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Abstract

A lower bound for the energy of a graph is determined, in terms of number of vertices,

edges and determinant of the adjacency matrix. It holds for nonsingular graphs, and under

certain conditions improves the classical McClelland’s lower bound.

1 Introduction

In this article we use the same notation as in the preceding paper [3]. In particular, by

n and m we denote the numbers of vertices and edges, respectively, of the underlying

graph G. The adjacencymatrix of G isA, and its eigenvalues are λ1 ≥ λ2 ≥ · · · ≥ λn .

As well known,

detA =
n∏

i=1

λi .

A graph G is said to be singular if at least one of its eigenvalues is equal to zero.

For singular graphs, evidently, detA = 0. A graph is nonsingular if all its eigenvalues

are different from zero. Then, | detA| > 0.
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The energy of the graph G is defined as

E = E(G) =
n∑

i=1

|λi| . (1)

This spectrum–based graph invariant has been much studied in both chemical and

mathematical literature. For details and an exhaustive list of references see the mono-

graph [14]. What nowadays is referred to as graph energy, defined via Eq. (1), is

closely related to the total π-electron energy calculated within the Hückel molecular

orbital approximation; for details see in [8, 12]

Among the pioneering results of the theory of graph energy are the lower and

upper bounds for E, discovered by McClelland in 1971 [15]. The famous McClelland

upper bound
√
2mn has been much studied in the chemical literature [4–7,9–11,13].

McClelland’s lower bound for energy [15] depends on the parameters n, m, and

detA, and reads:

E(G) ≥
√
2m+ n(n− 1)| detA|2/n . (2)

It holds for all graphs. In particular, it holds for both singular and nonsingular graphs.

For bipartite graphs, it has been improved as [4]

E(G) ≥
√
4m+ n(n− 2)| detA|2/n .

Caporossi et. al [1] discovered the following simple lower bound:

E(G) ≥ 2
√
m (3)

with equality holding if and only if G consists of a complete bipartite graph Ka, b such

that a · b = m and arbitrarily many isolated vertices.

In the subsequent section, we deduce a new lower bound for graph energy. It

depends on the same parameters as McClelland’s bound (2), namely on n, m, and

detA. It, however, is restricted to nonsingular graphs. Under certain conditions it is

better than McClelland’s.

2 A lower bound on energy of nonsingular graphs

Theorem 1. Let G be a connected nonsingular graph of order n with m edges. Then

E(G) ≥ 2m

n
+ n− 1 + ln | detA| − ln

2m

n
. (4)

Equality holds in (4) if and only if G is isomorphic to the complete graph Kn .
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Proof. Since G is nonsingular, it is |λi| > 0 , i = 1, 2, . . . , n. Consider a function

f(x) = x− 1− ln x

for x > 0. It is elementary to prove that f(x) is increasing for x ≥ 1 and decreasing

for 0 < x ≤ 1 . Consequently, f(x) ≥ f(1) = 0, implying that x ≥ 1 + ln x for x > 0,

with equality holding if and only if x = 1. Using the above result, we get

E(G) = λ1 +
n∑

i=2

|λi|

≥ λ1 + n− 1 +
n∑

i=2

ln |λi| (5)

= λ1 + n− 1 + ln
n∏

i=2

|λi|

= λ1 + n− 1 + ln | detA| − ln λ1 . (6)

At this point, one has to recall that [2], λ1 ≥ 2m/n.

Since

g(x) = x+ n− 1 + ln | detA| − ln x

is an increasing function on 1 ≤ x ≤ n, we conclude that

g(x) ≥ g

(
2m

n

)
=

2m

n
+ n− 1 + ln | detA| − ln

2m

n

for x ≥ 2m/n . Combining the above result with (6), we arrive at (4). The first part

of the proof is done.

Suppose now that the equality holds in (4). Then all the inequalities in the above

considerations must be equalities. From the equality (5), we get

|λ2| = |λ3| = · · · = |λn| = 1 . (7)

Since G is assumed to be connected, condition (7) is obeyed if and only if G ∼= Kn

[2].

In the general case, the lower bound (4) is not better than McClelland’s (2). In

Fig. 1 is depicted a class of graphs for which by numerical checking we established

that (4) is superior to (2). The graph in Fig. 1 has n vertices and 4n−2 edges, where
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n is even but not a multiple of 6. (If n is multiple of 6, then detA = 0 and inequality

(4) is not applicable.) The maximal vertex degree is 4 and thus, formally speaking,

the graphs depicted in Fig. 1 belongs to the class of molecular graphs.

Fig. 1. A class of chemical graph for which the lower bound (4) is better than
McClelland’s lower bound (2).

Let Γ1 be the class of connected graphs of order n, for which the following condi-

tions are satisfied:

16 ≤ n

2
≤ 2m

n
≤ | detA| ≤ n− 1 . (8)

For instance, Kn, Kn, n−1 ∈ Γ1.

Theorem 2. Inequality (4) is better than (2) for any graph in Γ1.

Proof. From (8) it follows

ln | detA| − ln
2m

n
= ln

( | detA|
2m
n

)
≥ 0 .

Moreover, for n ≥ 32,

(n− 1)2/n ≤ 5

4
.

From (4) we now get

2m

n
+ n− 1 + ln | detA| − ln

2m

n
≥ 2m

n
+ n− 1 .

In order to show that under the conditions (8), (4) is better than (2), we need to

demonstrate that

2m+n(n−1)| detA|2/n ≤ 2m+n(n−1) (n−1)2/n ≤ 2m+n(n−1) 5
4
≤
(
2m

n
+ n− 1

)2
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that is,

2m+ n(n− 1)
5

4
≤
(
2m

n
− 1

)2

+ n2 + 4m− 2n

that is, (
2m

n
− 1

)2

+ 2m ≥ n2 + 3n

4

that is, (
2m

n
− 1

)2

+ 2m ≥ 3n2 − 4n+ 4

4
≥ n2 + 3n

4

which, because of 2m/n ≥ n/2 is always obeyed.

Let Γ2 be the class of connected graphs of order n for which the following condition

is satisfied:

| detA| ≥ 2m

n
. (9)

For instance, Kn, Kn, n−1 ∈ Γ2.

Theorem 3. Inequality (4) is better than (3) for any graph in Γ2.

Proof. From (9) it follows

2m

n
+ n− 1 + ln | detA| − ln

2m

n
≥ 2m

n
+ n− 1

≥
√(

2m

n
− 1

)2

+ n2 + 4m− 2n ≥ 2
√
m .
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