Upper Bounds for the Energy of Graphs

Kinkar Ch. Das, Seyed A. Mojallal
Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea e-mail: kinkardas2003@googlemail.com
e-mail: ahmad_mojalal@yahoo.com

(Received June 2, 2013)

Abstract

The energy of a graph G, denoted by $E(G)$, is defined as the sum of the absolute values of all eigenvalues of G. In this paper we present some new upper bounds for $E(G)$ in terms of number of vertices, number of edges, clique number, minimum degree, and the first Zagreb index.

1 Introduction

Let $G=(V, E)$ be a simple connected graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G),|E(G)|=m$. Let d_{i} be the degree of the vertex v_{i} for $i=1,2, \ldots, n$. The maximum and minimum vertex degrees are denoted by Δ and δ, respectively. Let N_{i} be the neighbor set of the vertex $v_{i} \in V$. Denote by ω the clique number of the graph G. If the vertices v_{i} and v_{j} are adjacent, we denote this by $v_{i} v_{j} \in E(G)$. The adjacency matrix $A(G)$ of G is defined by its entries as $a_{i j}=1$ if $v_{i} v_{j} \in E(G)$ and 0 otherwise. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n-1} \geq \lambda_{n}$ denote the eigenvalues of $A(G)$. λ_{1} is called the spectral radius of the graph G. When more than one graphs are under consideration, then we write $\lambda_{i}(G)$ instead of λ_{i}.

Some well known results on graph eigenvalues are the following:

$$
\sum_{i=1}^{n} \lambda_{i}=0 \quad, \quad \sum_{i=1}^{n} \lambda_{i}{ }^{2}=2 m
$$

For more details see the monograph [1].
The energy of the graph G is defined as

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| .
$$

For more details on the theory of graph energy see the monograph [3].
The paper is organized as follows. In Section 2, we give a list of some previously known results. In Section 3, we obtain two new upper bounds on energy $E(G)$ of the graph G.

2 Preliminaries

We list here some previously known results that will be needed in the subsequent sections.
Lemma 2.1. [6] Let B be a $p \times p$ symmetric matrix and let B_{k} be its leading $k \times k$ submatrix; that is, B_{k} is matrix obtained from B by deleting its last $p-k$ rows and columns. Then for $i=1,2, \ldots, k$

$$
\rho_{p-i+1}(B) \leq \rho_{k-i+1}\left(B_{k}\right) \leq \rho_{k-i+1}(B)
$$

where $\rho_{i}(B)$ is the i-th largest eigenvalue of B.
Lemma 2.2. [5] Let $\mathbf{F}=\left\{X=\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}$. Then

$$
1-\frac{1}{\omega(G)}=\max _{X \in \mathbf{F}}\langle X, A X\rangle
$$

Lemma 2.3. (Schur's lemma [5]) For each rectangular array $\left\{c_{j k}: 1 \leq j \leq m, 1 \leq k \leq\right.$ $n\}$ and each pair of sequences $\left\{x_{j}: 1 \leq j \leq m\right\}$ and $\left\{y_{k}: 1 \leq k \leq n\right\}$,

$$
\left|\sum_{j=1}^{m} \sum_{k=1}^{n} c_{j k} x_{j} y_{k}\right| \leq \sqrt{R C}\left(\sum_{j=1}^{m}\left|x_{j}\right|^{2}\right)^{1 / 2}\left(\sum_{k=1}^{n}\left|y_{k}\right|^{2}\right)^{1 / 2}
$$

where R and C are the row sum and column sum maxima defined by

$$
R=\max _{j} \sum_{k=1}^{n}\left|c_{j k}\right| \quad \text { and } \quad C=\max _{k} \sum_{j=1}^{m}\left|c_{j k}\right| .
$$

3 Upper bound on energy of graphs

In this section we give two upper bounds on energy. First we mention three earlier known such bounds. McClelland's famous bound is [4] $E \leq \sqrt{2 m n}$. It was improved by Koolen and Moulton [2]:

$$
\begin{equation*}
E(G) \leq \frac{2 m}{n}+\sqrt{(n-1)\left[2 m-\left(\frac{2 m}{n}\right)^{2}\right]} \tag{1}
\end{equation*}
$$

