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Abstract

In this paper, we give a simple approach to order the first Zagreb indices of connected graphs

and the second Zagreb coindices of trees and unicyclic graphs, respectively. As an application of

our new method, we determine the first eight smallest and the first three largest (respectively,

first eight smallest and first three largest, first seven smallest and first two largest) values of

the first Zagreb coindices in the class of trees (respectively, unicyclic graphs, bicyclic graphs)

on n vertices, and we also determine the first eleven (respectively, thirteen) smallest values of

the second Zagreb coindices in the class of trees (respectively, unicyclic graphs) on n vertices.

Furthermore, we also identify the smallest value of the first Zagreb coindices in the class of

chemical trees on n ≥ 8 vertices, partially giving an answer to a question of Ashrafi, Došlić and

Hamzeh.

1 Introduction

Throughout this paper, we only consider undirected simple graphs. Suppose G has n

vertices and m edges. If m = n+ c− 1, then G is called a c-cyclic graph. Specially, when

m is equal to n− 1, n and n+ 1, then G is called a tree, a unicyclic graph and a bicyclic
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graph, respectively. We use the notations Tn (respectively, Un and Bn) to denote the class

of trees (respectively, unicyclic and bicyclic graphs) on n vertices.

Let d(u) be the degree of u. Specially, Δ = Δ(G) denotes the maximum degree of

vertices of G. The sequence π = (d1, d2, . . . , dn) is called the degree sequence of G if

di = d(v) holds for some v ∈ V (G). In the sequel, we enumerate the degrees in non-

increasing order, i.e., d1 ≥ d2 ≥ · · · ≥ dn. Let π(G) be the degree sequence of G, and let

Γ(π) define the class of connected simple graphs with degree sequence π.

The first Zagreb index M1(G) and the second Zagreb index M2(G) are two famous

important topological indices, where M1(G) and M2(G) are defined as [11]:

M1(G) =
∑

v∈V (G)

d(v)2, M2(G) =
∑

uv∈E(G)

d(u)d(v). (1)

Recent research showed that they have been closely correlated with many chemical and

mathematical properties [3, 4, 9, 10, 16, 19,20].

Recently, Došlić [5] defined two new graphical invariants M1(G) and M2(G), where

M1 = M1(G) =
∑

uv �∈E(G)

(d(u) + d(v)), M2 = M2(G) =
∑

uv �∈E(G)

d(u)d(v). (2)

One can easily discover that

M1(G) =
∑

uv∈E(G)

(d(u) + d(v)).

Thus, Ashrafi et al. [1, 2] called M1 and M2 the first Zagreb coindex and second Zagreb

coindex of G, respectively. These two new topological indices received much attention

quickly [1, 2, 7, 17, 18].

In this paper, we give a simple approach to order the first Zagreb coindices of connected

graphs (respectively, trees and unicyclic graphs). As an application of this new ordering

method, we determine the first eight smallest and the first three largest (respectively, first

eight smallest and first three largest, first seven smallest and first two largest) values of the

first Zagreb coindices in the class of trees (respectively, unicyclic graphs, bicyclic graphs)

on n vertices, and we also determine the first eleven (respectively, thirteen) smallest values

of the second Zagreb coindices in the class of trees (respectively, unicyclic graphs) on n

vertices. Furthermore, we also identify the smallest value of the first Zagreb coindices in

the class of chemical trees on n ≥ 8 vertices, partially giving an answer to a question of

Ashrafi, Došlić and Hamzeh.
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2 The main results

Suppose π = (d1, d2, . . . , dn) and π′ = (d′1, d
′
2, . . . , d

′
n) are two different non-increasing

graphic degree sequences, we write π � π′ if and only if π �= π′,
∑n

i=1 di =
∑n

i=1 d
′
i,

and
∑j

i=1 di ≤ ∑j
i=1 d

′
i for all j = 1, 2, . . . , n. Such an ordering is sometimes called

majorization (see [8, 13]).

Recently, the following majorization theorems of the Zagreb indices were proved.

Lemma 2.1. [12] Let π = (d1, d2, . . . , dn) with G ∈ Γ(π) and let π′ = (d′1, d
′
2, . . . , d

′
n)

with G′ ∈ Γ(π′). If π � π′, then M1(G) < M1(G
′).

