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Abstract

The Clar covering polynomial (Zhang-Zhang polynomial) of a hexagonal system
is a counting polynomial of resonant structures called Clar covers, which can be
used to determine the Kekulé count, the first Herndon number and Clar number.
In this paper we prove that the Clar covering polynomial of a hexagonal system
H coincides with the cube polynomial of its resonance graph R(H) by establishing
a bijection between the Clar covers of H and the hypercubes in R(H). Moreover,
some important applications of this relation are presented.

1 Introduction

A hexagonal or benzenoid system is a 2-connected finite plane graph such that every in-

terior face is a regular hexagon of side length one. It can also be formed by a cycle with

its interior in the infinite hexagonal lattice on the plane (graphene). A hexagonal system

with a Kekulé structure (or perfect matching in graph theory) is called Kekuléan and is

viewed as the carbon–skeleton of a benzenoid hydrocarbon. Based on the Kekulé struc-

tures, there are several classical models of benzenoid molecules relating with resonance
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energy (extra stability) such as Clar’s aromatic sextet theory [7] and Randić conjugated

circuit model [24].

In 1996, Zhang and Zhang [36] formally introduced the Clar covering polynomial

(Zhang-Zhang polynomial) of a hexagonal system, which unifies some topological indices

such as the Clar number, the Kekulé count and the first Herndon number. Moreover, it

is closely related to [37] sextet polynomial introduced by Hosoya and Yamaguchi [16].

A generalized hexagonal system H is a subgraph of a hexagonal system and a Clar

cover is a spanning subgraph of H such that every component of it is either a hexagon or

an edge. The set of hexagons in a Clar cover of H is called a sextet pattern or resonant

set and a Clar formula is a maximum sextet pattern of H. Moreover, the Clar number

Cl(H) of H is the size of a Clar formula of H. The Clar covering polynomial of H is

defined as follows:

ζ(H, x) = ζ(H) =

Cl(H)∑
k=0

z(H, k)xk, (1)

where z(H, k) is the number of Clar covers with k hexagons of H.

The dependence of the topological resonance energy on ζ(H, x) for some values of x

was examined in a series of papers due to Gutman et al. [9, 12, 14]. A recent survey [31]

and some articles [3–6,10,11,34] established basic properties of Clar covering polynomial

and some methods to compute it. In particular, Chou et al. [4, 5] recently carried out

an automatic computation program for the Clar covering polynomials of benzenoids and

obtained many fruitful results.

The resonance graph R(H) (also called Z-transformation graph) of a hexagonal system

H was introduced independently by Gründler [8], Zhang et al. [29, 30] and Randić [24,

25]. It originates from Herndon’s resonance theory [15] to reflect an interaction between

Kekulé structure of benzenoid hydrocarbons. The vertex set of R(H) is the set of perfect

matchings of H. Two vertices are adjacent if their symmetric difference forms a hexagon

of H. It is evident that z(H, 0) equals the number of the vertices of R(H) and z(H, 1),

the first Herndon number, equals the number of edges of R(H). The resonance graph was

later extended [38] to bipartite plane graphs and Ref. [33] gives a survey on it recently.

The n-dimensional hypercube Qn (or simply n-cube) is the graph whose vertices are

all binary strings of length n and two vertices are adjacent if their strings differ exactly

in one position. Brešar, Klavžar and Škrekovski [1] introduced a counting polynomial of
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hypercubes of a graph G, called the cube polynomial, as follows:

C(G, x) =
∑
i≥0

αi(G)xi (2)

where αi(G) denotes the number of induced subgraphs of G that is isomorphic to the

i-cube Qi.

An important new role of hypercubes of resonance graph was considered in [22,26,28].

Klavžar et al. [21] proved that the Clar number Cl(H) of H is equal to the largest i such

that Qi is a subgraph of R(H). Zhang and Zhang [36] showed that z(H,Cl(H)) equals

the number of Clar formulas of H; and Salem et al. [27] established a bijection between

the Clar formulas of H and the number of the largest hypercubes in R(H). These two

results together imply that z(H,Cl(H)) is equal to the number of largest hypercubes in

R(H).

