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Abstract

Let G be a connected graph of order n with Laplacian eigenvalues μ1 ≥ μ2 ≥ · · · ≥
μn−1 > μn = 0 . The Laplacian energy of the graph G is defined as

LE = LE(G) =
n∑

i=1

∣∣∣μi −
2m

n

∣∣∣ .

Upper bounds for LE are obtained, in terms of n and the number of edges m.
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1 Introduction

Let G = (V,E) be a simple connected graph with vertex set V (G) = {v1, v2, . . . , vn}
and edge set E(G), |E(G)| = m. Let di be the degree of the vertex vi for i =

1, 2, . . . , n. The minimum vertex degree is denoted by δ. Let A(G) be the (0, 1)-

adjacency matrix of G and D(G) be the diagonal matrix of vertex degrees. The

Laplacian matrix of G is L(G) = D(G)−A(G). This matrix has nonnegative eigen-

values n ≥ μ1 ≥ μ2 ≥ · · · ≥ μn = 0. Denote by Spec(G) = {μ1, μ2, . . . , μn} the

spectrum of L(G), i.e., the Laplacian spectrum of G. When more than one graph is

under consideration, then we write μi(G) instead of μi .

As well known [7],
n∑

i=1

μi = 2m . (1)

The Laplacian energy of the graph G is defined as [5]

LE = LE(G) =
n∑

i=1

∣∣∣∣μi −
2m

n

∣∣∣∣ . (2)

For its basic properties, including various upper and lower bounds, see [1, 8, 9, 11, 13,

15,16].

As usual, Kn, Pn, and K1, n−1 , denote, respectively, the complete graph, the path,

and the star on n vertices.

2 Bounds on Laplacian energy

In this section, we give two upper bounds on LE for graphs in terms of n and m. In

order to obtain this result, we need to recall some previously known results.

Lemma 2.1. [3] Let G be a graph of order n, different from Kn , and let δ be its

smallest vertex degree. Then

μn−1 ≤ δ . (3)

In [6], Haemers et al. presented the following result for tree of order n:

k∑
i=1

μi ≤ n+ 2k − 2 (1 ≤ k ≤ n) .
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In [4], Fritscher et al. improved the above result for tree of order n in the following:

k∑
i=1

μi ≤ n+ 2k − 2− 2k − 2

n
(1 ≤ k ≤ n) . (4)

Moreover, equality is achieved only when k = 1 and T ∼= K1, n−1 .

The following result was obtained by one of the present authors [12].

Lemma 2.2. [12] Let G be a connected graph of order n with m edges. Then for

1 ≤ k ≤ n− 2,

k∑
i=1

μi ≤
1

n− 1

[
2mk +

√
mk(n− k − 1)(n2 − n− 2m)

]
.

If k = 1, then equality holds if and only if either G ∼= K1,n−1 or G ∼= K1 . If

2 ≤ k ≤ n− 2, then equality holds if and only if G ∼= Kn .

Remark 2.3. Combining inequality (4) and Lemma 2.2 from the recent paper [2] by

Du and one of the present authors, we get

k∑
i=1

μi ≤ 2m− n+ 2k − 2k − 2

n

which is another upper bound different from the one used in Lemma 2.2.

We are now ready to state an upper bound on LE.

Theorem 2.4. Let G (� Kn) be a connected graph of order n with m edges. Then

LE(G) <
2m

n
+

√
m (n2 − n− 2m) +

(
2m

n

)2

. (5)

Proof: Since G � Kn , therefore n ≥ 3. We have to prove that the inequality (5) is

strict.

By Lemma 2.1, μn−1 ≤ δ because G � Kn . This implies

2m

n
≥ δ ≥ μn−1 .

Suppose that k (≤ n− 2) is an integer such that

μk ≥
2m

n
and μk+1 <

2m

n
.
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Then by the definition of Laplacian energy, Eq. (2),

LE(G) =
n∑

i=1

∣∣∣μi −
2m

n

∣∣∣ =
k∑

i=1

(
μi −

2m

n

)
+

n∑
i=k+1

(2m
n
− μi

)

=
k∑

i=1

μi −
n∑

i=k+1

μi +
2m

n
(n− 2k) = 2

k∑
i=1

μi −
4mk

n
(6)

because by Eq. (1),
n−1∑

i=k+1

μi = 2m−
k∑

i=1

μi .