Lemma 2.2. [13, 15] Let π = (d1, d2, . . . , dn) and π′ = (d′1, d
′
2, . . . , d

′
n) be two degree

sequences of trees (respectively, unicyclic graphs). Suppose G and G′ have the largest

second Zagreb indices in Γ(π) and Γ(π′), respectively. If π � π′, then M2(G) < M2(G
′).

For the relation between M1 and M1 (respectively, M2 and M2), it is well-known that

Lemma 2.3. [1] Let G be a connected graph with n vertices and m edges. Then,

(1) M1(G) = 2m(n− 1)−M1(G), (2) M2(G) = 2m2 −M2(G)− 1

2
M1(G).

Remark 2.4. By (1) of Lemma 2.3, if G and G′ are two graphs of Γ(π), then M1(G) =

M1(G′). By (2) of Lemma 2.3, G has the largest second Zagreb index in Γ(π) if and only

if G has the smallest second Zagreb coindex in Γ(π).

Theorem 2.5. Let π = (d1, d2, . . . , dn) with G ∈ Γ(π) and let π′ = (d′1, d
′
2, . . . , d

′
n) with

G′ ∈ Γ(π′). If π � π′, then M1(G) > M1(G′).

Proof. Since G ∈ Γ(π) and G′ ∈ Γ(π′), G and G′ contains exactly m edges and n vertices,

respectively. So, the result clearly follows from Lemmas 2.1 and 2.3 (1). �

With the similar reason, by Lemmas 2.1–2.2 and 2.3 (2), and Remark 2.4 we have

Theorem 2.6. Let π = (d1, d2, . . . , dn) and π′ = (d′1, d
′
2, . . . , d

′
n) be two degree sequences

of trees (respectively, unicyclic graphs). Suppose G and G′ have the smallest second Zagreb

coindices in Γ(π) and Γ(π′), respectively. If π � π′, then M2(G) > M2(G′).

In [2], Ashrafi et al. determined the largest and smallest values of M1(G) and M2(G)

in the class of trees on n vertices. In the following, as an application of the majorization

theorems of the Zagreb coindices, we shall determine the first eight smallest and first three
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largest (respectively, first eleven smallest) values of the first (respectively, second) Zagreb

coindices in the class of trees on n vertices.

T2 T3 T4 T5

T6
T7

T8

T10 T11
T12

Figure 1: The trees T2, T3, . . . , T13.

Let T1 be the star and T2, T3, . . . , T13 be the trees on n vertices as shown in Fig. 1.

Theorem 2.7. (1) Suppose T ∈ Tn \ {T1, T2, . . . , T13} and n ≥ 13. Then, M1(T1) <

M1(T2) < M1(T3) < M1(T4) = M1(T5) < M1(T6) < M1(T7) = M1(T8) = M1(T9) <

M1(T10) = M1(T11) = M1(T12) < M1(T13) < M1(T );

(2) Suppose T ∈ Tn \ {T1, T2, . . . , T8, T10, T11, T13} and n ≥ 22. Then, M2(T1) <

M2(T2) < M2(T3) < M2(T4) < M2(T5) < M2(T6) < M2(T7) < M2(T11) < M2(T8) <

M2(T10) < M2(T13) < M2(T ).

Proof. Obviously, T1 is the unique tree with Δ = n − 1, T2 is the unique tree with

Δ = n − 2, T3, T4, T5 are all the trees with Δ = n − 3, T6, . . . , T12 are all the trees

with Δ = n − 4. Recall that T ∈ Tn \ {T1, T2, . . . , T13}. So, Δ(T ) ≤ n − 5. Since

π(T13) = (n−5, 5, 1, . . . , 1) and Γ(π(T13)) = {T13}, we have π(T ) � π(T13). By Theorems

2.5–2.6, it follows that M1(T13) < M1(T ) and M2(T13) < M2(T ).

By an elementary computation, we have M1(T5) = n2 + n − 12, M1(T6) = n2 +

3n − 28, M1(T12) = n2 + 3n − 22, M1(T13) = n2 + 5n − 46, M2(T4) =
1
2
(n2 + 5n− 24),

M2(T5) = 1
2
(n2 + 7n− 34), M2(T6) = 1

2
(n2 + 9n− 58), M2(T7) = 1

2
(n2 + 9n− 46),

M2(T8) =
1
2
(n2 + 11n− 60), M2(T9) =

1
2
(n2 + 13n− 70), M2(T10) =

1
2
(n2 + 11n− 52),

M2(T11) =
1
2
(n2 + 9n− 40), M2(T12) =

1
2
(n2 + 13n− 64), M2(T13) =

1
2
(n2 + 13n− 94).