More generally, in this paper we show that the Clar covering polynomial of a hexagonal

system H coincides with the cube polynomial of its resonance graph R(H), that is

ζ(H, x) = C(R(H), x)) . (3)

Hence the corresponding coefficients of these two polynomialsmust coincide, i.e. z(H, i) =

αi(R(H)) for each i ≥ 0. The proof is accomplished by establishing a one–to–one corre-

spondence between the Clar covers of H and the hypercubes in R(H). For example, the

Clar covering polynomial of a fibonacene with n hexagons is equal to the cube polynomial

of Fibonacci cube of order n. This correspondence also derives an isomorphism between

the partial orderings on the Clar covers of H and the hypercubes of R(H).

Finally, some further applications of Equation (3) are presented. The derivatives and

properties of real roots of the Clar covering polynomial are determined. Also, we derive

a novel expression of cube polynomial of a median graph in terms of (x+ 1).

2 Equality of two polynomials

The objective of this section is to prove Equation (3) and the following definitions can

simplify our proof.

We first recall two important definitions from set theory and graph theory. The

symmetry difference A ⊕ B of two sets A and B is equal to (A \ B) ∪ (B \ A). Let

G be a graph with a perfect matching M , a cycle of G is M -alternating if its edges belong

alternately to M and not to M . Also, the edge set of G is denoted by E(G).
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Given any Kekuléan hexagonal system H, let Z(H,n) be the set of Clar covers of H

with exactly n hexagons. On the other hand, consider a graph G. The set of induced

subgraphs of G that are isomorphic to n-cube Qn is denoted by Qn(G). Combining

these definitions from those in the previous section, we have z(H,n) = |Z(H,n)| and
αn(G) = |Qn(G)| .

To prove Equation (3), it is sufficient to establish a bijection between Z(H,n) and

Qn(R(H)) for each integer n ≥ 0. To achieve our goal, let

f : Z(H,n) → Qn(R(H)) (4)

be themapping defined as follows: For each Clar cover C ∈ Z(H,n), consider those perfect

matchings M1,M2, . . . ,Mi in H such that each hexagon in C is Mj-alternating and each

isolated edge in C is in Mj for all 1 ≤ j ≤ i. Define f(C) as the induced subgraph of

R(H) with vertices M1,M2, . . . ,Mi.

( )a ( )b

Figure 1. (a) A Clar cover C of pyrene, (b) The four perfect matchings in the
image f(C) which induces a square in the resonance graph.

It is not difficult to show that Mj ⊕ E(C) only consists of perfect matchings of the

hexagons in C. Since each hexagon in C has two perfect matchings, f(C) has exactly 2n

vertices. An example illustrating the definition of f is given in Figure 1; the hexagons

with a circle inside represent the hexagons of C and a double bond represents an isolated

edge of C.

To facilitate the proof that follows, we orientate the plane graph H such that some

edges are vertical. For a perfect matching M of H, an M -alternating hexagon s is called

a proper (resp. improper) sextet if the vertical double edge lies on the right (resp. left)

(see Figure 2).

The following lemma shows that f is a well-defined mapping.
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Lemma 2.1. For each Clar cover C ∈ Z(H,n), we have f(C) ∈ Qn(R(H)).

Proof. It is sufficient to show that f(C) is isomorphic to the n-cube Qn. Let h1, . . . , hn

be the hexagons of C. For any vertex M of f(C) (M is also a perfect matching of H),

let b(M) = b1b2 · · · bn, where bi = 1 or 0 according to whether hi is a proper or improper

M -alternating hexagon for i = 1, . . . , n. It is obvious that b : V (f(C)) → V (Qn) is a

bijection. For M ′ ∈ V (f(C)), let b(M ′) = b′1b
′
2 · · · b′n. If M and M ′ are adjacent in f(C),

which means they adjacent in R(H), then M ⊕M ′ = hi for some 1 ≤ i ≤ n. Therefore,

bj = b′j for each j 	= i and bi 	= b′i, which implies b1b2 · · · bn and b′1b
′
2 · · · b′n are adjacent

in Qn. Conversely, if b1b2 · · · bn and b′1b
′
2 · · · b′n are adjacent in Qn, then it follows that M

and M ′ are adjacent in f(C). Hence b is an isomorphism between f(C) and Qn.