Zhou [7] obtained an upper bound

$$
\begin{equation*}
E(G) \leq \sqrt{\frac{M_{1}}{n}}+\sqrt{(n-1)\left(2 m-\frac{M_{1}}{n}\right)} \tag{2}
\end{equation*}
$$

where M_{1} stands for the first Zagreb index.
We are now ready to give an upper bound on energy in terms of n, m, δ, and ω.
Theorem 3.1. Let G be a graph of order n, with m edges, with minimum degree δ, and clique number ω. Then

$$
\begin{equation*}
E(G) \leq \sqrt{2 m(n-\delta)+4 \sqrt{m^{3}(1-1 / \omega)}} \tag{3}
\end{equation*}
$$

Proof: First we have to prove that

$$
\begin{equation*}
\sum_{v_{j} v_{k} \notin E(G)}\left|\lambda_{j} \lambda_{k}\right| \leq(n-1-\delta) m \tag{4}
\end{equation*}
$$

Putting $c_{j k}=a_{j k}\left(G^{c}\right), x_{j}=\left|\lambda_{j}\right|$ and $y_{k}=\left|\lambda_{k}\right|$, in Lemma 2.3, we get

$$
\sum_{j=1}^{n} \sum_{k=1}^{n} a_{j k}\left(G^{c}\right)\left|\lambda_{j}\right|\left|\lambda_{k}\right| \leq \Delta\left(G^{c}\right) \sqrt{2 m} \sqrt{2 m} \quad \text { as } \sum_{j=1}^{n} \lambda_{j}^{2}=2 m
$$

that is,

$$
2 \sum_{v_{j} v_{k} \notin E(G)}\left|\lambda_{j}\right|\left|\lambda_{k}\right| \leq(n-1-\delta) 2 m
$$

which gives the result in (4).
Next we have to prove that

$$
\begin{equation*}
\sum_{v_{j} v_{k} \in E(G)}\left|\lambda_{j} \lambda_{k}\right| \leq \sqrt{4 m^{3}(1-1 / \omega)} \tag{5}
\end{equation*}
$$

Putting $X=\frac{1}{2 m}\left(\lambda_{1}^{2}, \ldots, \lambda_{n}^{2}\right)$ in Lemma 2.2, we have

$$
1-1 / \omega \geq \frac{1}{4 m^{2}} \sum_{v_{j} v_{k} \in E(G)} \lambda_{j}^{2} \lambda_{k}^{2}
$$

By the Cauchy-Schwarz inequality and using the above result, we get

$$
\frac{1}{m}\left(\sum_{v_{j} v_{k} \in E(G)}\left|\lambda_{j} \lambda_{k}\right|\right)^{2} \leq \sum_{v_{j} v_{k} \in E(G)}\left(\lambda_{j} \lambda_{k}\right)^{2} \leq 4 m^{2}(1-1 / \omega)
$$

that is,

$$
\left(\sum_{v_{j} v_{k} \in E(G)}\left|\lambda_{j} \lambda_{k}\right|\right)^{2} \leq 4 m^{3}(1-1 / \omega)
$$

which gives the result in (5).
Now,

$$
\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|\right)^{2}=\sum_{i=1}^{n} \lambda_{i}^{2}+2 \sum_{1 \leq j<k \leq n}\left|\lambda_{j} \lambda_{k}\right|,
$$

that is,

$$
\begin{aligned}
E^{2} & =2 m+2 \sum_{v_{j} v_{k} \in E(G)}\left|\lambda_{j} \lambda_{k}\right|+2 \sum_{v_{j} v_{k} \notin E(G)}\left|\lambda_{j} \lambda_{k}\right| \\
& \leq 2 m+4 \sqrt{m^{3}(1-1 / \omega)}+2 m(n-1-\delta) \text { by (4) and (5). }
\end{aligned}
$$

This completes the proof.

Theorem 3.2. Let G be a connected graph of order $n(n \geq 6)$, with m edges, and with minimum degree δ. Then

$$
\begin{equation*}
E(G) \leq \frac{2(m-\delta)}{n-1}+\sqrt{(n-1)\left[2 m-\frac{4(m-\delta)^{2}}{(n-1)^{2}}\right]} \tag{6}
\end{equation*}
$$

