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Abstract

The energy of a graph G, denoted by E(G), is defined as the sum of the absolute
values of all eigenvalues of G . In this paper we present some new upper bounds for
E(G) in terms of number of vertices, number of edges, clique number, minimum
degree, and the first Zagreb index.

1 Introduction

Let G = (V,E) be a simple connected graph with vertex set V (G) = {v1, v2, . . . , vn} and
edge set E(G), |E(G)| = m. Let di be the degree of the vertex vi for i = 1, 2, . . . , n. The

maximum and minimum vertex degrees are denoted by Δ and δ, respectively. Let Ni

be the neighbor set of the vertex vi ∈ V . Denote by ω the clique number of the graph

G. If the vertices vi and vj are adjacent, we denote this by vivj ∈ E(G). The adjacency

matrix A(G) of G is defined by its entries as aij = 1 if vivj ∈ E(G) and 0 otherwise. Let

λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn denote the eigenvalues of A(G) . λ1 is called the spectral

radius of the graph G . When more than one graphs are under consideration, then we

write λi(G) instead of λi.

Some well known results on graph eigenvalues are the following:

n∑
i=1

λi = 0 ,
n∑

i=1

λi
2 = 2m .
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For more details see the monograph [1].

The energy of the graph G is defined as

E(G) =
n∑

i=1

|λi| .

For more details on the theory of graph energy see the monograph [3].

The paper is organized as follows. In Section 2, we give a list of some previously

known results. In Section 3, we obtain two new upper bounds on energy E(G) of the

graph G.

2 Preliminaries

We list here some previously known results that will be needed in the subsequent sections.

Lemma 2.1. [6] Let B be a p × p symmetric matrix and let Bk be its leading k × k

submatrix; that is, Bk is matrix obtained from B by deleting its last p − k rows and

columns. Then for i = 1, 2, . . . , k

ρp−i+1(B) ≤ ρk−i+1(Bk) ≤ ρk−i+1(B)

where ρi(B) is the i-th largest eigenvalue of B.

Lemma 2.2. [5] Let F =

{
X = (x1, x2, . . . , xn) : xi ≥ 0 ,

n∑
i=1

xi = 1

}
. Then

1− 1

ω(G)
= max

X∈F
〈X, AX〉 .

Lemma 2.3. (Schur’s lemma [5]) For each rectangular array {cjk : 1 ≤ j ≤ m, 1 ≤ k ≤
n} and each pair of sequences {xj : 1 ≤ j ≤ m} and {yk : 1 ≤ k ≤ n},

∣∣∣∣∣
m∑
j=1

n∑
k=1

cjk xjyk

∣∣∣∣∣ ≤
√
RC

( m∑
j=1

|xj|2
)1/2 ( n∑

k=1

|yk|2
)1/2

where R and C are the row sum and column sum maxima defined by

R = max
j

n∑
k=1

|cjk| and C = max
k

m∑
j=1

|cjk| .
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3 Upper bound on energy of graphs

In this section we give two upper bounds on energy . First we mention three earlier

known such bounds. McClelland’s famous bound is [4] E ≤
√
2mn . It was improved by

Koolen and Moulton [2]:

E(G) ≤ 2m

n
+

√√√√(n− 1)

[
2m−

(
2m

n

)2
]
. (1)

Zhou [7] obtained an upper bound

E(G) ≤
√

M1

n
+

√
(n− 1)

(
2m− M1

n

)
(2)

where M1 stands for the first Zagreb index.

We are now ready to give an upper bound on energy in terms of n, m, δ, and ω .

Theorem 3.1. Let G be a graph of order n, with m edges, with minimum degree δ, and

clique number ω. Then

E(G) ≤
√

2m(n− δ) + 4
√
m3(1− 1/ω) . (3)

Proof: First we have to prove that

∑
vjvk /∈E(G)

|λj λk| ≤ (n− 1− δ)m . (4)

Putting cjk = ajk(G
c), xj = |λj| and yk = |λk|, in Lemma 2.3, we get

n∑
j=1

n∑
k=1

ajk(G
c)|λj||λk| ≤ Δ(Gc)

√
2m
√
2m as

n∑
j=1

λ2
j = 2m

that is,

2
∑

vjvk /∈E(G)

|λj||λk| ≤ (n− 1− δ)2m

which gives the result in (4).

