On Minimal Energies of Unicyclic Graphs with Perfect Matching

Jianming Zhu

Business Information Management School, Shanghai Institute of Foreign Trade, Shanghai 201620, China, and Department of Mathematics, Tongji University, Shanghai 200092, China
zhujianming2005@163.com

(Received December 10, 2012)

Abstract

The energy of a graph is the sum of the absolute values of the eigenvalues of its adjacency matrix. We denote by \(U(2n) \) the set of all unicyclic graphs of order \(2n \) with a perfect matching. Let \(B(2n) = \{ G \in U(2n) | \text{the length of the unique cycle of } G \text{ is divisible by } 4 \} \) and \(A(2n) = U(2n) \setminus B(2n) \). W. Wang, in the paper “Ordering of unicyclic graphs with perfect matchings by minimal energies”, MATCH Commun. Math. Comput. Chem. 66 (2011) 927–942, [1], posed a conjecture about ordering of graphs in \(A(2n) \) by minimal energies. We now characterize the graphs in \(U(2n) \) with the first seven minimal energies and offer an answer to the conjecture.

1 Introduction

Let \(G \) be a simple graph with \(n \) vertices and \(A(G) \) its adjacency matrix. Let \(\lambda_1, \lambda_2, \ldots, \lambda_n \) be the eigenvalues of \(A(G) \). Then the energy of \(G \), denoted by \(E(G) \), is defined as \(E(G) = \sum_{i=1}^{n} |\lambda_i| \) (see [2–4]). The theory of graph energy is well developed nowadays. Its details can be found in the recent book [5] and reviews [6], and in the references therein.

One of the fundamental questions that is encountered in the study of graph energy is which graphs (from a given class) have the maximal and minimal energy. A remarkably large number of papers were published on such extremal problems (see [5, Chapter 7]).

\[^{1} \text{Supported by the National Natural Science Foundation of China No. 71173145 and Shanghai Project 085.} \]
One of the graph classes that has been quite thoroughly studied is the class of all unicyclic graphs [7-27], i.e., connected graphs with one unique cycle. A number of results concerning the extremal energies of various families of unicyclic graphs has been obtained as follows: unicyclic graphs with maximal energies [7,11,14]; bipartite unicyclic graphs with maximal energies [8,9,10,12,13]; unicyclic graphs with minimal energies [15-18]; unicyclic graphs with a perfect matching [19-23]; unicyclic graphs with a given diameter [24]; unicyclic graphs with given number of pendent vertices [25,26].

The characteristic polynomial det(xI − A(G)) of the adjacency matrix A(G) of a graph G is also called the characteristic polynomial of G, is written as \(\phi(G,x) = \sum_{i=0}^{n} a_i(G) x^{n-i} \). Using these coefficients of \(\phi(G,x) \), the energy \(E(G) \) of a graph G with \(n \) vertices can be expressed by the following Coulson integral formula [4]:

\[
E(G) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{x^2} \log \left[\left(\sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i a_{2i}(G) x^{2i} \right)^2 + \left(\sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i a_{2i+1}(G) x^{2i+1} \right)^2 \right] dx .
\]

Throughout this paper, we write \(b_i(G) = |a_i(G)| \). It is easy to see that \(b_0(G) = 1 \), \(b_1(G) = 0 \), and \(b_2(G) \) equals the number of edges of G.

About the signs of the coefficients of the characteristic polynomials of unicyclic graphs, the following results were shown in [15].

Lemma 1.1 [15]. Let G be a unicyclic graph and the length of the unique cycle of G be \(\ell \). Then we have the following.

1. \(b_{2i}(G) = (-1)^i a_{2i}(G) \);
2. \(b_{2i+1}(G) = (-1)^i a_{2i+1}(G) \), if G contains a cycle of length \(\ell \) with \(\ell \not\equiv 1 (mod \ 4) \);
3. \(b_{2i+1}(G) = (-1)^{i+1} a_{2i+1}(G) \), if G contains a cycle of length \(\ell \) with \(\ell \equiv 1 (mod \ 4) \).

From Lemma 1.1, the Coulson integral formula (1) can be rewritten as the following form (in terms of \(b_i(G) \)) for unicyclic graphs as follows.

\[
E(G) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{x^2} \log \left[\left(\sum_{i=0}^{\lfloor n/2 \rfloor} b_{2i}(G) x^{2i} \right)^2 + \left(\sum_{i=0}^{\lfloor n/2 \rfloor} b_{2i+1}(G) x^{2i+1} \right)^2 \right] dx .
\]

It follows that \(E(G) \) is a strictly monotonically increasing function of those numbers \(b_i(G), i = 0, 1, \ldots, n \), for unicyclic graphs. This in turn provides a way of comparing the energies of a pair of unicyclic graphs. That is to say, the method of the quasi-ordering relation " \(\preceq \) " , outlined in the book [4] on the set of forests, can be generalized to the set of unicyclic graphs as follows.
Definition 1.1. Let G_1 and G_2 be two unicyclic graphs of order n. If $b_i(G_1) \leq b_i(G_2)$ for all i with $1 \leq i \leq n$, then we write $G_1 \preceq G_2$.

Furthermore, if $G_1 \preceq G_2$ and there exists at least one index j such that $b_j(G_1) < b_j(G_2)$, then we write that $G_1 \prec G_2$. According to the Coulson integral formula (2), we have for two unicyclic G_1 and G_2 of order n that

\[G_1 \preceq G_2 \implies E(G_1) \leq E(G_2) \]
\[G_1 \prec G_2 \implies E(G_1) < E(G_2). \]

In this paper, for the sake of conciseness, we introduce the symbols "→" as follows.

\[E(G_1) < E(G_2) \iff G_1 \rightarrow G_2. \]

In the following of this paper, we always assume that the order of a graph G is $2n$. We denote by $U(2n)$ the set of all unicyclic graphs of order $2n$ with a perfect matching. Let $\mathcal{B}(2n) = \{ G \in U(2n) | \text{the length of the unique cycle of } G \text{ is divisible by 4} \}$ and $\mathcal{A}(2n) = U(2n) \setminus \mathcal{B}(2n)$. Let $A_i (i = 1, 2, 3, 4)$ and $B_i (i = 1, 2, 3)$ be the graphs shown in Figure 1. Let $L_i (i = 1, 2, 3, 4)$ be the graphs shown in Figure 2.

![Fig. 1. The graphs in $U(2n)$ with the first seven minimal energies.](image1)

![Fig. 2. Some candidate graphs in $U(2n)$.](image2)
In [19], Li et al. proved that the unique graph in \(U(2n) \) with minimal energy is \(A_1 \) or \(B_1 \). Li and Li [20] have further shown that the unique graph in \(U(2n) \) with the minimal energy is \(B_1 \) by directly comparing the energies of \(A_1 \) and \(B_1 \). Recently, Wang [1] posed a conjecture about ordering of the graphs in \(A(2n) \) by minimal energies as follows.