( )a ( )b

s s

Figure 2. (a) A proper sextet s, (b) An improper sextet s.

Lemma 2.2. The mapping f : Z(H,n) → Qn(R(H)) is injective for each nonnegative

integer n.

Proof. Given any distinct Clar covers C and C ′ in Z(H,n). If C and C ′ contain the same

set of hexagons, then the isolated edges of C and C ′ are distinct. Therefore, f(C) and

f(C ′) are disjoint induced subgraphs of R(H) and thus f(C) 	= f(C ′). Suppose C and

C ′ contain different sets of hexagons and let h be a hexagon in C \ C ′. Hence there is

at least one edge e of h not belonging to E(C ′). From the definition of mapping f , e

is thus unsaturated by those perfect matchings that correspond to the vertices in f(C ′).

However, there exist vertices M1 and M2 of f(C) (M1 and M2 are perfect matchings of

H) such that M1 ⊕M2 = E(h) because h is a hexagon in C. Hence e is saturated by one

of M1 and M2, say M1. As a result, M1 /∈ V (f(C ′)) and f(C) 	= f(C ′).

The following lemma is an obvious and known result.

Lemma 2.3. For a perfect matching M of H, the proper (resp. improper) M-alternating

hexagons are pairwise disjoint.
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Lemma 2.4 ( [26]). If the resonance graph R(H) contains a 4-cycle M1M2M3M4M1,

then h := M1⊕M2 and h′ := M1⊕M4 are disjoint hexagons. Also, we have h = M3⊕M4

and h′ = M2 ⊕M3.

Proof. Since M1M2M3M4M1 is a 4-cycle, the hi := Mi ⊕Mi+1, where the subscripts are

module 4, are hexagons of H and hi 	= hi+1 for each i. Moreover, the set h0⊕h1⊕h2⊕h3 =

∅ because symmetric difference is commutative and associative. It is known that any two

distinct hexagons in H are either disjoint or having exactly one edge in common. If

h0 	= h2, then h0 has at most three edges in E(h1) ∪ E(h2) ∪ E(h3) and all other edges

are contained in the above symmetry difference, which leads to a contradiction. Hence

h2 = h0 and using similar arguments, we have h1 = h3 as well as h0 and h1 are disjoint.

We now define the oriented resonance graph �R(H): an edge MM ′ is oriented from

M to M ′ if M ⊕ M ′ is a proper sextet with respect to M and an improper sextet with

respect to M ′. In fact �R(H) is the Hasse diagram of a distributive lattice on the set of

perfect matchings of H [33].

Lemma 2.5 ( [33, 35]). The directed resonance graph �R(H) has no directed cycles.

Lemma 2.6. The mapping f : Z(H,n) → Qn(R(H)) is surjective for each nonnegative

integer n.

Proof. For any graph Gn ∈ Qn(R(H)), which is isomorphic to the n-cube Qn, the cor-

responding oriented subgraph �Gn in �R(H) has no directed cycle by Lemma 2.5. Hence

�Gn contains a vertex M0 (a source) with in-degree 0 and out-degree n, that is, �Gn has n

directed edges from M0 to M1,M2, . . . , and Mn. Let hi = M0 ⊕Mi for i = 1, . . . , n, the

directed edges M0Mi implies that all hi are proper M0-alternating hexagons. Moreover,

Lemma 2.3 guarantees that all hi are pairwise disjoint. Therefore, we can obtain a Clar

cover C in Z(H,n) by regarding the M0-alternating hexagons h1, . . . , hn as components

and all others edges of M0 as isolated edge components. It suffices to prove f(C) = Gn.