Note that π(T5) = π(T4) � π(T3) � π(T2) � π(T1). By the above values and Theorem

2.6, (2) follows when n ≥ 22. Now, we turn to prove (1). It is easily checked that

π(T12) = π(T11) = π(T10) � π(T9) = π(T8) = π(T7) � π(T6) and π(T5) = π(T4) �
π(T3) � π(T2) � π(T1). So, (1) follows from Theorem 2.5 and Lemma 2.3 (1). �
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Theorem 2.8. In the class of trees on n vertices, the path has the largest first Zagreb

coindex, the trees with degree sequence (3, 2, 2, . . . , 2, 1, 1, 1) have the second largest first

Zagreb coindex, and the trees with degree sequence (3, 3, 2, . . . , 2, 1, 1, 1, 1) have the third

largest first Zagreb coindex.

Proof. Suppose T ∈ T(n). Let π1 = (2, 2, 2, . . . , 2, 1, 1), π2 = (3, 2, 2, . . . , 2, 1, 1, 1)

and π3 = (3, 3, 2, . . . , 2, 1, 1, 1, 1). Suppose π(T ) �∈ {π1, π2, π3}. Then, π1 � π2 � π3 �
π(T ). By Theorem 2.5, the result follows. �

Ashrafi et al. [2] also determined the smallest and largest values of M1(G) in the class

of unicyclic graphs and bicyclic graphs on n vertices. In the following, we shall identify the

first eight smallest and the first three largest (respectively, the first seven smallest and the

first two largest) values of the first Zagreb coindices in the class of unicyclic (respectively,

bicyclic) graphs on n vertices, and we also determine the first thirteen smallest values of

the second Zagreb coindices in the class of unicyclic graphs on n vertices.

U1 UU2 U3

U5
U6

U7 U

U9

U10 U11

U13 U14

U15 U16

Figure 2: The unicyclic graphs U1, U2, . . . , U17.

Let U1, . . . , U17 be the unicyclic graphs on n vertices as shown in Fig. 2.

Theorem 2.9. (1) If n ≥ 12 and U ∈ U(n) \ {U1, . . . , U17}, then M1(U1) < M1(U2) <

M1(U3) = M1(U4) < M1(U5) < M1(U6) < M1(U7) = M1(U8) = M1(U9) =

M1(U10) = M1(U11) = M1(U12) < M1(U13) = M1(U14) = M1(U15) = M1(U16) <

M1(U17) < M1(U);
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(2) If n ≥ 23 and U ∈ U(n) \ {U1, . . . , U7, U9, U12, U13, U14, U16, U17}, then M2(U1) <

M2(U2) < M2(U3) < M2(U4) < M2(U5) < M2(U6) < M2(U11) < M2(U9) <

M2(U14) < M2(U12) < M2(U7) < M2(U13) = M2(U16) < M2(U17) < M2(U).

Proof. Clearly, U1 is the unique unicyclic graph with Δ = n − 1, U2, U3, U4 are all the

unicyclic graphs with Δ = n − 2, and U5, U6, . . . , U16 are all the unicyclic graphs with

Δ(G) = n−3. If U ∈ U(n)\{U1, . . . , U17}, then Δ(G) ≤ n−4. Since Γ(π(U17)) = {U17},
we have π(U) � π(U17). By Theorems 2.5–2.6, M1(U17) < M1(U) and M2(U17) < M2(U).

By an elementary computation, we have M1(U4) = n2 + n − 12, M1(U5) = n2 +

3n − 26, M1(U16) = n2 + 3n − 20, M1(U17) = n2 + 5n − 42, M2(U3) =
1
2
(n2 + 5n − 20),

M2(U4) = 1
2
(n2 + 7n − 28), M2(U5) = 1

2
(n2 + 9n − 52), M2(U6) = 1

2
(n2 + 9n − 48),

M2(U7) = 1
2
(n2 + 11n − 48), M2(U8) = 1

2
(n2 + 13n − 58), M2(U9) = 1

2
(n2 + 9n − 36),

M2(U10) =
1
2
(n2 + 13n − 60), M2(U11) =

1
2
(n2 + 9n − 38), M2(U12) =

1
2
(n2 + 11n − 50),

M2(U13) =
1
2
(n2 + 11n − 40), M2(U14) =

1
2
(n2 + 9n − 30), M2(U15) =

1
2
(n2 + 13n − 50),

M2(U16) =
1
2
(n2 + 11n− 40), M2(U17) =

1
2
(n2 + 13n− 84).