Conjecture 1. Let \(G \in A(2n) \) and \(G \neq A_i (i = 1, 2, 3, 4) \), \(B_i (i = 1, 2) \), \(L_2, L_3, L_4 \). If \(n \geq 45 \), then

\[
B_1 \rightarrow A_1 \rightarrow B_2 \rightarrow A_2 \rightarrow A_3 \rightarrow A_4 \rightarrow L_2 \rightarrow L_3 \rightarrow L_4 \rightarrow G.
\]

Wang [1] pointed out that in order to prove the above conjecture, we only need to prove that \(B_1 \rightarrow A_1 \) and \(A_3 \rightarrow A_4 \). In this paper, by Lemmas 7.5 and 7.8 in Section 7, we show that the above conjecture is true. In fact, when the conjecture is true, we only can determine the graphs in \(A(2n) \) with the first five minimal energies for \(n \geq 45 \).

Motivated by the above conjecture, in this paper, we characterize the graphs in \(U(2n) \) with the first seven minimal energies in the following theorem which is the main result of this paper.

Theorem 1.1. Let \(G \in U(2n) \) and \(G \neq A_i (i = 1, 2, 3, 4) \), \(B_i (i = 1, 2, 3) \). If \(n \geq 191 \), then

\[
B_1 \rightarrow A_1 \rightarrow B_2 \rightarrow A_2 \rightarrow A_3 \rightarrow A_4 \rightarrow B_3 \rightarrow G.
\]

2 **The basic strategy of the proof of Theorem 1.1**

In this section, we outline the basic strategy of the proof of Theorem 1.1. Denote by \(K(G) \) the number of perfect matchings of a graph \(G \). We first quote the following basic property about the number of perfect matchings of unicyclic graphs.

Lemma 2.1 [21]. Let \(G \in U(2n) \) and \(C_\ell \) be the unique cycle of \(G \). If at least one vertex of \(C_\ell \) is attached by a forest of odd order, then \(K(G) = 1 \). Otherwise, \(K(G) = 2 \).

Let \(\mathbb{B}(2n) = \{ G \in U(2n) | \) the length of the unique cycle of \(G \) is divisible by 4 \} and \(\mathbb{A}(2n) = U(2n) \setminus \mathbb{B}(2n) \). By Lemma 2.1, we can classify the graphs in \(\mathbb{B}(2n) \) into two classes as follows.

\[
\mathbb{C}(2n) = \{ G \in \mathbb{B}(2n) | K(G) = 1 \},
\]

\[
\mathbb{D}(2n) = \{ G \in \mathbb{B}(2n) | K(G) = 2 \}.
\]
Next, in order to further classify the graphs in \(\mathcal{D}(2n) \) into two classes, we introduce some notations in what follows.

Throughout this paper, we denote by \(M(G) \) a perfect matching of a graph \(G \). Let \(\hat{G} = G - M(G) - S_0 \), where \(S_0 \) is the set of isolated vertices in \(G - M(G) \). We call \(\hat{G} \) the capped graph of \(G \) and \(G \) the original graph of \(\hat{G} \). For example, the capped graphs of \(L_1, B_3, L_2 \) are shown in Figure 3.

\[
\hat{L}_1 \quad \hat{B}_3 \quad \hat{L}_2
\]

Fig. 3. The capped graphs of \(L_1, B_3, L_2 \).

Denote by \(\mathcal{E}(G) \) the edge set of a graph \(G \). Let \(G \in \mathcal{D}(2n) \). Then \(K(G) = 2 \). By Lemma 2.1 and the fact that a tree contains at most one perfect matching, we can see that \(\mathcal{E}(G - C_\ell) \cap \mathcal{E}(\hat{G}) \) is identical under two different perfect matchings of \(G \). Thus we can classify the graphs in \(\mathcal{D}(2n) \) into the following two classes.

\[
\mathcal{E}(2n) = \{G \in \mathcal{D}(2n) | \mathcal{E}(G - C_\ell) \cap \mathcal{E}(\hat{G}) \neq \emptyset \}
\]
\[
\mathcal{F}(2n) = \{G \in \mathcal{D}(2n) | \mathcal{E}(G - C_\ell) \cap \mathcal{E}(\hat{G}) = \emptyset \}.
\]

It is easy to see that

\[
\mathcal{U}(2n) = \mathcal{A}(2n) \cup \mathcal{C}(2n) \cup \mathcal{E}(2n) \cup \mathcal{F}(2n)
\]

and \(B_2 \in \mathcal{C}(2n), B_3 \in \mathcal{E}(2n) \) and \(L_2 \in \mathcal{F}(2n) \).

For \(n \geq 191 \), our basic strategy of the proof of Theorem 1.1 is to prove the following results \((R1) - (R5)\):

\((R1)\) \(B_3 \rightarrow L_1 \)

\(B_3 \rightarrow L_2 \)

\(B_3 \rightarrow L_3 \)

\(B_1 \rightarrow A_1 \rightarrow B_2 \rightarrow A_2 \rightarrow A_3 \rightarrow A_4 \rightarrow B_3 \).

\((R2)\) For any \(G \in \mathcal{A}(2n) \backslash \{A_1, A_2, A_3, A_4, L_3\} \), we have \(L_1 \rightarrow G \).
(R3) For any \(G \in C(2n) \setminus \{B_2, L_1\} \), we have \(L_1 \rightarrow G \).

(R4) For any \(G \in E(2n) \setminus \{B_1, B_3\} \), we have \(B_3 \rightarrow G \).

(R5) For any \(G \in F(2n) \setminus \{L_2\} \), we have \(L_2 \rightarrow G \).

It is easy to see that we can prove Theorem 1.1 by combining the above results (R1)–(R5). We first prove (R2)–(R5) in Sections 3 to 6, respectively. Finally, we prove (R1) in Section 7.

3 Proof of (R2)

An \(i \)-matching is a disjoint union of \(i \) edges in \(G \). The number of \(i \)-matchings is denoted by \(m(G, i) \). We agree that \(m(G, 0) = 1 \) and \(m(G, i) = 0 \) (\(i < 0 \)). In order to compare the energies of two unicyclic graphs by using the method of quasi-ordering, we need to compute the numbers \(b_i(G) \). On \(b_i(G) \), we can easily obtain the following results.

Lemma 3.1 [15]. Let \(G \) be a unicyclic graph and \(C_\ell \) its unique cycle of length \(\ell \). Let \(r \) be a positive integer. Then,

\[
\begin{align*}
\text{(3)} & \quad b_{2i+1}(G) = \begin{cases}
0 & \ell = 2r, \\
2m(G - C_\ell, i - (\ell - 1)/2) & \ell = 2r + 1.
\end{cases} \\
\text{(4)} & \quad b_{2i}(G) = \begin{cases}
m(G, i) & \ell = 2r + 1, \\
m(G, i) + 2m(G - C_\ell, i - \ell/2) & \ell = 4r + 2, \\
m(G, i) - 2m(G - C_\ell, i - \ell/2) & \ell = 4r.
\end{cases}
\end{align*}
\]

It is easy to see that \(E(G) = E(\hat{G}) \cup M(G) \). Thus each \(i \)-matching \(\Omega \) of \(G \) can be partitioned into two parts: \(\Omega = \Phi \cup \Psi \), where \(\Phi \subseteq E(\hat{G}) \) and \(\Psi \subseteq M(G) \). Let \(r_j^{(2i)}(G) \) be the number of ways to choose \(i \) independent edges in \(G \) such that just \(j \) edges are in \(\hat{G} \). We agree that \(r_0^{(0)}(G) = 1 \) and \(r_j^{(2i)}(G) = 0 \) (\(i < 0 \)). For example, \(r_0^{(2i)}(G) = \binom{n}{i} \) and \(r_1^{(2i)}(G) = n \binom{n-2}{i-1} \).