Let [n] = {1, . . . , n} and for any I ⊆ [n], let MI := M0 ⊕ (
⋃
i∈I

hi). Then V (f(C)) =

{MI : I ⊆ [n]}. In particular, M0 = M∅ as well as Mi = M{i} for all i, and all of them

belong to both Gn and f(C). On the other hand, since Gn is isomorphic to the n-cube

Qn, every vertex F of Gn can be labeled with binary strings b(F ) = b1b2 · · · bn such that

b(M0) = 00 · · · 0 and for each b(Mi), the i-th coordinate is 1 and the other coordinates
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are all zeros, and F and F ′ are adjacent in Gn if and only if b(F ) and b(F ′) are adjacent

in Qn.

For any F ∈ V (Gn), let IF = {i ∈ [n] : bi = 1}. We will show that F = MIF ∈
V (f(C)) by induction on the distance |IF | between M0 and F in Gn. If |IF | = 0 or 1,

then F ∈ {M0,M1, . . . ,Mn}. Now suppose |IF | ≥ 2, there exist i, j ∈ IF with i 	= j.

Thus, there are vertices F0, F1, F2 of Gn such that IF0 = IF \ {i, j}, IF1 = IF \ {i},
and IF2 = IF \ {j}. By the induction hypothesis, we have Fk = MIFk

for k = 0, 1 and

2. Therefore, F1 ⊕ F0 = MIF1
⊕ MIF0

= hj and F2 ⊕ F0 = MIF2
⊕ MIF0

= hi. Since

F0F1FF2F0 is a 4-cycle of Gn, it follows from Lemma 2.4 that F ⊕F1 = F2⊕F0 = hi. As

a result, F = F1 ⊕ hi = (M0 ⊕ (
⋃

k∈IF1

hk)) ⊕ hi = M0 ⊕ (
⋃
k∈IF

hi) = MIF and this implies

that V (f(C)) = V (Gn) and hence f(C) = Gn.

Combining Lemmas 2.1, 2.2 and 2.6, we have the following corollary immediately.

Corollary 2.7. The mapping f : Z(H,n) → Qn(R(H)) is a bijection for every nonnega-

tive integer n.

Hence, we obtain the main result of this article as follows:

Theorem 2.8. For any Kekuléan hexagonal system H, we have ζ(H, x) = C(R(H), x) .

Corollary 2.7 also implies the following result.

Corollary 2.9 ( [26]). Let H be a Kekuléan hexagonal system. For any non–negative

integer k, there exists a surjective mapping from the set of k-cubes of R(H) to the set of

resonant sets with k hexagons.

3 Maximal hypercubes

We now consider maximal hypercubes in resonance graphs by establishing ordering rela-

tions on the hypercubes and the Clar covers.

For a Kekuléan hexagonal system H, let Q be the set of induced subgraphs of R(H)

that are hypercubes. Thus Q =
⋃
n≥0

Qn(R(H)) . We define an ordering ≤ on Q as follows:

For any graphs Q,Q′ ∈ Q, we have Q ≤ Q′ if Q is a subgraph of Q′. Hence (Q,≤) is a

poset and the maximal hypercubes of R(H) are the maximal elements of the poset (Q,≤).
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Let C denote the set of all Clar covers ofH. Thus C =
⋃
n≥0

Z(H,n). For any Clar covers

C,C ′ ∈ C, we set C ≤ C ′ if f(C) ⊆ f(C ′). The reflexivity and transitivity of this binary

relation are obvious and its antisymmetry follows from the bijection f (Corollary 2.7). As

a result, (C,≤) is also a poset.

Moreover, the bijection f from (C,≤) to (Q,≤) preserves the ordering relations and

we obtain the following result.

Theorem 3.1. The posets (C,≤) and (Q,≤) are isomorphic.

We now give an explicit description for the partial ordering on the Clar covers of H.

Theorem 3.2. For any Clar covers C,C ′ ∈ C, C ≤ C ′ if and only if the hexagons of C

belong to C ′ as well as C and C ′ coincide on the edges apart from those in the hexagons

of C ′.