Proof: First we have to prove that

$$
\lambda_{1}(G) \geq \frac{2(m-\delta)}{n-1}
$$

By Lemma 2.1,

$$
\lambda_{1}(G) \geq \lambda_{1}\left(G^{\prime}\right)
$$

where $\lambda_{1}\left(G^{\prime}\right)=\lambda_{1}\left(A_{n-1}\right)$ and A_{n-1} is the leading $(n-1) \times(n-1)$ submatrix of $A(G)$, obtained from $A(G)$ by deleting its last row and column corresponding minimum degree vertex of degree δ. Thus we have

$$
\begin{equation*}
\lambda_{1}(G) \geq \lambda_{1}\left(G^{\prime}\right) \geq \frac{2 m^{\prime}}{n^{\prime}}=\frac{2(m-\delta)}{n-1} \tag{7}
\end{equation*}
$$

where m^{\prime} and n^{\prime} are the number of edges and the number of vertices in G^{\prime}, respectively.
Claim 1. For $n \geq 6$,

$$
\begin{equation*}
\frac{2(m-\delta)}{n-1} \geq \sqrt{\frac{2 m}{n}} \tag{8}
\end{equation*}
$$

Proof of Claim 1: We have to prove that

$$
\frac{(m-\delta)^{2}}{m} \geq \frac{(n-1)^{2}}{2 n}
$$

that is,

$$
m-2 \delta+\frac{\delta^{2}}{m} \geq \frac{n}{2}-1+\frac{1}{2 n}
$$

that is,

$$
\begin{equation*}
2 m-4 \delta \geq n-2+\frac{1}{n}-\frac{2 \delta^{2}}{m} \tag{9}
\end{equation*}
$$

For $\delta=1$, one can easily see that the result in (9) holds as $m \geq n-1$ and $n \geq 6$. Otherwise. $\delta \geq 2$. We now assume that $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$. Thus we have

$$
2 m-4 \delta \geq \sum_{i=1}^{n-4} d_{i} \geq 2(n-4) \geq n-2+\frac{1}{n}-\frac{2 \delta^{2}}{m} \text { as } n \geq 6
$$

By the Cauchy-Schwarz inequality,

$$
E(G) \leq \lambda_{1}+\sqrt{(n-1)\left(2 m-\lambda_{1}^{2}\right)} .
$$

One can see easily that

$$
f(x)=x+\sqrt{(n-1)\left(2 m-x^{2}\right)}
$$

is a decreasing function on $\left(\sqrt{\frac{2 m}{n}}, \sqrt{2 m}\right)$. By Claim 1,

$$
\sqrt{\frac{2 m}{n}} \leq \frac{2(m-\delta)}{n-1} \leq \lambda_{1}(G)
$$

From the above, we get

$$
E(G) \leq \frac{2(m-\delta)}{n-1}+\sqrt{(n-1)\left[2 m-\frac{4(m-\delta)^{2}}{(n-1)^{2}}\right]} .
$$

Corollary 3.3. Let G be a connected graph of order $n(n \geq 6)$, with m edges, and with at least a pendent vertex. Then

$$
\begin{equation*}
E(G) \leq \frac{2(m-1)}{n-1}+\sqrt{(n-1)\left[2 m-\frac{4(m-1)^{2}}{(n-1)^{2}}\right]} . \tag{10}
\end{equation*}
$$

Proof: Since G has a pendent vertex, according to Theorem 3.2, we get

$$
\lambda_{1}(G) \geq \frac{2(m-1)}{n-1}
$$

and hence the result (10).

Remark 3.4. Our result (6) is better than (1) for

$$
\frac{2(m-\delta)}{n-1} \geq \frac{2 m}{n}
$$

that is,

$$
m \geq n \delta
$$

Remark 3.5. Our result (6) is better than (2) for

$$
\frac{2(m-\delta)}{n-1} \geq \sqrt{\frac{M_{1}(G)}{n}}
$$

that is, if the condition $4 n(m-\delta)^{2} \geq M_{1}(G)(n-1)^{2}$ is obeyed. In particular, (6) is better than (2) for the complete graph K_{n-1} to which a pendent edge is attached.

Acknowledgement. This work is supported by the Faculty research Fund, Sungkyunkwan University, 2012.

References

[1] D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Application, Academic Press, New York, 1980.
[2] J. H. Koolen, V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26 (2001) 47-52.
[3] X. Li, Y. She, I. Gutman, Graph Energy, Springer, New York, 2012.
[4] B. J. McClelland, Properties of the latent roots of a matrix: The estimation of π-electron energies, J. Chem. Phys. 54 (1971) 640-643.
[5] T. Motzkin, E. G. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canad. J. Math. 17 (1965) 533-540.
[6] J. R. Schott, Matrix Analysis for Statistics, Wiley, New York, 1997.
[7] B. Zhou, Energy of graphs, MATCH Commun. Math. Comput. Chem. 51 (2004) 111-118.