Thus we have

\[
m(G, i) = \sum_{j=0}^{i} r_j^{(2i)}(G) = p + \sum_{j=2}^{i} r_j^{(2i)}(G)
\]

where

\[
p = \binom{n}{i} + n \binom{n-2}{i-1}.
\]

By using formula (4), we get the following two formulas that are frequently used in the rest of this paper.
\[b_{2i}(G) \geq p + \sum_{j=2}^{i} r_j^{(2i)}(G) \quad \ell \neq 0 \pmod{4} \]
\[b_{2i}(G) = p + \sum_{j=2}^{i} r_j^{(2i)}(G) - 2 \sum_{j=0}^{i-\ell/2} r_j^{(2i-\ell)}(G - C_\ell) \quad \ell \equiv 0 \pmod{4}. \]

In order to prove \((R_2)\), we quote the following lemma.

Lemma 3.2 [1]. Let \(G \in U(2n) \) with \(n \geq 5 \). If \(G \neq A_i (i = 1, 2, 3, 4), B_2, L_2, L_3 \), then \(m(\hat{G}, 2) \geq 2n - 7 \).

Proof of \((R_2)\). Let \(G \in A(2n) \backslash \{A_1, A_2, A_3, A_4, L_3\} \) and \(C_\ell \) be the unique cycle of \(G \). Then \(\ell \neq 0 \pmod{4} \), which implies that \(G \neq B_2, L_2 \). By Lemma 3.2, we have \(m(\hat{G}, 2) \geq 2n - 7 \).

By using formula (5) and the fact that two independent edges in \(\hat{G} \) are at most incident with four different edges in \(M(G) \), we have

\[b_{2i}(G) \geq p + \sum_{j=2}^{i} r_j^{(2i)}(G) \geq p + r_2^{(2i)}(G) \]
\[\geq p + m(\hat{G}, 2) \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right) \geq p + (2n - 7) \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right). \]

By using formula (6) and some calculation, we have

\[b_{2i}(L_1) = p + \sum_{j=2}^{i} r_j^{(2i)}(L_1) - 2 \sum_{j=0}^{i-2} r_j^{(2i-4)}(L_1 - C_4) \]
\[= p + (2n - 7) \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right) - \left(\begin{array}{c} n - 3 \\ i - 2 \end{array} \right). \]

Therefore, \(b_{2i}(G) \geq b_{2i}(L_1) \) and \(b_4(G) > b_4(L_1) \). Further, \(b_{2i+1}(G) \geq 0 = b_{2i+1}(L_1) \). This implies that \(G \succeq L_1 \). Then \(L_1 \rightarrow G \).

4 Proof of \((R_3)\)

Let \(G \in C(2n) \) and \(C_\ell \) be the unique cycle of \(G \). Then we have \(\ell \equiv 0 \pmod{4} \) and \(G \) contains only one perfect matching. In order to prove the result \((R_3)\), we will take two steps to consider the problem: \(\ell = 4 \) and \(\ell \geq 8 \). First, we consider the case when \(\ell = 4 \).

Lemma 4.1. Let \(G \in C(2n) \) with \(n \geq 5 \) and \(C_\ell \) be the unique cycle of \(G \). Assume that \(G \neq B_2, L_1 \). If \(\ell = 4 \), then \(L_1 \rightarrow G \).
Proof. By formula (7) we have
\[b_{2i}(L_1) = p + (2n - 7) \left(\binom{n - 4}{i - 2} - \binom{n - 3}{i - 2} \right). \]

Let \(\beta_1 \) be the number of ways to choose two independent edges in \(\hat{G} \) such that at least one edge is not in \(E(C_4) \) and \(\beta_2 \) the number of ways to choose two independent edges in \(\hat{G} \) such that two edges are both in \(E(C_4) \). We consider the following two cases.

Case 1: \(E(C_4) \cap M(G) = \emptyset. \)

Then \(E(C_4) \subseteq E(\hat{G}) \) from which follows \(\beta_1 \geq 2(n - 4) \) and \(\beta_2 = 2 \), implying \(r_{2i}^2(G) \geq (2n - 6) \binom{n - 4}{i - 2} \). Since \(\beta_2 = 2 \), we have \(r_{2i}^{2i}(G) \geq 2 \cdot r_j^{2i-4}(G-C_4) \) for all \(1 \leq j \leq i - 2 \).

By using formula (6) we have
\[b_{2i}(G) = p + \sum_{j=2}^{i} r_{j}^{(2i)}(G) - 2 \sum_{j=0}^{i-2} r_{j}^{(2i-4)}(G-C_4) \]
\[= p + r_2^{2i}(G) - 2r_0^{2i-4}(G-C_4) + \sum_{j=3}^{i} r_{j}^{(2i)}(G) - 2 \sum_{j=1}^{i-2} r_{j}^{(2i-4)}(G-C_4) \]
\[\geq p + (2n - 8) \binom{n - 4}{i - 2} + \sum_{j=1}^{i-2} \left(r_{j+2}^{(2i)}(G) - 2r_j^{(2i-4)}(G-C_4) \right) \]
\[\geq p + (2n - 7) \binom{n - 4}{i - 2} - \binom{n - 3}{i - 2} = b_{2i}(L_1). \]

Further \(b_4(L_1) < b_4(G) \), which implies that \(L_1 \prec G \). Then \(L_1 \rightarrow G \).

Case 2: \(E(C_4) \cap M(G) \neq \emptyset. \)

If \(|E(C_4) \cap M(G)| = 2 \), then \(G \) contains two different perfect matchings which contradicts with the condition that \(G \in \mathcal{C}(2n) \). Then \(|E(C_4) \cap M(G)| = 1 \), which implies that \(\beta_2 = 1 \). We consider the following two subcases.

Subcase 2.1: \(E(G - C_4) \cap E(\hat{G}) = \emptyset. \)

Since \(G \neq B_2, L_1 \) and by using formula (6),
\[b_{2i}(G) = p + \sum_{j=2}^{i} r_{j}^{(2i)}(G) - 2 \sum_{j=0}^{i-2} r_{j}^{(2i-4)}(G-C_4) \]
\[= p + r_2^{2i}(G) + \sum_{j=3}^{i} r_{j}^{(2i)}(G) - 2r_0^{2i-4}(G-C_4) \]
\[\geq p + r_2^{2i}(G) - 2r_0^{2i-4}(G - C_4) \]
\[\geq p + (n - 3) \left(\frac{n - 4}{i - 2} \right) + (n - 3) \left(\frac{n - 4}{i - 2} \right) - \left(\frac{n - 3}{i - 2} \right) \]
\[\geq p + (2n - 7) \left(\frac{n - 4}{i - 2} \right) - \left(\frac{n - 3}{i - 2} \right) = b_{2i}(L_1). \]

It is further \(b_4(L_1) < b_4(G) \), which implies \(L_1 < G \). It follows that \(L_1 \rightarrow G \).