Proof. If the hexagons of C belong to C ′ as well as C and C ′ coincide on the edges apart

from those in the hexagons of C ′, then the hexagons in C ′ \ C are alternating in C.

Hence V (f(C)) ⊆ V (f(C ′)) and f(C) ⊆ f(C ′) , that is C ≤ C ′. Conversely, suppose

f(C) ⊆ f(C ′) . For any hexagon h in C, there are two perfect matchings M and M ′ of H

in f(C) such that h = M ⊕M ′. Since M and M ′ are in f(C ′), h is also in C ′. Moreover,

it is obvious that C and C ′ coincide on the edges apart from those in the hexagons of

C ′.

C C'

Figure 3. Two Clar covers of coronene: C ≤ C ′.

The theorem shows that a Clar cover C of H is maximal if and only if C has no

alternating hexagons in H. Accordingly, the isomorphism f between (C,≤) and (Q,≤)

implies the following corollary.

Corollary 3.3. There is a one-to-one correspondence between the maximal hypercubes of

R(H) and the Clar covers of H that without alternating hexagons.
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Relations between Clar structures and Clar covers without alternating hexagons have

already been discussed in [39].

4 Some applications

The Clar covering polynomial and cube polynomial were studied independently in the

past. The Clar covering polynomials of many types of hexagonal systems have been

obtained explicitly via various approaches [3–6,10,11,34,36]. Hence, the cube polynomial

of their resonance graphs can be obtained by Theorem 2.8. For example,

ζ(pyrene, x) = C(R(pyrene), x) = x2 + 6x+ 6 = (x+ 1)2 + 4(x+ 1) + 1

and

ζ(coronene, x) = C(R(coronene), x) = 2x3 + 15x2 + 32x+ 20

= 2(x+ 1)3 + 9(x+ 1)2 + 8(x+ 1) + 1

where the resonance graph R(coronene) is illustrated in [35].

In the following subsections we will present some interesting applications of Theo-

rem 2.8.

Although the cube polynomial was defined for any graph, its discussions have been

concentrated on median graphs where hypercubes play an important role. A median of

a triple of vertices u, v and w of a graph is a vertex that lies on a shortest (u, v)-path, a

shortest (u, w)-path and a shortest (v, w)-path simultaneously. A graph is called a median

graph if every triple of its vertices has a unique median. Zhang et al. [35] proved that the

resonance graph of a (weakly) elementary plane bipartite graph is a median graph, which

is done by considering a distributive lattice structure on the set of its perfect matchings.

A median graph, however, is not necessarily a resonance graph.

4.1 Fibonacci cube

A fibonacene is a hexagonal chain in which no hexagons are linearly attached. Klavžar

and Žigert [20] showed that the resonance graph of a fibonacene with n hexagons Zn is

isomorphic to the Fibonacci cube Γn, which is the subgraph of the n-cube Qn induced by

all binary strings of length n that contain no two consecutive 1s. The Fibonacci cubes

were introduced [17] as a model for interconnection networks and Klavžar [18] gave an

extensive survey on it. Also, the chemical graph theory of fibonacenes was studied in [13].
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The Clar covering polynomial of a fibonacene Zn was expressed [32] in terms of binomial

coefficients by matching polynomial of a path with n+1 vertices; the cube polynomial of

Γn was derived from generating functions with double variables [19]. Indeed, they have

the same expression:

ζ(Zn, x) = C(Γn, x) =

�n+1
2

�∑
k=0

(
n− k

k

)
(x+ 1)k . (5)

Besides, the sextet polynomial of Zn is

B(Zn, x) =

�n+1
2

�∑
k=0

(
n− k

k

)
xk .

4.2 Derivatives of Clar covering polynomials

Brešar et al. [1] studied the derivatives of cube polynomials of median graphs, which can

be expressed as the cube polynomial of the disjoint union of some subgraphs with median

property. Motivated by this, we consider the derivative of the Clar covering polynomial

of hexagonal systems directly.

