58 51.9350 45 

CATACATTGCATCAACGGCG 0 0 67 53 54.3063 50 

ATACACGCACCTAGCCACAC 0 0 59 50 55.9207 55 

GTTCCACAACAGGTCTAATG 0 3 61 53 49.7760 45 

CEA Sequences 

AGGCGAGTATGGGGTATATC 16 0 66 48 47.6070 50 

ATCGTACTCATGGTCCCTAC 9 0 64 54 47.8464 50 

CCTGTCAACATTGACGCTCA 0 3 66 57 50.6204 50 

CGCTCCATCCTTGATCGTTT 9 0 62 58 50.4628 50 

CTTCGCTGCTGATAACCTCA 0 3 68 54 49.8103 50 

GAGTTAGATGTCACGTCACG 0 3 67 51 48.3995 50 

TTATGATTCCACTGGCGCTC 0 0 61 58 50.1205 50 

-997-



 

 

 

Figure 3. Average objective values comparison between CEA and DMEA 

 

From Figure 3, the sequences generated by our algorithm outperform the sequences designed 

by CEA algorithm. Our sequences show much lower average values in Continuity, Hairpin, 

H-measure and Similarity. This implies that the sequences made by DMEA have better 

performance to avoid the secondary structure and reduce the probability to hybridize with the 

non-complementary sequences. 

Then, we compared DMEA with [15]. In [15], a hybrid quantum chaotic swarm evolutionary 

algorithm (QCSEA) was used to design good sequences. The set of seven DNA sequences whose 

length is 20-mer and corresponding fitness values are listed in Table 3. The comparison results are 

shown in Figure 4. 
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Table 3. Comparison results of the sequences in QCSEA algorithm and our sequences 

DNA Sequences (5’ �3’) Continuity Hairpin H-measure Similarity Tm 
GC 

(%) 

Our Sequences 

TATACTCTGATATGGTCGTG 0 0 63 52 46.7627 40 

AGTGTCAAGTCACGGTGCGT 0 0 65 56 57.7731 55 

ACTTCAGGACTCCACGCCTT 0 0 65 56 56.5048 55 

CGCGCCGTCATCCTAATGAC 0 0 68 57 57.4978 60 

TCCTTCTGGTCCAGGTACAT 0 0 59 57 52.7424 50 

GTCCTATCCAACCAACTGCG 0 0 60 55 54.4618 55 

GCACTCAAGTTGTAAGCTAG 0 0 66 53 49.9098 45 

QCSEA Sequences 

AACAATGAATGGGCAGGAGT 9 3 54 56 52.9306 45 

CAGGACTAAACAATTCCAAA 18 3 53 60 46.9346 35 

CACATTACGCCAAGGATACC 0 0 54 53 52.2051 50 

GACCGCAAGACAGAAGAGAA 0 0 48 61 53.3654 50 

ACCGACGTCCGTAACTGACC 0 0 59 54 57.7230 60 

ACATGAGATCAACCTGCGCA 0 0 54 56 55.6584 50 

TAAGAGAATGCCAGAATAAG 0 0 50 60 45.5851 35 

 
Figure 4. Average objective values comparison between QCSEA and DMEA 
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From Figure 4, it is found that the sequences designed from QCSEA algorithm achieved a 

lower H-measure fitness level. However, the proposed DMEA performs better than the QCSEA 

according to the average of fitness values of Continuity, Similarity, and Hairpin. In addition, the 

range of melting temperatures (from 46.7627 to 57.7731) is better than QCSEA algorithm (from 

45.5851 to 57.7230), which has more advantage in the thermodynamic characteristics. 

Finally, we compared our algorithm with [19]. In [19], a conventional membrane evolutionary 

algorithm (CMEA) was proposed to solve the DNA sequences optimization problem. The 

generated sequences and their evaluated values of two algorithms are listed in Table 4, and the 

corresponding performance comparison of DMEA algorithm with CMEA method is also shown in 

Figure 5. 

Table 4. Comparison results of the sequences in CMEA algorithm and our sequences 

DNA Sequences (5’ �3’) Continuity Hairpin H-measure Similarity Tm 

GC 

(%) 

Our Sequences 

ACACCTCCTTCCTTCTAACC 0 0 46 58 51.7253 50 

ACTTCTTCCTGAAGTCTGCC 0 0 57 55 52.7729 50 

TAACTGGCTATAGTACCGCG 0 0 61 48 52.3525 50 

TCGAATGAGCCAACGGAATT 0 0 65 49 53.4295 45 

ACTCTCCTTCTCGTCTCTCC 0 0 40 60 53.2088 55 

TCCTGTTCTTATCTCTCGCC 0 0 45 58 52.1097 50 

CATTGGTCATGTTCCTCACC 0 0 56 56 52.1764 50 

CMEA Sequences 

TCTCTACGCCCACGCCCCAT 25 0 50 56 57.4337 65 

TTGTGGAGTCCTGAGGTTAG 0 0 68 48 48.1325 60 

GGTGTCGGGTGCACTAGGAG 9 0 65 46 54.2526 65 

ACTCCAAGTACTCACCGCCT 0 0 62 58 52.3851 55 

TACCAACGCAAATCAAAGAC 18 0 60 49 46.7491 40 

TTTCTGTCCCTGATCAACTT 18 0 57 52 46.0839 40 

ATGTCTCCGCCTTCTTCTCG 0 0 58 57 51.6151 45 
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Figure 5. Average objective values comparison between CMEA and DMEA 

 

From Figure 5, our sequences show much lower values in terms of Continuity and H-measure, 

except for Similarity. Our algorithm has the same performance for Hairpin. Moreover, the range of 

melting temperatures (from 51.7253 to 53.4295) is smaller than CMEA (from 46.0839 to 57.4337). 

This implies the sequences made by DMEA have much better thermodynamic characteristics. 

5. Conclusion 

The DNA encoding is a key problem, and its quantity and quality directly affect the computing 

efficiency and solution extractions. In this paper, the dynamic membrane evolutionary algorithm 

was proposed to design good DNA sequences for reliable DNA computing. The algorithm used 

particle swarm optimization to update the string object for each elementary membrane, and 

implemented differential evolution based on self-adaptive method to improve the global search 

ability. The results of simulation experiments show that the proposed algorithm is valid and 

outperforms other evolutionary algorithms. However, we have some further works to do. The 

improved membrane algorithm will be used to solve other optimization hard problems. 
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