Subcase 2.2: \(\mathcal{E}(G - C_4) \cap \mathcal{E}(\hat{G}) \neq \emptyset \).

By using formula (6), we have
\[
b_{2i}(G) = p + \sum_{j=2}^{i} r_j^{(2i)}(G) - 2 \sum_{j=0}^{i-2} r_j^{(2i-4)}(G - C_4)
\geq p + \beta_1 \left(\frac{n - 4}{i - 2} \right) - r_0^{2i-4}(G - C_4) - r_1^{2i-4}(G - C_4)
\geq p + (2n - 6) \left(\frac{n - 4}{i - 2} \right) - \left(\frac{n - 3}{i - 2} \right) - \left(\frac{n - 5}{i - 2} \right)
\geq p + (2n - 7) \left(\frac{n - 4}{i - 2} \right) - \left(\frac{n - 3}{i - 2} \right) = b_{2i}(L_1). \]

Further, \(b_4(L_1) < b_4(G) \), implying \(L_1 < G \). It follows that \(L_1 \rightarrow G \).

This completed the proof. \qed

Next, we consider the case when \(\ell \geq 8 \).

Lemma 4.2. Let \(G \in \mathbb{C}(2n) \) with \(n \geq 8 \) and \(C_\ell \) be the unique cycle of \(G \). If \(\ell \geq 8 \), then \(L_1 \rightarrow G \).

Proof. Since \(G \in \mathbb{C}(2n) \), we have that \(G \) contains only one perfect matching, which implies that \(|\mathcal{E}(C_\ell) \cap M(G)| \leq \ell/2 - 1 \). We consider the following two cases.

Case 1: \(|\mathcal{E}(C_\ell) \cap M(G)| = \ell/2 - 1 \).

Then \(|\mathcal{E}(C_\ell) \cap M(\hat{G})| = \ell/2 + 1 \). Let \(M_1 \) and \(M_2 \) be two different perfect matchings of \(C_\ell \). We further consider the following two subcases.

Case 1.1: \(M_1 \not\subseteq \mathcal{E}(\hat{G}) \) and \(M_2 \not\subseteq \mathcal{E}(\hat{G}) \).

Then both \(M_1 \) and \(M_2 \) contain at least two edges of \(\hat{G} \). Moreover one of them contains at least three edges of \(\hat{G} \). Let \(M_0 \) be a matching in \(G - C_\ell \) with cardinality \(i - \ell/2 \). Then there are two matchings \(M_1 \cup M_0 \) and \(M_2 \cup M_0 \) with cardinality \(i \) corresponding to \(M_0 \).
By using formula (6) we have
\[
b_{2i}(G) = p + \sum_{j=2}^{i} r_j^{(2i)}(G) - 2 \sum_{j=0}^{i-\ell/2} r_j^{(2i-\ell)}(G - C) \\
\geq p + \beta_0 \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right) - r_0^{2i-\ell}(G - C) \\
= p + \beta_0 \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right) - \left(\begin{array}{c} n - (\ell/2 - 1) - 2 \\ i - \ell/2 \end{array} \right)
\]
where \(\beta_0 \) denote the number of ways to choose two independent edges in \(\hat{G} \) such that at least one edge is in \(\mathcal{E}(C) \).

Let \(C_\ell = v_1v_2 \cdots v_\ell v_1 \) and \(T_i \) be the trees planted at \(v_i \) for \(1 \leq i \leq \ell \). Let \(m_i \) be the number of edges of \(\hat{G} \) in \(T_i \). Then we have
\[
\beta_0 \geq \left[\left(\frac{\ell/2 - 1}{2} \right) + (m_1 + m_2 + \cdots + m_\ell)(\ell/2 + 1 - 2) \right] \\
= \left[\left(\frac{\ell/2 - 1}{2} \right) + (n - \ell/2 - 1)(\ell/2 + 1 - 2) \right] \\
= n(\ell/2 - 1) - (\ell/2 - 1)(\ell/4 + 2).
\]

Let \(f(x) = n(\frac{x}{2} - 1) - \frac{x}{2}(\frac{x}{4} + 2) \). Then \(f'(x) = \frac{1}{4}(2n - x - 3) \geq 0 \) when \(x \leq 2n - 3 \). Since \(8 \leq \ell \leq 2n \), we have \(\beta_0 = f(\ell) \geq \min\{f(8), f(2n)\} = f(8) = 3n - 12 \). It follows that
\[
b_{2i}(G) \geq p + (3n - 12) \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right) - \left(\begin{array}{c} n - (\ell/2 - 1) - 2 \\ i - \ell/2 \end{array} \right) \\
\geq p + (3n - 12) \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right) - \left(\begin{array}{c} n - 5 \\ i - 4 \end{array} \right) \\
\geq p + (2n - 7) \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right) - \left(\begin{array}{c} n - 3 \\ i - 2 \end{array} \right) = b_{2i}(L_1) .
\]
Further, \(b_4(L_1) < b_4(G) \), which implies \(L_1 \prec G \). Then \(L_1 \rightarrow G \).

Case 1.2: \(M_1 \subseteq \mathcal{E}(\hat{G}) \) or \(M_2 \subseteq \mathcal{E}(\hat{G}) \).

Without loss of generality, we assume that \(M_1 \subseteq \mathcal{E}(\hat{G}) \). Then \(|M_1 \cap \mathcal{E}(\hat{G})| = \ell/2 \geq 4 \) and \(|M_2 \cap \mathcal{E}(\hat{G})| = 1 \). By using formula (6) we have
\[
b_{2i}(G) = p + \sum_{j=2}^{i} r_j^{(2i)}(G) - 2 \sum_{j=0}^{i-\ell/2} r_j^{(2i-\ell)}(G - C) \\
\geq p + \beta_3 \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right) - r_0^{2i-\ell}(G - C) \\
= p + \beta_3 \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right) - \left(\begin{array}{c} n - (\ell/2 - 1) - 2 \\ i - \ell/2 \end{array} \right)
\]
where β_3 denote the number of ways to choose two independent edges in \hat{G} such that at least one edge is in M_1 and no edge is in M_2.

Using the same method as in Subcase 1.1, we have

$$\beta_3 \geq \left(\frac{\ell/2}{2} \right) + \left(n - \frac{\ell}{2} - 1 \right) \left(\frac{\ell}{2} + 1 - 2 \right) > \beta_0 \geq 3n - 12 .$$

Thus $b_{2i}(L_1) \geq b_{2i}(G)$ and $b_4(L_1) < b_4(G)$. It implies that $L_1 \rightarrow G$.