Note that π(U4) = π(U3) � π(U2) � π(U1). By the above values and Theorem 2.6, (2)

follows when n ≥ 23. Now, we turn to prove (1). It is easy to see that π(U16) = π(U15) =

π(U14) = π(U13) � π(U12) = π(U11) = π(U10) = π(U9) = π(U8) = π(U7) � π(U6) � π(U5)

and π(U4) = π(U3) � π(U2) � π(U1). Therefore, (1) follows from Theorem 2.5 and

Lemma 2.3 (1). �

With the similar reason as Theorem 2.8, it follows that

Theorem 2.10. In the class of unicyclic graphs on n vertices, the cycle has the largest

first Zagreb coindex, the unicyclic graphs with degree sequence (3, 2, 2, . . . , 2, 1) have

the second largest first Zagreb coindex, and the unicyclic graphs with degree sequence

(3, 3, 2, . . . , 2, 1, 1) have the third largest first Zagreb coindex.

Theorem 2.11. Suppose n ≥ 11 and B ∈ B(n)\{B1, . . . , B12}, where B1, . . . , B12 are the

bicyclic graphs on n vertices as shown in Fig. 3. Then, M1(B1) < M1(B2) < M1(B3) <

M1(B4) = M1(B5) < M1(B6) = M1(B7) = M1(B8) = M1(B9) < M1(B10) = M1(B11) <

M1(B12) < M1(B).

Proof. It is easy to check that B1, B2 are all the bicyclic graphs with Δ = n − 1,

B3, . . . , B11 are all the bicyclic graphs with Δ = n− 2. Since B ∈ B(n) \ {B1, . . . , B12},
Δ(G) ≤ n− 3. Note that π(B12) = (n− 3, 5, 2, 2, 1, ..., 1) and Γ(π(B12)) = {B12}. Then,
π(B) � π(B12), which implies that M1(B12) < M1(B) by Theorem 2.5.
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It is easily checked that π(B11) = π(B10) � π(B9) = π(B8) = π(B7) = π(B6) �
π(B5) = π(B4) � π(B3) and π(B2) � π(B1). Furthermore, by an elementary compu-

tation, we have M1(B2) = n2 + n − 14 < n2 + 3n − 26 = M1(B3), and M1(B11) =

n2 + 3n− 20 < n2 + 5n− 40 = M1(B12). Thus, by Theorem 2.5 and Lemma 2.3 (1), the

result follows. �

B1 B2
B3 B4

B5 B6 B7 B8

B9
B10

B11 B12

Figure 3: The bicyclic graphs B1, B2, . . . , B12.

Theorem 2.12. In the class of bicyclic graphs on n vertices, the bicyclic graphs with

degree sequence (3, 3, 2, 2, . . . , 2) have the largest first Zagreb coindex, and the bicyclic

graphs with degree sequence (3, 3, 3, 2, . . . , 2, 1) or (4, 2, 2, . . . , 2) have the second largest

first Zagreb coindex.

Proof. Suppose B ∈ B(n). Let π1 = (3, 3, 2, 2, . . . , 2), π2 = (3, 3, 3, 2, . . . , 2, 1), and

π3 = (4, 2, 2, . . . , 2). Since B ∈ B(n), Δ(B) ≥ 3. If Δ(B) = 3, π1 � π2 � π(B). If

Δ(B) ≥ 4, π1 � π3 � π(B).

Suppose Gi ∈ Γ(πi), where i = 1, 2, 3. SinceM1(G2) = 4n+12 = M1(G3), by Theorem

2.5 and Lemma 2.3 (1), we have M1(G1) > M1(G2) = M1(G3) > M1(B). �

For integers n, c, k with c ≥ 0 and 0 ≤ k ≤ n − 2c − 1, let Gn(c, k) be the class of

connected c-cyclic graphs with n vertices and k pendant vertices.

Theorem 2.13. In the class of Gn(c, k), where c ≥ 0 and 1 ≤ k ≤ n− 2c− 1, the graphs

with degree sequence (2c+k, 2, 2, . . . , 2︸ ︷︷ ︸
n−k−1

, 1, 1, . . . , 1︸ ︷︷ ︸
k

) have the largest first Zagreb coindices.