Theorem 4.1. If H is a generalized hexagonal system, then ζ ′(H, x) =
∑
h

ζ(H − h, x) ,

where the summation goes over all hexagons h of H .

Proof. We count the ordered pairs (C, h), where C is a Clar cover of H with k hexagons

and h is a hexagon of C, in two different ways. Since each Clar cover C is counted k

times, we obtain the number kz(H, k) of ordered pairs. On the other hand, when h is

fixed, the number of covers C containing h equals to z(H − h, k − 1). Hence, the total

amount is
∑
h

z(H−h, k−1) . Therefore, kz(H, k) =
∑
h

z(H−h, k−1) for each positive

integer k and the result follows.

The theorem can be applied repeatedly and we obtain the following corollary about

high derivatives of Clar covering polynomials of hexagonal systems.

Corollary 4.2. If H is a hexagonal system, then ζ(s)(H, x) =
∑

Rs
ζ(H −Rs, x) , where

the summation goes over all sextet patterns Rs with s hexagons.
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4.3 Roots of Clar covering polynomials

Gutman et al. [12] found good linear correlations between topological resonance energy

and ln ζ(H, x) for fixed values of x lying in the interval [0, 2]. Gojak et al. [9] further

implemented a model relating resonance energy with
√

ζ(H, x) for suitable values of x .

Hence the real roots of Clar covering polynomial facilitate such researches.

Brešar et al. [2] obtained some important properties of the real roots of cube polyno-

mials of median graphs as follows:

Theorem 4.3 ( [2]). If G is a median graph, then C(G, x) has no roots in [−1,+∞) .

Theorem 4.4 ( [2]). Let G be a median graph. If C(G, r) = 0 for a rational number r,

then r = −t+ 1

t
for some integer t ≥ 1 .

Theorem 4.5 ( [2]). If G is a nontrivial median graph, then C(G, x) has a real root in

the interval [−2,−1) .

Theorem 2.8 together with Theorems 4.3 to 4.5 lead to the following results about the

real roots of Clar covering polynomials immediately.

Corollary 4.6. Let H be a Kekuléan hexagonal system. If a rational number r is a root

of ζ(H, x), then r = −t+ 1

t
for some integer t ≥ 1 .

Corollary 4.7. If H is a Kekuléan hexagonal system, then ζ(H, x) has no roots in

[−1,+∞) but having a real root in the interval [−2,−1) .

4.4 A transformation of cube polynomials

The Clar covering polynomial of a hexagonal system can be expressed in terms of (x+1)

such that all coefficients are nonnegative.

Theorem 4.8 ( [37]). Let H be a Kekuléan hexagonal system. We have

ζ(H, x) =

Cl(H)∑
i=0

z(H, i)xi =

Cl(H)∑
i=0

a(H, i)(x+ 1)i

where a(H, i) denotes the number of perfect matchings of H with exactly i proper sextets.

This result together with Theorem 2.8 allow us to conclude that the cube polynomial

of resonance graph have the same property. So a question naturally arises: does the
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cube polynomial of a general median graph have such an expression? We will give an

affirmative answer in this subsection.

We first introduce a convex expansion of median graphs. A pair of induced subgraphs

{G1, G2} of a graph G is called a cubical cover if G = G1∪G2 and each induced hypercube

of G is contained in at least one of the G1 and G2. Let G∗
i be an isomorphic copy of Gi

for i = 1, 2. For every vertex u of G0 = G1 ∩ G2, let ui be the corresponding vertex in

G∗
i . The expansion G∗ of G with respect to the cubical cover {G1, G2} of G is the graph

obtained from the disjoint union G∗
1 and G∗

2 by adding an edge between the corresponding

vertices u1 and u2 for each vertex u ∈ G0 .

Proposition 4.9 ( [1]). Let G∗ be a graph constructed by the expansion with respect to

the cubical cover {G1, G2} with G0 = G1 ∩G2. Then

C(G∗, x) = C(G1, x) + C(G2, x) + xC(G0, x) .