Case 2: $|E(C_\ell) \cap M(G)| \leq \ell/2 + 2$. Then $|E(C_\ell) \cap E(\hat{G})| \geq \ell/2 + 2 \geq 6$. Let M_1 and M_2 be two different perfect matchings of $C_\ell \cup I$. Thus both M_1 and M_2 contain at least two edges of \hat{G}. Since $\ell \geq 8$, we know that M_1 or M_2 contains at least four edges of \hat{G}. Take $|E(C_\ell) \cap E(\hat{G})| = x$. Then $|E(C_\ell) \cap M(G)| = \ell - x$. By using formula (6) we have

$$b_{2i}(G) = p + \sum_{j=2}^{i} r_j^{(2i)}(G) - 2 \sum_{j=0}^{i - \ell/2} r_j^{(2i-\ell)}(G - C_\ell)$$

$$\geq p + \beta_4 \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right) - r_0^{2i-\ell}(G - C_\ell)$$

$$= p + \beta_4 \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right) - \left(n - \ell - x \right) \binom{2x - \ell}{i - \ell/2}$$

$$= p + \beta_4 \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right) - \left(\frac{n - x}{i - \ell/2} \right)$$

$$\geq p + \beta_4 \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right) - \left(\frac{n - \ell/2 - 2}{i - \ell/2} \right)$$

where β_4 denote the number of ways to choose two independent edges in \hat{G} such that at least one edge is in $E(C_\ell)$. Using the same method as in Subcase 1.1, we have

$$\beta_4 \geq \left[\frac{x(x-2)}{2} + (n - x)(x - 2) \right]$$

$$\geq \left[\frac{6(6-2)}{2} + (n - 6)(6 - 2) \right] \geq 4n - 12 .$$

This implies

$$b_{2i}(G) \geq p + (4n - 12) \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right) - \left(\frac{n - \ell/2 - 2}{i - \ell/2} \right)$$

$$\geq p + (4n - 12) \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right) - \left(\frac{n - 6}{i - 4} \right)$$

$$\geq p + (2n - 7) \left(\begin{array}{c} n - 4 \\ i - 2 \end{array} \right) - \left(\frac{n - 3}{i - 2} \right) = b_{2i}(L_1) .$$

Thus $b_{2i}(L_1) \leq b_{2i}(G)$ and $b_4(L_1) < b_4(G)$. It implies that $L_1 \rightarrow G$.

Proof of (R_3). The result can be directly derived from Lemmas 4.1 and 4.2. □
5 Proof of (R₄)

Let $G \in \mathbb{E}(2n)$ and C_ℓ be the unique cycle of G. Then we have $\ell \equiv 0 \pmod{4}$ and G contains two different perfect matchings. Moreover, for each perfect matching $M(G)$, we have $\mathcal{E}(G - C_\ell) \cap \mathcal{E}(\hat{G}) \neq \emptyset$. In order to prove the result (R_4), we will take two steps to consider the problem: $\ell = 4$ and $\ell \geq 8$. First, we consider the case when $\ell = 4$.

Lemma 5.1. Let $G \in \mathbb{E}(2n)$ with $n \geq 5$ and C_ℓ be the unique cycle of G. Let $G \neq B_1$, B_3.

If $\ell = 4$, then $B_3 \rightarrow G$.

Proof. By using formula (6) and some calculation, we have

$$b_{2i}(B_3) = p + \sum_{j=2}^{i} r_j^{(2i)}(B_3) - 2 \sum_{j=0}^{i-2} r_j^{(2i-4)}(B_3 - C_4)$$

$$= p + r_2^{(2i)}(B_3) + r_3^{(2i)}(B_3) - 2r_0^{(2i-4)}(B_3 - C_4) - 2r_1^{(2i-4)}(B_3 - C_4)$$

$$= p + 2\left(\frac{n - 3}{i - 2} \right) + 3(n - 4)\left(\frac{n - 4}{i - 2} \right) + (n - 4)\left(\frac{n - 5}{i - 3} \right)$$

$$= - \left(\frac{n - 2}{i - 2} \right) - (n - 4)\left(\frac{n - 4}{i - 3} \right).$$

Let $C_4 = v_1v_2v_3v_4v_1$. Let m_i be the number of edges in $\mathcal{E}((\hat{G})$ that are adjacent to v_i except two edges of C_4. Take $m_1 + m_2 + m_3 + m_4 = x$. Then we have $1 \leq x \leq n - 3$. We consider the following there cases.

Case 1: $x = 1$.

Without loss of generality, we assume that $m_1 = 1$ and $m_2 = m_3 = m_4 = 0$. By using formula (6), and the fact that $G \neq B_1$ and $\mathcal{E}(G - C_4) \cap \mathcal{E}(\hat{G}) \neq \emptyset$, we have

$$b_{2i}(G) = p + \sum_{j=2}^{i} r_j^{(2i)}(G) - 2 \sum_{j=0}^{i-2} r_j^{(2i-4)}(G - C_4)$$

$$\geq p + r_2^{(2i)}(G) + r_3^{(2i)}(G) - 2r_0^{(2i-4)}(G - C_4) - 2r_1^{(2i-4)}(G - C_4)$$

$$\geq p + 2\left(\frac{n - 3}{i - 2} \right) + 3(n - 3)\left(\frac{n - 4}{i - 2} \right) + (n - 4)\left(\frac{n - 5}{i - 3} \right)$$

$$- \left(\frac{n - 2}{i - 2} \right) - (n - 4)\left(\frac{n - 4}{i - 3} \right).$$
Further we have \(b_4(B_3) < b_4(G) \), which implies that \(B_3 \rightarrow G \).

Case 2: \(x = 2 \).

By using formula (6) and \(G \neq B_3 \), we have

\[
b_{2i}(G) = p + \sum_{j=2}^{i} r_j^{(2i)}(G) - 2 \sum_{j=0}^{i-2} r_j^{(2i-4)}(G - C_4) \geq p + r_2^{(2i)}(G) + r_3^{(2i)}(G) - 2r_0^{(2i-4)}(G - C_4) - 2r_1^{(2i-4)}(G - C_4) \\
\geq p + 2 \left(\frac{n-3}{i-2} \right) + 3(n-4) \left(\frac{n-4}{i-2} \right) + (n-5) \left(\frac{n-4}{i-2} \right) \\
+ (n-4) \left(\frac{n-5}{i-3} \right) - \left(\frac{n-2}{i-2} \right) - (n-4) \left(\frac{n-4}{i-3} \right) \geq b_{2i}(B_3) .
\]

Further, \(b_4(B_3) < b_4(G) \), which implies \(B_3 \rightarrow G \).

Case 3: \(3 \leq x \leq n - 3 \).

By using formula (6) we have

\[
b_{2i}(G) = p + \sum_{j=2}^{i} r_j^{(2i)}(G) - 2 \sum_{j=0}^{i-2} r_j^{(2i-4)}(G - C_4) \geq p + r_2^{(2i)}(G) + r_3^{(2i)}(G) - 2r_0^{(2i-4)}(G - C_4) - 2r_1^{(2i-4)}(G - C_4) \\
\geq p + x \left(\frac{n-3}{i-2} \right) + 2(n - x - 2) \left(\frac{n-4}{i-2} \right) + (x-1)(n - x - 2) \left(\frac{n-4}{i-2} \right) \\
+ (x-1)(n - x - 2) \left(\frac{n-5}{i-3} \right) - \left(\frac{n-2}{i-2} \right) - (n-4) \left(\frac{n-4}{i-3} \right) \\
\geq p + 3 \left(\frac{n-3}{i-2} \right) + 4(n-5) \left(\frac{n-4}{i-2} \right) + 2(n-5) \left(\frac{n-5}{i-3} \right) \\
- \left(\frac{n-2}{i-2} \right) - (n-4) \left(\frac{n-4}{i-3} \right) \geq b_{2i}(B_3) .
\]

Further, \(b_4(B_3) < b_4(G) \), which implies that \(B_3 \rightarrow G \).

