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Abstract. In this comments, an error in K. Xu and H. Hua’s article [1] is pointed out.
Because of this error, the proof of the Lemma 2.4(2) presented in this article is wrong.
In the second part of this comments, the author proposes a correction to this proof.

1 Error in the proof of Lemma 2.4(2)

From the first line and the last in the proof of Lemma 2.4(2) in Page 247, manely

Δ1 ≥ (x+ k + l)x+k+l − (x+ k)x+k − (y + l)y+l,

Δ2 ≥ (y + k + l)y+k+l − (x+ k)x+k − (y + l)y+l.

is incorrect. So the following of the proof is also wrong.

2 Correction to the proof of Lemma 2.4(2)

Lemma 2.1. If p ≥ 1, x ≥ 1 and f(x) = (x+p)x+p

xx , f(x) is increasing.

Proof. Note that ln f(x) = (x+p) ln(x+p)−x ln x, then df(x)
dx

= f(x)[ln(x+p)− ln x] > 0.

The result follows immediately.

For convenience, let

NG0(u) = {z1, z2, · · · , zy},
E(u) = {uz1, uz2, · · · , uzy},
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NG0(v) = {w1, w2, · · · , wx},
E(v) = {vw1, vw2, · · · , vwx}.

Then we have

Π2(G
′) =

∏
ef∈E(G′)−E(u)−E(v)−{vu1,··· ,vuk,vv1,··· ,vvl}

dG0(e)dG0(f)
∏

z∈NG0
(u)

dG0(z)

∏
w∈NG0

(v)

dG0(w) · yy(x+ k + l)x+k+l ,

Π2(G
′′
) =

∏
ef∈E(G′)−E(u)−E(v)−{vu1,··· ,vuk,vv1,··· ,vvl}

dG0(e)dG0(f)
∏

z∈NG0
(u)

dG0(z)

∏
w∈NG0

(v)

dG0(w) · xx(y + k + l)y+k+l ,

Π2(G) =
∏

ef∈E(G′)−E(u)−E(v)−{vu1,··· ,vuk,vv1,··· ,vvl}
dG0(e)dG0(f)

∏
z∈NG0

(u)

dG0(z)

∏
w∈NG0

(v)

dG0(w) · (y + k)y+k(x+ l)x+l

Hence

Δ1 = Π2(G
′)− Π2(G) ≥ yy(x+ k + l)x+k+l − (y + k)y+k(x+ l)x+l ,

Δ2 = Π2(G
′′
)− Π2(G) ≥ xx(y + k + l)y+k+l − (y + k)y+k(x+ l)x+l.

Now we prove the Lemma 2.4(2) as following.

(1)If x ≥ y, then x+ l > y. By Lemma 2.1, we have

Δ1 = Π2(G
′)− Π2(G) ≥ yy(x+ k + l)x+k+l − (y + k)y+k(x+ l)x+l

= yy(x+ l)x+l

[
(x+ l + k)x+l+k

(x+ l)x+l
− (y + k)y+k

yy

]
> 0.

(2)If y ≥ x, then y + k > x. Also by Lemma 2.1, we have

Δ2 = Π2(G
′′
)− Π2(G) ≥ xx(y + k + l)y+k+l − (y + k)y+k(x+ l)x+l

= xx(y + k)y+k

[
(y + k + l)y+k+l

(y + k)y+k
− (x+ l)x+l

xx

]
> 0.

So the proof of Lemma 2.4(2) holds.
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