A subgraph G1 of a graph G2 is convex if for any pair of vertices u and v in G1, all

shortest (u, v)-paths in G2 lie completely in G1. An expansion with respect to {G1, G2}
is called a peripheral convex expansion if G1 is a convex subgraph of G2. The following

result gives a construction of median graphs via a peripheral convex expansion.

Theorem 4.10 ( [23]). Let G be a connected graph. Then G is a median graph if and

only if G can be constructed by a sequence of peripheral convex expansions from the single-

vertex graph.

Theorem 4.11. Let G be a median graph and m be the dimension of the largest hypercube

contained in G. Then C(G, x) =
m∑
i=0

bi(G)(x+1)i , where b0(G) = 1 and bi(G) is a positive

integer for each i with 0 ≤ i ≤ m.

Proof. We proceed by induction on the number of vertices of the median graph G. Ob-

viously, C(K1, x) = 1 and C(K2, x) = 2 + x = 1 + (x + 1) , which satisfy the basic step

of induction. Suppose G is a median graph with |V (G)| > 2 . By Theorem 4.10, G can

be constructed from a median graph G′ by a peripheral convex expansion with respect to

{G0, G
′} . Hence, by Proposition 4.9, we have

C(G, x) = C(G′, x) + (x+ 1)C(G0, x) .

Since G′ and G0 are median graphs that are smaller than G, by induction hypothesis we

have C(G′, x) =
∑
i≥0

bi(G
′)(x + 1)i and C(G0, x) =

∑
i≥0

bi(G0)(x + 1)i, which satisfy the
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conditions of the theorem. Thus C(G, x) =
∑
i≥1

(bi(G
′) + bi−1(G0))(x+ 1)i + b0(G

′). As a

result, b0(G) = b0(G
′) = 1 and bi(G) = bi(G

′) + bi−1(G0), which is a positive integer for

each i ≤ m and hence the induction step completes.

Moreover, we will determine the coefficients bi(G) and reveal their combinatorialmean-

ing.

For a median graph G, Theorem 4.11 implies the following inversion formulas.

Corollary 4.12. Let G be a median graph, we have

(i) αi(G) =
m∑
k=0

bk(G)

(
k

i

)
for i = 0, 1, . . . ,m, and

(ii) bj(G) =
m∑
k=0

(−1)k−j

(
k

j

)
αk(G) for j = 0, 1, . . . ,m .

On the other hand, Brešar et al. [1] introduced the high derivative graph ∂kG of a

median graph G and proved that C(k)(G, x) = C(∂kG, x). Let θi(G) be the number of

components in ∂i(G) with i ≥ 0 . Corollary 10 of [1] showed that θi(G) can be expressed

as

θi(G) = i!
∑
k≥0

(−1)k−i

(
k

i

)
αk(G)

for each i ≥ 0 . Comparing the above equation with Equation (ii) in Corollary 4.12, we

conclude that bi(G) = θi/i! and hence obtain the following results.

Corollary 4.13. If G is a median graph, then C(G, x) =
∑
i≥0

θi
i!
(x+ 1)i .

Corollary 4.14. For a Kekuléan hexagonal system H, we have

i!a(H, i) = θi(R(H)) (6)

for i ≥ 0 .

One of the applications of Theorem 4.11 is that it facilitates the studying of the

coefficients αi(G) of cube polynomial. Firstly, Corollary 4.12(ii) together with b0(G) = 1

immediately implies the following well-known result.

Corollary 4.15 ( [1]). Let G be a median graph. We have
∑
i≥0

(−1)iαi(G) = 1 .

Similar to the argument in [37], Corollary 4.12(i) implies a monotonic subsequence of

coefficients of cube polynomials.
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Corollary 4.16. Let G be a median graph. We have

αm(G) < αm−1(G) < · · · < α�m−1
2

	(G) .

Finally we propose a general conjecture for median graphs.

Conjecture 4.17. Let G be a median graph and C(G, x) be its cube polynomial. Then

the sequence of coefficients of C(G, x) is unimodal.
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