This completes the proof. \(\square \)

Next, we consider the case when \(\ell \geq 8 \).

Lemma 5.2. Let \(G \in \mathbb{E}(2n) \) with \(n \geq 5 \) and \(C_\ell \) be the unique cycle of \(G \). If \(\ell \geq 8 \), then \(B_3 \rightarrow G \).

Proof. By using formula (6) we have

\[
b_{2i}(G) = p + \sum_{j=2}^{i} r_j^{(2i)}(G) - 2 \sum_{j=0}^{i-\ell/2} r_j^{(2i-\ell)}(G - C_\ell) \\
= p + \sum_{j=2}^{i} r_j^{(2i)}(G) - 2 \sum_{j=0}^{i-\ell/2} r_j^{(2i-\ell)}(G - C_\ell) \\
\geq p + r_2^{(2i)}(G) + r_3^{(2i)}(G) - 2r_0^{(2i-\ell)}(G - C_\ell) - 2r_1^{(2i-\ell)}(G - C_\ell) \\
\geq p + 2 \left(\frac{n-3}{i-2} \right) + 3(n-4) \left(\frac{n-4}{i-2} \right) + (n-5) \left(\frac{n-4}{i-2} \right) \\
+ (n-4) \left(\frac{n-5}{i-3} \right) - \left(\frac{n-2}{i-2} \right) - (n-4) \left(\frac{n-4}{i-3} \right) \geq b_{2i}(B_3) .
\]

This completes the proof. \(\square \)
\[
\geq p + 2 \left(\binom{n-3}{i-2} \right) + (\beta_5 - 1) \left(\binom{n-4}{i-2} \right) + \frac{\ell}{2} \left(\binom{n-4}{i-3} \right) \\
+ \left(n - \frac{\ell}{2} - 1 \right) \left(\binom{n-5}{i-3} \right) - r_{0}^{2i-\ell}(G - C_{\ell}) - r_{1}^{2i-\ell}(G - C_{\ell}) \\
\geq p + 2 \left(\binom{n-3}{i-2} \right) + (\beta_5 - 1) \left(\binom{n-4}{i-2} \right) + (n-1) \left(\binom{n-5}{i-3} \right) \\
- \left(\binom{n-\ell/2}{i-\ell/2} \right) - (n-\ell/2-1) \left(\binom{n-\ell/2-2}{i-\ell/2-1} \right) \\
\geq p + 2 \left(\binom{n-3}{i-2} \right) + (\beta_5 - 1) \left(\binom{n-4}{i-2} \right) + (n-1) \left(\binom{n-5}{i-3} \right) \\
- \left(\binom{n-4}{i-2} \right) - (n-5) \left(\binom{n-6}{i-5} \right)
\]

where \(\beta_5 \) denotes the number of ways to choose two independent edges in \(\hat{G} \) such that at least one edge is in \(E(C_{\ell}) \).

Using the same method as in Subcase 1.1 of Lemma 4.2, we have

\[
\beta_5 \geq \left(\frac{\ell}{2} \right) + \left(n - \frac{\ell}{2} - 1 \right) \geq 3n - 6.
\]

Then,

\[
b_{2i}(G) \geq p + 2 \left(\binom{n-3}{i-2} \right) + 3(n-4) \left(\binom{n-4}{i-2} \right) + (n-4) \left(\binom{n-5}{i-3} \right) \\
- \left(\binom{n-2}{i-2} \right) - (n-4) \left(\binom{n-4}{i-3} \right) = b_{2i}(B_3) .
\]

Further, \(b_4(B_3) < b_4(G) \), implying \(B_3 \rightarrow G \).

This completes the proof. \(\Box \)

Proof of (R_4). The result can be directly derived from Lemmas 5.1 and 5.2. \(\Box \).

6 Proof of (R_5)

Let \(G \in \mathbb{F}(2n) \) and \(C_{\ell} \) be the unique cycle of \(G \). Then we have \(\ell \equiv 0 \pmod{4} \) and \(G \) contains two different perfect matchings. Moreover, \(E(G - C_{\ell}) \cap E(\hat{G}) = \emptyset \) for each perfect matching \(M(G) \) of \(G \). In order to prove the result (R_5), we will take two steps to consider the problem: \(\ell = 4 \) and \(\ell \geq 8 \). First, we consider the case when \(\ell = 4 \).
Lemma 6.1. Let \(G \in \mathcal{F}(2n) \) with \(n \geq 5 \) and \(C_\ell \) be the unique cycle of \(G \). Let \(G \neq L_2 \). If \(\ell = 4 \), then \(L_2 \rightarrow G \).

Proof. By using formula (6), we have

\[
b_{2i}(L_2) = p + \sum_{j=2}^{i} r_j^{(2i)}(L_2) - 2 \sum_{j=0}^{i-2} r_j^{(2i-4)}(L_2 - C_4)
\]

\[
= p + r_2^{(2i)}(L_2) - 2r_0^{(2i-4)}(L_2 - C_4)
\]

\[
= p + \left(\frac{n-2}{i-2} \right) + (n-2) \left(\frac{n-3}{i-2} \right) - 2 \left(\frac{n-2}{i-2} \right)
\]

\[
= p + (n-2) \left(\frac{n-3}{i-2} \right) - \left(\frac{n-2}{i-2} \right).
\]

By using formula (6), and the fact that \(G \neq L_2 \) and \(\mathcal{E}(G - C_4) \cap \mathcal{E}(\hat{G}) = \emptyset \), we have

\[
b_{2i}(G) = p + \sum_{j=2}^{i} r_j^{(2i)}(G) - 2 \sum_{j=0}^{i-2} r_j^{(2i-4)}(G - C_4)
\]

\[
\geq p + r_2^{(2i)}(G) - 2r_0^{(2i-4)}(G - C_4)
\]

\[
\geq p + \left(\frac{n-2}{i-2} \right) + (n-2) \left(\frac{n-3}{i-2} \right) + \left(\frac{n-4}{i-2} \right) - 2 \left(\frac{n-2}{i-2} \right)
\]

\[
= p + (n-2) \left(\frac{n-3}{i-2} \right) + \left(\frac{n-4}{i-2} \right) - \left(\frac{n-2}{i-2} \right) \geq b_{2i}(L_2).
\]

Further, \(b_4(L_2) < b_4(G) \), which implies \(L_2 \rightarrow G \).

By this the proof is completed. \(\square \)

Next, we consider the case when \(\ell \geq 8 \).

Lemma 6.2. Let \(G \in \mathcal{F}(2n) \) with \(n \geq 5 \) and \(C_\ell \) be the unique cycle of \(G \). If \(\ell \geq 8 \), then \(L_2 \rightarrow G \).