Then by Lemma 2.2,

LE(G) ≤ 4mk + 2
√
mk (n− k − 1)(n2 − n− 2m)

n− 1
− 4mk

n

=
4mk + 2n

√
mk (n− k − 1)(n2 − n− 2m)

n(n− 1)
. (7)

Consider now the function

f(x) = 4mx+ 2n
√
mx(n− x− 1)(n2 − n− 2m) , 1 ≤ x ≤ n− 2 .

Then we have

f ′(x) = 4m+
(n− 2x− 1)n

√
m(n2 − n− 2m)√

nx− x2 − x
.

Thus f(x) is an increasing function on

1 ≤ x ≤ n− 1

2
+

(n− 1)
√
m√

n2(n2 − n− 2m) + 4m

and decreasing function on

n− 1

2
+

(n− 1)
√
m√

n2(n2 − n− 2m) + 4m
≤ x ≤ n− 2 .

Consequently, f(x) has maximum value at

x =
n− 1

2
+

(n− 1)
√
m√

n2(n2 − n− 2m) + 4m
.

Hence

f(x) ≤ 2m(n− 1) + (n− 1)

√
m
[
n2(n2 − n− 2m) + 4m

]
.
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Bearing this in mind, from (7) we arrive at (5).

Suppose now that equality holds in (5). Then all the above inequalities must be

equalities. Thus,

k =
n− 1

2
+

(n− 1)
√
m√

n2(n2 − n− 2m) + 4m
≥ 2

as n ≥ 3 and k is an integer. Since G � Kn , Lemma 2.2 would imply k = 1, a

contradiction as k ≥ 2. This completes the proof. �

Remark 2.5. In [14], it was shown that under the conditions of Theorem 2.4,

LE(G) < 4m− 4m

n

Comparing this bound with (5), we find that the new upper bound is better than the

previous one if and only if

m > (n2 − n)

(
18− 48

n
+

32

n2

)−1

.

For obtaining our second bound on LE, we need additional earlier known lemma.

Lemma 2.6. [10] Let B be a p× p symmetric matrix and let Bk be its leading k× k

submatrix. Then, for i = 1, 2, . . . , k,

λp−i+1(B) ≤ λk−i+1(Bk) ≤ λk−i+1(B) (8)

where λi(B) is the i-th greatest eigenvalue of B.

We now give another upper bound on Laplacian energy LE(G) of graph G in

terms on n, m and number of pendent vertices p.

Theorem 2.7. Let G be a connected graph of order n with m edges and number of

pendent vertices p (p ≥ n+1
2
) . Then

LE(G) ≤ 4m(n− p) + 2n
√
m(n− p) (p− 1)(n2 − n− 2m)

n(n− 1)
(9)

with equality if and only if G ∼= K1, n−1 .
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Proof: Since G contains p pendent vertices (say v1, v2, . . . , vp), then by (8),

μn−p+1(G) ≤ μ1(Bp)

where Bp is the p × p submatrix of L(G) consisting of the entries (1, 1), (1, 2),

(1, 3), . . . , (1, p), (2, 1), (2, 2), (2, 3), . . . , (2, p), . . ., (p, 1), (p, 2), (p, 3), . . . , (p, p).

Thus,

μn−p+1(G) ≤ μ1(Bp) = μ1(Ip) = 1 <
2m

n
as G is connected and hence m ≥ n− 1,

where Ip is the p× p unit matrix. From this we conclude that there exists an integer

k (k ≤ n− p), such that

μk ≥
2m

n
and μk+1 <

2m

n
.

From (7), we get

LE(G) ≤ 4mk + 2n
√
mk (n− k − 1)(n2 − n− 2m)

n(n− 1)
.

Since

f(x) = 4mx+ 2n
√
mx(n− x− 1)(n2 − n− 2m)

is an increasing function on

1 ≤ x ≤ n− 1

2
+

(n− 1)
√
m√

n2(n2 − n− 2m) + 4m

from the above, we get

LE(G) ≤ 4m(n− p) + 2n
√
m(n− p) (p− 1)(n2 − n− 2m)

n(n− 1)

as k ≤ n− p ≤ n−1
2

. By this, the first part of the proof is done.

Now suppose that equality holds in (9). Then all inequalities in the above argu-

ment must be equalities. Since p ≥ n+1
2

(n ≥ 3) , we have G � Kn . Lemma 2.2

would imply k = 1. Thus we have k = n− p = 1, by Lemma 2.2. Therefore p = n− 1

and hence G ∼= K1, n−1 .

Conversely, one can see easily that the equality holds in (9) for the star K1, n−1 .

�
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