Proof. Let π1 = (2c + k, 2, 2, . . . , 2︸ ︷︷ ︸
n−k−1

, 1, 1, . . . , 1︸ ︷︷ ︸
k

). Suppose G ∈ Gn(c, k) with π(G) =

(d1, d2, . . . , dn). If π(G) �= π1, then dn−k+1 = dn−k+2 = · · · = dn = 1 and d2 ≥ d3 ≥ · · · ≥
dn−k ≥ 2. Thus, π(G) � π1.
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Now, the result follows from Theorem 2.5 and Lemma 2.3 (1). �

3 Concluding remarks

In this note, we prove that the majorization theorem also holds for the first Zagreb

coindices of connected graphs and the second Zagreb coindices of trees and unicyclic

graphs, namely, Theorems 2.5–2.6. The proofs are based on the corresponding majoriza-

tion theorems of the first Zagreb index and the second Zagreb index, i.e., Lemmas 2.1–2.2.

Actually, if the majorization theorem also holds for the second Zagreb index of the other

c-cyclic graphs, then it also holds to the second Zagreb coindex.

As shown in [6, 12, 14] and also illustrated in the former section, the majorization

theorem is a good tool to deal with the ordering of (signless Laplacian) spectral radii

and/or the topological indices. But the majorization theorem cannot hold to all the

topological indices [13]. Thus, it is a good question to find out which topological index

also obey the majorization theorem (The known results show that such topological index

are always closely related with the degree sequence of the graph).

In the end of this paper, we shall apply Theorem 2.5 to determine the smallest value

of the first Zagreb coindices over chemical trees on n vertices, which partially answers an

open problem asked in [2].

Theorem 3.1. In the class of chemical trees on n ≥ 8 vertices, the trees with degree

sequence π0 have the smallest first Zagreb coindices, where π0 is defined as follows:

(1) If n ≡ 0 (mod 3), then π0 = (4, . . . , 4, 2, 1, . . . , 1), where the cardinality of 1 in π0

is 2n
3
,

(2) If n ≡ 1 (mod 3), then π0 = (4, . . . , 4, 3, 1, . . . , 1), where the cardinality of 1 in π0

is 2n+1
3

,

(3) If n ≡ 2 (mod 3), then π0 = (4, . . . , 4, 1, . . . , 1), where the cardinality of 1 in π0 is

2n+2
3

.

Proof. Let π1 = (4, . . . , 4, 1, . . . , 1), π2 = (4, . . . , 4, 3, 1, . . . , 1) and π3 = (4, . . . , 4, 2,

1, . . . , 1). Suppose T is a chemical tree on n vertices. Here we only prove the case of n ≡ 0

(mod 3), since the other cases can be shown by using the similar argument.
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Suppose that n ≡ 0 (mod 3). If π(T ) = π1, we assume that the cardinality of 4 in

π(T ) is x. Then, 4x+n− x = 2(n− 1), which contradicts n ≡ 0 (mod 3). So, π(T ) �= π1.

Similarly, π(T ) �= π2. If π(T ) �= π3, since Δ(T ) ≤ 4, we have π(T ) � π3.

Now, the result follows from Theorem 2.5 and Lemma 2.3 (1). �

Remark 3.2. In [2], Ashrafi et al. also asked the smallest value of the second Zagreb

coindices over chemical trees on n vertices. By Theorem 2.6 and the proof of Theorem

3.1, we can conclude that the smallest value of the second Zagreb coindices among Γ(π0),

where π0 is denoted as in Theorem 3.1, is also the smallest value of the second Zagreb

coindices over chemical trees on n ≥ 8 vertices.
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[5] T. Došlić, Vertex–weighted Wiener polynomials for composite graphs, Ars Math.

Contemp. 1 (2008) 66–80.

[6] M. Eliasi, A simple approach to order the multiplicative Zagreb indices of con-

nected graphs, Trans. Comb. 4 (2012) 17–24.

[7] H. Hua, S. Zhang, Relations between Zagreb coindices and some distance-based

topological indices, MATCH Commun. Math. Comput. Chem. 68 (2012) 199–208.

-947-



[8] Y. Huang, B. Liu, Y. Liu, The signless Laplacian spectral radius of bicyclic graphs

with prescribed degree sequences, Discr. Math. 311 (2011) 504–511.

[9] I. Gutman, K. C. Das, The first Zagreb Index 30 years after, MATCH Commun.

Math. Comput. Chem. 50 (2004) 83–92.
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