Proof. By using formula (6) and the fact that \(\mathcal{E}(G - C_\ell) \cap \mathcal{E}(\hat{G}) = \emptyset \), we have

\[
b_{2i}(G) = p + \sum_{j=2}^{i} r_j^{(2i)}(G) - 2 \sum_{j=0}^{i-\ell/2} r_j^{(2i-\ell)}(G - C_\ell)
\]

\[
\geq p + r_2^{(2i)}(G) - 2r_0^{(2i-\ell)}(G - C_\ell)
\]

\[
\geq p + \beta_6 \left(\frac{n-3}{i-2} \right) - r_0^{(2i-\ell)}(G - C_\ell)
\]

\[
\geq p + \beta_6 \left(\frac{n-3}{i-2} \right) - \left(\frac{n-\ell/2}{i-\ell/2} \right)
\]

\[
\geq p + \beta_6 \left(\frac{n-3}{i-2} \right) - \left(\frac{n-2}{i-2} \right).
\]
where β_6 is the number of ways of choosing two independent edges of $E(\hat{G})$, such that these are adjacent to a same edge in $M(G)$. Then $\beta_6 \geq (n - \ell/2) + \ell/2 = n$, which implies

$$b_{2i}(G) \geq p + n \left(\frac{n - 3}{i - 2} \right) - \left(\frac{n - 2}{i - 2} \right) \geq b_{2i}(L_2).$$

Further, $b_4(L_2) < b_4(G)$, implying $L_2 \rightarrow G$. □

Proof of (R_5). The result can be directly derived from Lemmas 6.1 and 6.2. □

7 Proof of (R_1)

From Section 2 to Section 6, the quasi-ordering method is always used to compare the energies of two unicyclic graphs. However, if the quantities $b_i(G)$ cannot be compared uniformly, then the common comparing method is invalid, and this happens quite often. Recently much effort has been made to tackle these quasi-ordering incomparable problems. Efficient approaches to solve these problems can be found in [1,11-14,17,18,20,27-36]. In particular, by means of the Coulson integral formula for the energy difference of two graphs, Huo et al. determined the fourth energy tree [28] and the maximal energy unicyclic graph [14]. Recently, Shan et al. [35] presented a new method of comparing the energies of subdivision bipartite graphs which can also be used to tackle these quasi-ordering incomparable problems. By using this method, they determined the first $3n - 84$ (when n is odd) and $3n - 87$ (when n is even) largest energy trees in [36].

In this section, we use the Coulson integral formula for the energy difference of two graphs to compare the energies of two unicyclic graphs which are quasi-ordering incomparable. The following lemma is a well known result due to Gutman [6], which will be used in the sequel.

Lemma 7.1 [6]. Let $\phi_1(x)$ and $\phi_2(x)$ be two characteristic polynomials of two graphs G_1 and G_2 with the same order, respectively. Then

$$E(G_1) - E(G_2) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \log \left| \frac{\phi_1(ix)}{\phi_2(ix)} \right| dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \log \left(\frac{p_1^2(x) + q_1^2(x)}{p_2^2(x) + q_2^2(x)} \right) dx \quad (8)$$

where $\phi_1(ix) = p_1(x) + i q_1(x)$ and $\phi_2(ix) = p_2(x) + i q_2(x)$.

By using formula (8), we can prove the following results.

Lemma 7.2. If $n \geq 5$, then $B_3 \rightarrow L_1$.

Proof. By some calculation we have
\[\phi(B_3, x) = x^2(x^2 - 1)^{n-5}(x^8 - (n+5)x^6 + (6n-1)x^4 - (6n-1)x^2 + 8) \]
\[\phi(L_1, x) = (x^2 - 1)^{n-5}(x^{10} - (n+5)x^8 + (5n+2)x^6 - (5n+1)x^4 + (n+4)x^2 - 1) . \]

By using formula (8) we have
\[E(B_3) - E(L_1) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \log F(x) \, dx = \frac{2}{\pi} \int_{0}^{+\infty} \log F(x) \, dx \]
where
\[F(x) = \frac{x^2(x^8 + (n+5)x^6 + (6n-1)x^4 + (6n-1)x^2 + 8)}{x^{10} + (n+5)x^8 + (5n+2)x^6 + (5n+1)x^4 + (n+4)x^2 + 1} . \]

Write
\[f(t, x) = \frac{\tilde{\phi}_1}{\tilde{\phi}_2} = \frac{x^2(x^8 + (t+5)x^6 + (6t-1)x^4 + (6t-1)x^2 + 8)}{x^{10} + (t+5)x^8 + (5t+2)x^6 + (5t+1)x^4 + (t+4)x^2 + 1} . \]

Then
\[f'(t, x) = \frac{x^4(x^2 + 1)(x^2 - 1)(x^4 + 7x^2 + 9x^2 + 2)}{(\tilde{\phi}_2)^2} \]
which has only one positive real root, equal to \(\sqrt{(\sqrt{5} - 1)/2} \). Therefore \(f(n, x) \) strictly decreases when \(x \in \left(0, \sqrt{(\sqrt{5} - 1)/2} \right) \) and strictly increases when \(x \in \left[\sqrt{(\sqrt{5} - 1)/2}, +\infty \right) \).

Take
\[f(+\infty, x) = \lim_{n \to +\infty} f(n, x) = \frac{x^2(x^6 + 6x^4 + 6x^2)}{x^8 + 5x^6 + 5x^4 + x^2} = \frac{x^6 + 6x^4 + 6x^2}{x^6 + 5x^4 + 5x^2 + 1} . \]

It follows that
\[E(B_3) - E(L_1) = \frac{2}{\pi} \int_{0}^{+\infty} \log f(n, x) \, dx \]
\[\leq \frac{2}{\pi} \int_{0}^{\sqrt{\frac{7}{2} - 1}} \log f(5, x) \, dx + \frac{2}{\pi} \int_{\sqrt{\frac{7}{2} - 1}}^{+\infty} \log f(+\infty, x) \, dx \]
\[= \frac{2}{\pi}(-0.851236 + 0.502351) < 0 . \]

Thus, \(B_3 \to L_1 \) for \(n \geq 5 \).

Lemma 7.3. If \(n \geq 5 \), then \(B_3 \to L_2 \).

Proof. By some calculation we obtain
\[\phi(B_3, x) = x^2(x^2 - 1)^{n-5}(x^8 - (n+5)x^6 + (6n-1)x^4 - (6n-1)x^2 + 8) \]
\[
\phi(L_2, x) = x^2(x^2 - 1)^{n-3}(x^4 - (n + 3)x^2 + 2n).
\]

Using formula (8) we have

\[
E(B_3) - E(L_2) = \frac{2}{\pi} \int_0^{+\infty} \log \frac{x^8 + (n + 5)x^6 + (6n - 1)x^4 + (6n - 1)x^2 + 8}{(x^2 + 1)^2(x^4 + (n + 3)x^2 + 2n)} \, dx.
\]

Write

\[
f(t, x) = \frac{\tilde{\phi}_1}{\tilde{\phi}_2} = \frac{x^8 + (t + 5)x^6 + (6t - 1)x^4 + (6t - 1)x^2 + 8}{(x^2 + 1)^2(x^4 + (t + 3)x^2 + 2t)}.
\]

Then

\[
f'(t, x) = \frac{(x^2 + 1)^2(2x^4 + x^2 - 2)(x^4 + 7x^2 + 8)}{(\tilde{\phi}_2)^2}
\]

which has only one positive real root, equal to \(\sqrt{(\sqrt{17} - 1)/4}\). Therefore \(f(n, x)\) strictly decreases when \(x \in \left(0, \sqrt{(\sqrt{17} - 1)/4}\right)\) and strictly increases when \(x \in \left[\sqrt{(\sqrt{17} - 1)/4}, +\infty\right)\).