Next we have to prove that

∑
vjvk∈E(G)

|λj λk| ≤
√

4m3(1− 1/ω) . (5)

Putting X = 1
2m

(λ2
1, . . . , λ

2
n) in Lemma 2.2, we have

1− 1/ω ≥ 1

4m2

∑
vjvk∈E(G)

λ2
jλ

2
k .
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By the Cauchy–Schwarz inequality and using the above result, we get

1

m

⎛
⎝ ∑

vjvk∈E(G)

|λjλk|

⎞
⎠

2

≤
∑

vjvk∈E(G)

(λjλk)
2 ≤ 4m2(1− 1/ω)

that is, ⎛
⎝ ∑

vjvk∈E(G)

|λjλk|

⎞
⎠

2

≤ 4m3(1− 1/ω)

which gives the result in (5).

Now, (
n∑

i=1

|λi|
)2

=
n∑

i=1

λ2
i + 2

∑
1≤j<k≤n

|λjλk| ,

that is,

E2 = 2m+ 2
∑

vjvk∈E(G)

|λj λk|+ 2
∑

vjvk /∈E(G)

|λj λk|

≤ 2m+ 4
√

m3(1− 1/ω) + 2m(n− 1− δ) by (4) and (5) .

This completes the proof.

Theorem 3.2. Let G be a connected graph of order n (n ≥ 6), with m edges, and with

minimum degree δ. Then

E(G) ≤ 2(m− δ)

n− 1
+

√
(n− 1)

[
2m− 4(m− δ)2

(n− 1)2

]
. (6)

Proof: First we have to prove that

λ1(G) ≥ 2(m− δ)

n− 1
.

By Lemma 2.1,

λ1(G) ≥ λ1(G
′)

where λ1(G
′) = λ1(An−1) and An−1 is the leading (n − 1) × (n − 1) submatrix of A(G),

obtained from A(G) by deleting its last row and column corresponding minimum degree

vertex of degree δ. Thus we have

λ1(G) ≥ λ1(G
′) ≥ 2m′

n′ =
2(m− δ)

n− 1
(7)
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where m′ and n′ are the number of edges and the number of vertices in G′ , respectively.

Claim 1. For n ≥ 6,

2(m− δ)

n− 1
≥
√

2m

n
. (8)

Proof of Claim 1: We have to prove that

(m− δ)2

m
≥ (n− 1)2

2n

that is,

m− 2δ +
δ2

m
≥ n

2
− 1 +

1

2n

that is,

2m− 4δ ≥ n− 2 +
1

n
− 2δ2

m
. (9)

For δ = 1, one can easily see that the result in (9) holds as m ≥ n − 1 and n ≥ 6.

Otherwise. δ ≥ 2. We now assume that d1 ≥ d2 ≥ · · · ≥ dn . Thus we have

2m− 4δ ≥
n−4∑
i=1

di ≥ 2(n− 4) ≥ n− 2 +
1

n
− 2δ2

m
as n ≥ 6.

By the Cauchy–Schwarz inequality,

E(G) ≤ λ1 +
√

(n− 1)(2m− λ2
1) .

One can see easily that

f(x) = x+
√
(n− 1)(2m− x2)

is a decreasing function on
(√

2m
n
,
√
2m
)
. By Claim 1,

√
2m

n
≤ 2(m− δ)

n− 1
≤ λ1(G) .

From the above, we get

E(G) ≤ 2(m− δ)

n− 1
+

√
(n− 1)

[
2m− 4(m− δ)2

(n− 1)2

]
.

Corollary 3.3. Let G be a connected graph of order n (n ≥ 6), with m edges, and with

at least a pendent vertex. Then

E(G) ≤ 2(m− 1)

n− 1
+

√
(n− 1)

[
2m− 4(m− 1)2

(n− 1)2

]
. (10)
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Proof: Since G has a pendent vertex, according to Theorem 3.2, we get

λ1(G) ≥ 2(m− 1)

n− 1

and hence the result (10).

Remark 3.4. Our result (6) is better than (1) for

2(m− δ)

n− 1
≥ 2m

n
,

that is,

m ≥ nδ .

Remark 3.5. Our result (6) is better than (2) for

2(m− δ)

n− 1
≥
√

M1(G)

n

that is, if the condition 4n(m−δ)2 ≥M1(G)(n−1)2 is obeyed. In particular, (6) is better

than (2) for the complete graph Kn−1 to which a pendent edge is attached.
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