Take

\[
f(+\infty, x) = \lim_{n \to +\infty} f(n, x) = \frac{x^6 + 6x^4 + 6x^2}{(x^2 + 1)^2(x^2 + 2)}.
\]

If \(n \geq 90\), then

\[
E(B_3) - E(L_2) = \frac{2}{\pi} \int_0^{+\infty} \log f(n, x) \, dx
\]

\[
\leq \frac{2}{\pi} \int_0^{\sqrt{(\sqrt{17} - 1)/4}} \log f(90, x) \, dx + \frac{2}{\pi} \int_{\sqrt{(\sqrt{17} - 1)/4}}^{+\infty} \log f(+\infty, x) \, dx
\]

\[
= \frac{2}{\pi} (-0.944366 + 0.942722) < 0.
\]

Further, \(B_3 \to L_2\) for \(5 \leq n \leq 89\). Thus, \(B_3 \to L_2\) for \(n \geq 5\).

\(\square\)

Lemma 7.4. If \(n \geq 5\), then \(B_3 \to L_3\).

Proof. By some calculation we have

\[
\phi(L_3, x) = (x^2 - 1)^{n-3}(x^6 - (n + 3)x^4 - 2x^3 + (2n + 1)x^2 + 2x - 1)
\]

\[
\phi(L_2, x) = x^2(x^2 - 1)^{n-3}(x^4 - (n + 3)x^2 + 2n).
\]

Thus, \(L_2 < L_3\), which implies that \(L_2 \to L_3\). By Lemma 7.3, \(B_3 \to L_3\). \(\square\)

In [5], Li and Li have shown the following result by directly comparing the energies of \(B_1\) and \(A_1\).

Lemma 7.5 [20]. If \(n \geq 5\), then \(B_1 \to A_1\).
Wang [1] has shown the following results by means of the theorem of zero points.

Lemma 7.6. If \(n \geq 7 \), then \(A_1 \rightarrow B_2 \).

Lemma 7.7. If \(n \geq 4 \), then \(B_2 \rightarrow A_2 \rightarrow A_3 \).

In order to prove the result \((R_1)\), we only need to prove that \(A_3 \rightarrow A_4 \) and \(A_4 \rightarrow B_3 \).

Lemma 7.8. If \(n \geq 4 \), then \(A_3 \rightarrow A_4 \).

Proof. By some calculation we have

\[
\phi(A_3, x) = (x^2 - 1)^{n-4}(x^8 - (n + 4)x^6 - 2x^5 + (3n + 4)x^4 + 4x^3 - (n + 5)x^2 - 2x + 1)
\]

\[
\phi(A_4, x) = (x^2 - 1)^{n-4}(x^8 - (n + 4)x^6 + (3n + 5)x^4 - 2x^3 - (n + 6)x^2 + 2x + 1).
\]

Write

\[
p_1 = x^8 + (n + 4)x^6 + (3n + 4)x^4 + (n + 5)x^2 + 1
\]

\[
q_1 = 2x^5 + 4x^3 + 2x
\]

\[
p_2 = x^8 + (n + 4)x^6 + (3n + 5)x^4 + (n + 6)x^2 + 1
\]

\[
q_2 = 2x^3 + 2x .
\]

By using formula (8),

\[
E(A_3) - E(A_4) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \log \frac{p_1^2 + q_1^2}{p_2^2 + q_2^2} \, dx
\]

and it can be shown that

\[
(p_1^2 + q_1^2) - (p_2^2 + q_2^2) = -x^2(x^2 + 1)(2x^8 + (2n + 4)x^6 + (6n - 3)x^4 + (2n + 3)x^2 + 2) \leq 0 .
\]

It follows that \(E(A_3) < E(A_4) \), that is, \(A_3 \rightarrow A_4 \). \(\square \)

Lemma 7.9. If \(n \geq 191 \), then \(A_4 \rightarrow B_3 \).

Proof. By some calculation we have

\[
\phi(A_4, x) = (x^2 - 1)^{n-4}(x^8 - (n + 4)x^6 + (3n + 5)x^4 - 2x^3 - (n + 6)x^2 + 2x + 1)
\]

\[
\phi(B_3, x) = x^2(x^2 - 1)^{n-5}(x^8 - (n + 5)x^6 + (6n - 1)x^4 - (6n - 1)x^2 + 8).
\]

By using formula (8), we get

\[
E(A_4) - E(B_3) = \frac{1}{\pi} \int_{0}^{+\infty} \log F_1(x) \, dx < \frac{1}{\pi} \int_{0}^{+\infty} \log F_2(x) \, dx
\]
Thus

\[F_1(x) = \frac{(x^2 + 1)^2 [(x^8 + (n + 4)x^6 + (3n + 5)x^4 + (n + 6)x^2 + 1) + (2x^3 + 2x)^2]}{x^4(x^8 + (n + 5)x^6 + (6n - 1)x^4 + (6n - 1)x^2 + 8)^2} \]

\[F_2(x) = \frac{(x^2 + 1)^2 [(x^8 + (n + 4)x^6 + (3n + 5)x^4 + (n + 6)x^2 + 1) + (2x^3 + 2x)^2]}{x^4(x^8 + (n + 5)x^6 + (6n - 1)x^4 + (6n - 1)x^2 + 6)^2} \]

Write

\[p_1 = x^8 + (t + 4)x^6 + (3t + 5)x^4 + (t + 6)x^2 + 1 \]

\[q_1 = 2x^3 + 2x \]

\[p_2 = x^8 + (t + 5)x^6 + (6t - 1)x^4 + (6t - 1)x^2 + 6 \]

\[f(t, x) = \frac{(x^2 + 1)^2 [p_1^2 + q_1^2]}{x^4p_2^2} \]

Then

\[f'(t, x) = \frac{(x^2 + 1)^2}{x^4} \cdot 2p_1p_2(x^6 + 3x^4 + x^2) - 2p_2(p_1^2 + q_1^2)(x^6 + 6x^4 + 6x^2) \]

\[\leq \frac{(x^2 + 1)^2}{x^4} \cdot 2p_1p_2 \left((x^6 + 3x^4 + x^2)p_2 - (x^6 + 6x^4 + 6x^2)p_1 \right) \]

\[= \frac{(x^2 + 1)^2}{x^4} \cdot 2p_1p_2 \left(-x^4(2x^8 + 20x^6 + 59x^4 + 65x^2 + 25) \right) < 0 \]

Thus \(f(n, x) \) about \(n \) strictly decreases when \(x \in (0, +\infty) \). When \(n \geq 300 \), it implies that

\[E(A_4) - E(B_3) < \frac{1}{\pi} \int_0^{+\infty} \log f(n, x) \, dx < \frac{1}{\pi} \int_0^{+\infty} \log f(300, x) \, dx \]

\[= -0.0335098 < 0 \]

Further, by some calculation we obtain \(A_4 \rightarrow B_3 \) for \(191 \leq n \leq 299 \). Therefore, \(B_3 \rightarrow L_2 \) for \(n \geq 191 \). \(\Box \)

Proof of \((R_4)\). The result can be directly derived from Lemmas 7.2 to 7.9. \(\Box \)

References

